
avocado Documentation
Release 88.1

Avocado Development Team

May 17, 2021

Quick Start

1 How does it work? 3

2 Why should I use it? 5
2.1 Multiple result formats . 5
2.2 Sysinfo data collector . 5
2.3 Job Replay and Job Diff . 6
2.4 Extensible by plugins . 7
2.5 Utility libraries . 7

3 Avocado Python API 9

4 How to install 11

5 Documentation 13

6 Bugs/Requests 15

7 Changelog 17

8 License 19

9 Build and Quality Status 21
9.1 Welcome to Avocado . 21

9.1.1 How does it work? . 21
9.1.2 Why should I use it? . 22
9.1.3 Avocado Python API . 24
9.1.4 How to install . 24
9.1.5 Documentation . 25
9.1.6 Bugs/Requests . 25
9.1.7 Changelog . 25
9.1.8 License . 25
9.1.9 Build and Quality Status . 25

9.2 Avocado User’s Guide . 25
9.2.1 About Avocado . 25
9.2.2 Installing . 26
9.2.3 Introduction . 28
9.2.4 Basic Concepts . 38
9.2.5 Basic Operations . 42

i

9.2.6 Results Specification . 48
9.2.7 Filtering tests by tags . 51
9.2.8 Configuring . 53
9.2.9 Managing Requirements . 57
9.2.10 Managing Assets . 59
9.2.11 Avocado Data Directories . 60
9.2.12 Avocado logging system . 61
9.2.13 Understanding the plugin system . 62
9.2.14 Understanding the test discovery (Avocado Loaders) . 66
9.2.15 Advanced usage . 70
9.2.16 What’s next? . 71

9.3 Avocado Test Writer’s Guide . 71
9.3.1 Writing a Simple Test . 71
9.3.2 Writing Avocado Tests with Python . 71
9.3.3 Advanced logging capabilities . 99
9.3.4 Test parameters . 101
9.3.5 Utility Libraries . 105
9.3.6 Subclassing Avocado . 109

9.4 Avocado Contributor’s Guide . 111
9.4.1 Brief introduction . 111
9.4.2 How can I contribute? . 112
9.4.3 Development environment . 116
9.4.4 Style guides . 116
9.4.5 Writing an Avocado plugin . 118
9.4.6 The “nrunner” and “runner” test runner . 125
9.4.7 Implementing other result formats . 136
9.4.8 Request for Comments (RFCs) . 137
9.4.9 Releasing Avocado . 142
9.4.10 Avocado development tips . 145
9.4.11 Contact information . 146

9.5 Optional plugins . 146
9.5.1 Avocado-ec2 Plugin . 146
9.5.2 Golang Plugin . 147
9.5.3 Result plugins . 148
9.5.4 Robot Plugin . 150
9.5.5 CIT Varianter Plugin . 150
9.5.6 PICT Varianter plugin . 158
9.5.7 Multiplexer . 159
9.5.8 Multiplexer concept . 160
9.5.9 Yaml_to_mux plugin . 162

9.6 Avocado Releases . 172
9.6.1 How we release Avocado . 172
9.6.2 Long Term Stability Releases . 172
9.6.3 Regular Releases . 193

9.7 BP000 . 277
9.7.1 TL;DR . 277
9.7.2 Motivation . 278
9.7.3 Specification . 279
9.7.4 Backwards Compatibility . 281
9.7.5 Security Implications . 281
9.7.6 How to Teach This . 282
9.7.7 Related Issues . 282
9.7.8 References . 282

9.8 BP001 . 282

ii

9.8.1 TL;DR . 283
9.8.2 Motivation . 283
9.8.3 Specification . 284
9.8.4 Backwards Compatibility . 289
9.8.5 Security Implications . 289
9.8.6 How to Teach This . 290
9.8.7 Related Issues . 290
9.8.8 References . 290

9.9 BP002 . 291
9.9.1 TL;DR . 291
9.9.2 Motivation . 292
9.9.3 Specification . 292
9.9.4 Backward Compatibility . 295
9.9.5 Security Implications . 295
9.9.6 How to Teach This . 295
9.9.7 Related Issues . 296
9.9.8 References . 296

9.10 BP003 . 296
9.10.1 TL;DR . 297
9.10.2 Motivations . 298
9.10.3 Goals of this BluePrint . 298
9.10.4 Requirements . 298
9.10.5 Suggested Terminology for the Task Phases . 301
9.10.6 Task life-cycle example . 302
9.10.7 Implementation Example . 306
9.10.8 Backwards Compatibility . 306
9.10.9 Security Implications . 306
9.10.10 How to Teach This . 306
9.10.11 Related Issues . 306
9.10.12 Future work . 307
9.10.13 References . 307

9.11 Other Resources . 307
9.11.1 Presentations . 307
9.11.2 Public test repositories . 308

9.12 Avocado’s Configuration Reference . 308
9.12.1 assets.fetch.ignore_errors . 308
9.12.2 assets.fetch.references . 308
9.12.3 assets.list.days . 308
9.12.4 assets.list.overall_limit . 309
9.12.5 assets.list.size_filter . 309
9.12.6 assets.purge.days . 309
9.12.7 assets.purge.overall_limit . 309
9.12.8 assets.purge.size_filter . 309
9.12.9 assets.register.name . 309
9.12.10 assets.register.sha1_hash . 310
9.12.11 assets.register.url . 310
9.12.12 config.datadir . 310
9.12.13 core.input_encoding . 310
9.12.14 core.paginator . 310
9.12.15 core.show . 310
9.12.16 core.verbose . 311
9.12.17 datadir.paths.base_dir . 311
9.12.18 datadir.paths.cache_dirs . 311
9.12.19 datadir.paths.data_dir . 311

iii

9.12.20 datadir.paths.logs_dir . 311
9.12.21 datadir.paths.test_dir . 311
9.12.22 diff.create_reports . 311
9.12.23 diff.filter . 312
9.12.24 diff.html . 312
9.12.25 diff.jobids . 312
9.12.26 diff.open_browser . 312
9.12.27 diff.strip_id . 312
9.12.28 distro.distro_def_arch . 312
9.12.29 distro.distro_def_create . 312
9.12.30 distro.distro_def_name . 313
9.12.31 distro.distro_def_path . 313
9.12.32 distro.distro_def_release . 313
9.12.33 distro.distro_def_type . 313
9.12.34 distro.distro_def_version . 313
9.12.35 filter.by_tags.include_empty . 313
9.12.36 filter.by_tags.include_empty_key . 314
9.12.37 filter.by_tags.tags . 314
9.12.38 job.output.loglevel . 314
9.12.39 job.output.testlogs.logfiles . 314
9.12.40 job.output.testlogs.statuses . 314
9.12.41 job.replay.source_job_id . 314
9.12.42 job.run.result.html.enabled . 315
9.12.43 job.run.result.html.open_browser . 315
9.12.44 job.run.result.html.output . 315
9.12.45 job.run.result.json.enabled . 315
9.12.46 job.run.result.json.output . 315
9.12.47 job.run.result.tap.enabled . 315
9.12.48 job.run.result.tap.include_logs . 316
9.12.49 job.run.result.tap.output . 316
9.12.50 job.run.result.xunit.enabled . 316
9.12.51 job.run.result.xunit.job_name . 316
9.12.52 job.run.result.xunit.max_test_log_chars . 316
9.12.53 job.run.result.xunit.output . 316
9.12.54 job.run.store_logging_stream . 316
9.12.55 job.run.timeout . 317
9.12.56 jobs.get.output_files.destination . 317
9.12.57 jobs.get.output_files.job_id . 317
9.12.58 jobs.show.job_id . 317
9.12.59 json.variants.load . 317
9.12.60 list.external_runner . 317
9.12.61 list.external_runner_chdir . 318
9.12.62 list.external_runner_testdir . 318
9.12.63 list.loaders . 318
9.12.64 list.recipes.write_to_directory . 318
9.12.65 list.references . 318
9.12.66 list.resolver . 318
9.12.67 list.write_to_json_file . 319
9.12.68 nrunner.max_parallel_tasks . 319
9.12.69 nrunner.shuffle . 319
9.12.70 nrunner.spawner . 319
9.12.71 nrunner.status_server_buffer_size . 319
9.12.72 nrunner.status_server_listen . 319
9.12.73 nrunner.status_server_uri . 320

iv

9.12.74 plugins.cli.cmd.order . 320
9.12.75 plugins.cli.order . 320
9.12.76 plugins.disable . 320
9.12.77 plugins.init.order . 320
9.12.78 plugins.job.prepost.order . 320
9.12.79 plugins.jobscripts.post . 320
9.12.80 plugins.jobscripts.pre . 321
9.12.81 plugins.jobscripts.warn_non_existing_dir . 321
9.12.82 plugins.jobscripts.warn_non_zero_status . 321
9.12.83 plugins.resolver.order . 321
9.12.84 plugins.result.order . 321
9.12.85 plugins.result_events.order . 321
9.12.86 plugins.result_upload.cmd . 321
9.12.87 plugins.result_upload.url . 322
9.12.88 plugins.resultsdb.api_url . 322
9.12.89 plugins.resultsdb.logs_url . 322
9.12.90 plugins.resultsdb.note_size_limit . 322
9.12.91 plugins.runnable.runner.order . 322
9.12.92 plugins.runner.order . 322
9.12.93 plugins.skip_broken_plugin_notification . 322
9.12.94 plugins.spawner.order . 323
9.12.95 plugins.varianter.order . 323
9.12.96 run.cit.combination_order . 323
9.12.97 run.cit.parameter_file . 323
9.12.98 run.dict_variants . 323
9.12.99 run.dry_run.enabled . 323
9.12.100run.dry_run.no_cleanup . 323
9.12.101run.execution_order . 324
9.12.102run.external_runner . 324
9.12.103run.external_runner_chdir . 324
9.12.104run.external_runner_testdir . 324
9.12.105run.failfast . 324
9.12.106run.ignore_missing_references . 324
9.12.107run.job_category . 325
9.12.108run.journal.enabled . 325
9.12.109run.keep_tmp . 325
9.12.110run.loaders . 325
9.12.111run.log_test_data_directories . 325
9.12.112run.output_check . 325
9.12.113run.output_check_record . 326
9.12.114run.pict_binary . 326
9.12.115run.pict_combinations_order . 326
9.12.116run.pict_parameter_file . 326
9.12.117run.pict_parameter_path . 326
9.12.118run.references . 326
9.12.119run.replay.ignore . 327
9.12.120run.replay.job_id . 327
9.12.121run.replay.resume . 327
9.12.122run.replay.test_status . 327
9.12.123run.results.archive . 327
9.12.124run.results_dir . 327
9.12.125run.test_parameters . 327
9.12.126run.test_runner . 328
9.12.127run.unique_job_id . 328

v

9.12.128run.wrapper.wrappers . 328
9.12.129runner.exectest.exitcodes.skip . 328
9.12.130runner.output.color . 328
9.12.131runner.output.colored . 328
9.12.132runner.output.utf8 . 329
9.12.133runner.timeout.after_interrupted . 329
9.12.134runner.timeout.process_alive . 329
9.12.135runner.timeout.process_died . 329
9.12.136simpletests.status.failure_fields . 329
9.12.137simpletests.status.skip_location . 329
9.12.138simpletests.status.skip_regex . 329
9.12.139simpletests.status.warn_location . 330
9.12.140simpletests.status.warn_regex . 330
9.12.141spawner.podman.bin . 330
9.12.142spawner.podman.image . 330
9.12.143sysinfo.collect.commands_timeout . 330
9.12.144sysinfo.collect.enabled . 330
9.12.145sysinfo.collect.installed_packages . 330
9.12.146sysinfo.collect.locale . 331
9.12.147sysinfo.collect.optimize . 331
9.12.148sysinfo.collect.per_test . 331
9.12.149sysinfo.collect.profiler . 331
9.12.150sysinfo.collect.sysinfodir . 331
9.12.151sysinfo.collectibles.commands . 331
9.12.152sysinfo.collectibles.fail_commands . 332
9.12.153sysinfo.collectibles.fail_files . 332
9.12.154sysinfo.collectibles.files . 332
9.12.155sysinfo.collectibles.profilers . 332
9.12.156task.timeout.running . 332
9.12.157variants.cit.combination_order . 332
9.12.158variants.cit.parameter_file . 333
9.12.159variants.contents . 333
9.12.160variants.debug . 333
9.12.161variants.inherit . 333
9.12.162variants.json_variants_dump . 333
9.12.163variants.pict_binary . 333
9.12.164variants.pict_combinations_order . 333
9.12.165variants.pict_parameter_file . 334
9.12.166variants.pict_parameter_path . 334
9.12.167variants.summary . 334
9.12.168variants.tree . 334
9.12.169variants.variants . 334
9.12.170vmimage.get.arch . 334
9.12.171vmimage.get.distro . 334
9.12.172vmimage.get.version . 335
9.12.173yaml_to_mux.files . 335
9.12.174yaml_to_mux.filter_only . 335
9.12.175yaml_to_mux.filter_out . 335
9.12.176yaml_to_mux.inject . 335
9.12.177yaml_to_mux.parameter_paths . 335

10 Test API 337
10.1 Test APIs . 337

10.1.1 Module contents . 337

vi

10.2 Internal (Core) APIs . 341
10.2.1 Subpackages . 341
10.2.2 Submodules . 349
10.2.3 avocado.core.app module . 349
10.2.4 avocado.core.data_dir module . 349
10.2.5 avocado.core.decorators module . 351
10.2.6 avocado.core.dispatcher module . 352
10.2.7 avocado.core.enabled_extension_manager module . 353
10.2.8 avocado.core.exceptions module . 353
10.2.9 avocado.core.exit_codes module . 355
10.2.10 avocado.core.extension_manager module . 355
10.2.11 avocado.core.job module . 356
10.2.12 avocado.core.job_id module . 359
10.2.13 avocado.core.jobdata module . 359
10.2.14 avocado.core.loader module . 359
10.2.15 avocado.core.main module . 363
10.2.16 avocado.core.messages module . 363
10.2.17 avocado.core.nrunner module . 366
10.2.18 avocado.core.output module . 373
10.2.19 avocado.core.parameters module . 377
10.2.20 avocado.core.parser module . 378
10.2.21 avocado.core.parser_common_args module . 379
10.2.22 avocado.core.plugin_interfaces module . 379
10.2.23 avocado.core.references module . 383
10.2.24 avocado.core.resolver module . 383
10.2.25 avocado.core.result module . 384
10.2.26 avocado.core.runner module . 384
10.2.27 avocado.core.safeloader module . 385
10.2.28 avocado.core.settings module . 388
10.2.29 avocado.core.settings_dispatcher module . 392
10.2.30 avocado.core.streams module . 392
10.2.31 avocado.core.suite module . 392
10.2.32 avocado.core.sysinfo module . 394
10.2.33 avocado.core.tags module . 396
10.2.34 avocado.core.tapparser module . 396
10.2.35 avocado.core.test module . 397
10.2.36 avocado.core.test_id module . 403
10.2.37 avocado.core.teststatus module . 403
10.2.38 avocado.core.tree module . 404
10.2.39 avocado.core.utils module . 406
10.2.40 avocado.core.varianter module . 406
10.2.41 avocado.core.version module . 408
10.2.42 Module contents . 408

10.3 Utilities APIs . 409
10.3.1 Subpackages . 409
10.3.2 Submodules . 424
10.3.3 avocado.utils.archive module . 424
10.3.4 avocado.utils.asset module . 426
10.3.5 avocado.utils.astring module . 428
10.3.6 avocado.utils.aurl module . 430
10.3.7 avocado.utils.build module . 431
10.3.8 avocado.utils.cloudinit module . 431
10.3.9 avocado.utils.configure_network module . 433
10.3.10 avocado.utils.cpu module . 434

vii

10.3.11 avocado.utils.crypto module . 436
10.3.12 avocado.utils.data_factory module . 436
10.3.13 avocado.utils.data_structures module . 436
10.3.14 avocado.utils.datadrainer module . 438
10.3.15 avocado.utils.debug module . 439
10.3.16 avocado.utils.diff_validator module . 440
10.3.17 avocado.utils.disk module . 442
10.3.18 avocado.utils.distro module . 443
10.3.19 avocado.utils.dmesg module . 445
10.3.20 avocado.utils.download module . 446
10.3.21 avocado.utils.exit_codes module . 447
10.3.22 avocado.utils.file_utils module . 447
10.3.23 avocado.utils.filelock module . 448
10.3.24 avocado.utils.gdb module . 448
10.3.25 avocado.utils.genio module . 452
10.3.26 avocado.utils.git module . 453
10.3.27 avocado.utils.iso9660 module . 455
10.3.28 avocado.utils.kernel module . 457
10.3.29 avocado.utils.linux module . 458
10.3.30 avocado.utils.linux_modules module . 459
10.3.31 avocado.utils.lv_utils module . 460
10.3.32 avocado.utils.memory module . 464
10.3.33 avocado.utils.multipath module . 467
10.3.34 avocado.utils.output module . 470
10.3.35 avocado.utils.partition module . 470
10.3.36 avocado.utils.path module . 472
10.3.37 avocado.utils.pci module . 473
10.3.38 avocado.utils.pmem module . 476
10.3.39 avocado.utils.process module . 480
10.3.40 avocado.utils.script module . 489
10.3.41 avocado.utils.service module . 491
10.3.42 avocado.utils.softwareraid module . 493
10.3.43 avocado.utils.ssh module . 495
10.3.44 avocado.utils.stacktrace module . 496
10.3.45 avocado.utils.vmimage module . 497
10.3.46 avocado.utils.wait module . 501
10.3.47 Module contents . 501

10.4 Extension (plugin) APIs . 501
10.4.1 Subpackages . 501
10.4.2 Submodules . 503
10.4.3 avocado.plugins.archive module . 503
10.4.4 avocado.plugins.assets module . 504
10.4.5 avocado.plugins.config module . 505
10.4.6 avocado.plugins.dict_variants module . 505
10.4.7 avocado.plugins.diff module . 506
10.4.8 avocado.plugins.distro module . 506
10.4.9 avocado.plugins.exec_path module . 509
10.4.10 avocado.plugins.expected_files_merge module . 509
10.4.11 avocado.plugins.human module . 510
10.4.12 avocado.plugins.jobs module . 510
10.4.13 avocado.plugins.jobscripts module . 511
10.4.14 avocado.plugins.journal module . 511
10.4.15 avocado.plugins.json_variants module . 512
10.4.16 avocado.plugins.jsonresult module . 513

viii

10.4.17 avocado.plugins.list module . 514
10.4.18 avocado.plugins.plugins module . 514
10.4.19 avocado.plugins.replay module . 515
10.4.20 avocado.plugins.resolvers module . 515
10.4.21 avocado.plugins.run module . 516
10.4.22 avocado.plugins.runner module . 517
10.4.23 avocado.plugins.runner_nrunner module . 517
10.4.24 avocado.plugins.sysinfo module . 518
10.4.25 avocado.plugins.tap module . 519
10.4.26 avocado.plugins.testlogs module . 520
10.4.27 avocado.plugins.teststmpdir module . 520
10.4.28 avocado.plugins.variants module . 521
10.4.29 avocado.plugins.vmimage module . 521
10.4.30 avocado.plugins.wrapper module . 522
10.4.31 avocado.plugins.xunit module . 522
10.4.32 Module contents . 523

10.5 Optional Plugins API . 523
10.5.1 avocado_varianter_yaml_to_mux package . 523
10.5.2 avocado_varianter_pict package . 526
10.5.3 avocado_resultsdb package . 526
10.5.4 avocado_golang package . 528
10.5.5 avocado_varianter_cit package . 530
10.5.6 avocado_robot package . 535
10.5.7 avocado_result_upload package . 537

10.6 Indices and tables . 538

Python Module Index 539

Index 543

ix

x

avocado Documentation, Release 88.1

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

Quick Start 1

avocado Documentation, Release 88.1

2 Quick Start

CHAPTER 1

How does it work?

You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

$ avocado run /bin/true
JOB ID : 3a5c4c51ceb5369f23702efb10b4209b111141b2
JOB LOG : $HOME/avocado/job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests.

Tip: See more at the “Test types” section on the Avocado User’s Guide.

3

avocado Documentation, Release 88.1

4 Chapter 1. How does it work?

CHAPTER 2

Why should I use it?

2.1 Multiple result formats

A regular run of Avocado will present the test results on standard output, a nice and colored report useful for human
beings. But results for machines can also be generated.

Check the job-results folder ($HOME/avocado/job-results/latest/) to see the outputs.

Currently we support, out of box, the following output formats:

• xUnit: an XML format that contains test results in a structured form, and are used by other test automation
projects, such as jenkins.

• JSON: a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to
the xunit output plugin.

• TAP: Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado
machine readable outputs this one is streamlined (per test results).

Note: You can see the results of the latest job inside the folder $HOME/avocado/job-results/latest/. You
can also specify at the command line the options --xunit, --json or --tap followed by a filename. Avocado
will write the output on the specified filename.

When it comes to outputs, Avocado is very flexible. You can check the various output plugins. If you need something
more sophisticated, visit our plugins section.

2.2 Sysinfo data collector

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very helpful when trying to identify the cause of a test failure.

Check out the files stored at $HOME/avocado/job-results/latest/sysinfo/:

5

avocado Documentation, Release 88.1

$ ls $HOME/avocado/job-results/latest/sysinfo/pre/
'brctl show' hostname modules
cmdline 'ifconfig -a' mounts
cpuinfo installed_packages 'numactl --hardware show'
current_clocksource interrupts partitions

'df -mP' 'ip link' scaling_governor
dmesg 'ld --version' 'uname -a'
dmidecode lscpu uptime

'fdisk -l' 'lspci -vvnn' version
'gcc --version' meminfo

For more information about sysinfo collector, please consult the Avocado User’s Guide.

2.3 Job Replay and Job Diff

In order to reproduce a given job using the same data, one can use the replay subcommand, informing the hash id
from the original job to be replayed. The hash id can be partial, as long as the provided part corresponds to the initial
characters of the original job id and it is also unique enough. Or, instead of the job id, you can use the string latest and
Avocado will replay the latest job executed.

Example:

$ avocado replay 825b86
JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323f8d7cad
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

$ avocado diff 7025aaba 384b949c
--- 7025aaba9c2ab8b4bba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d9ba761fd07672ff
@@ -1,15 +1,15 @@

COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
-1-sleeptest.py:SleepTest.test: PASS
+1-passtest.py:PassTest.test: PASS

...

6 Chapter 2. Why should I use it?

avocado Documentation, Release 88.1

2.4 Extensible by plugins

Avocado has a plugin system that can be used to extend it in a clean way. The avocado command line tool has a
builtin plugins command that lets you list available plugins. The usage is pretty simple:

$ avocado plugins
Plugins that add new commands (avocado.plugins.cli.cmd):
exec-path Returns path to Avocado bash libraries and exits.
run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information
...
Plugins that add new options to commands (avocado.plugins.cli):
remote Remote machine options for 'run' subcommand
journal Journal options for the 'run' subcommand
...

For more information about plugins, please visit the Plugin System section on the Avocado User’s Guide.

2.5 Utility libraries

When writting tests, developers often need to perform basic tasks on OS and end up having to implement these routines
just to run they tests.

Avocado has more than 40 utility modules that helps you to perform basic operations.

Bellow a small subset of our utility modules:

• utils.vmimage: This utility provides a API to download/cache VM images (QCOW) from the official distribu-
tions repositories.

• utils.memory: Provides information about memory usage.

• utils.cpu: Get information from the current’s machine CPU.

• utils.software_manager: Software package management library.

• utils.download: Methods to download URLs and regular files.

• utils.archive: Module to help extract and create compressed archives.

2.4. Extensible by plugins 7

avocado Documentation, Release 88.1

8 Chapter 2. Why should I use it?

CHAPTER 3

Avocado Python API

If the command-line is limiting you, then you can use our new API and create custom jobs and test suites:

import sys

from avocado.core.job import Job

with Job.from_config({'run.references': ['/bin/true']}) as job:
sys.exit(job.run())

9

avocado Documentation, Release 88.1

10 Chapter 3. Avocado Python API

CHAPTER 4

How to install

It is super easy, just run the follow command:

$ pip3 install --user avocado-framework

This will install the avocado command in your home directory.

Note: For more details and alternative methods, please visit the Installing section on Avocado User’s Guide.

11

avocado Documentation, Release 88.1

12 Chapter 4. How to install

CHAPTER 5

Documentation

Please use the following links for full documentation, including installation methods, tutorials and API or browse this
site for more content.

• latest release

• development version

13

https://avocado-framework.readthedocs.io/
https://avocado-framework.readthedocs.io/en/latest/

avocado Documentation, Release 88.1

14 Chapter 5. Documentation

CHAPTER 6

Bugs/Requests

Please use the GitHub issue tracker to submit bugs or request features.

15

avocado Documentation, Release 88.1

16 Chapter 6. Bugs/Requests

CHAPTER 7

Changelog

Please consult the Avocado Releases on our official documentation for fixes and enhancements of each version.

17

avocado Documentation, Release 88.1

18 Chapter 7. Changelog

CHAPTER 8

License

Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed under the
GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree that these contributions are your own (or approved by your employer) and you grant a full,
complete, irrevocable copyright license to all users and developers of the Avocado project, present and future, pursuant
to the license of the project.

19

https://www.gnu.org/licenses/gpl-2.0.html

avocado Documentation, Release 88.1

20 Chapter 8. License

CHAPTER 9

Build and Quality Status

Contents:

9.1 Welcome to Avocado

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

9.1.1 How does it work?

You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

21

https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/
https://cirrus-ci.com/github/avocado-framework/avocado
https://lgtm.com/projects/g/avocado-framework/avocado/alerts/
https://codeclimate.com/github/avocado-framework/avocado/maintainability
https://lgtm.com/projects/g/avocado-framework/avocado/context:python
https://lgtm.com/projects/g/avocado-framework/avocado/context:javascript
https://codecov.io/gh/avocado-framework/avocado
https://avocado-framework.readthedocs.io/en/latest/

avocado Documentation, Release 88.1

$ avocado run /bin/true
JOB ID : 3a5c4c51ceb5369f23702efb10b4209b111141b2
JOB LOG : $HOME/avocado/job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests.

Tip: See more at the “Test types” section on the Avocado User’s Guide.

9.1.2 Why should I use it?

Multiple result formats

A regular run of Avocado will present the test results on standard output, a nice and colored report useful for human
beings. But results for machines can also be generated.

Check the job-results folder ($HOME/avocado/job-results/latest/) to see the outputs.

Currently we support, out of box, the following output formats:

• xUnit: an XML format that contains test results in a structured form, and are used by other test automation
projects, such as jenkins.

• JSON: a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to
the xunit output plugin.

• TAP: Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado
machine readable outputs this one is streamlined (per test results).

Note: You can see the results of the latest job inside the folder $HOME/avocado/job-results/latest/. You
can also specify at the command line the options --xunit, --json or --tap followed by a filename. Avocado
will write the output on the specified filename.

When it comes to outputs, Avocado is very flexible. You can check the various output plugins. If you need something
more sophisticated, visit our plugins section.

Sysinfo data collector

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very helpful when trying to identify the cause of a test failure.

Check out the files stored at $HOME/avocado/job-results/latest/sysinfo/:

$ ls $HOME/avocado/job-results/latest/sysinfo/pre/
'brctl show' hostname modules
cmdline 'ifconfig -a' mounts
cpuinfo installed_packages 'numactl --hardware show'
current_clocksource interrupts partitions

'df -mP' 'ip link' scaling_governor
dmesg 'ld --version' 'uname -a'

(continues on next page)

22 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

dmidecode lscpu uptime
'fdisk -l' 'lspci -vvnn' version
'gcc --version' meminfo

For more information about sysinfo collector, please consult the Avocado User’s Guide.

Job Replay and Job Diff

In order to reproduce a given job using the same data, one can use the replay subcommand, informing the hash id
from the original job to be replayed. The hash id can be partial, as long as the provided part corresponds to the initial
characters of the original job id and it is also unique enough. Or, instead of the job id, you can use the string latest and
Avocado will replay the latest job executed.

Example:

$ avocado replay 825b86
JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323f8d7cad
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

$ avocado diff 7025aaba 384b949c
--- 7025aaba9c2ab8b4bba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d9ba761fd07672ff
@@ -1,15 +1,15 @@

COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
-1-sleeptest.py:SleepTest.test: PASS
+1-passtest.py:PassTest.test: PASS

...

Extensible by plugins

Avocado has a plugin system that can be used to extend it in a clean way. The avocado command line tool has a
builtin plugins command that lets you list available plugins. The usage is pretty simple:

$ avocado plugins
Plugins that add new commands (avocado.plugins.cli.cmd):
exec-path Returns path to Avocado bash libraries and exits.

(continues on next page)

9.1. Welcome to Avocado 23

avocado Documentation, Release 88.1

(continued from previous page)

run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information
...
Plugins that add new options to commands (avocado.plugins.cli):
remote Remote machine options for 'run' subcommand
journal Journal options for the 'run' subcommand
...

For more information about plugins, please visit the Plugin System section on the Avocado User’s Guide.

Utility libraries

When writting tests, developers often need to perform basic tasks on OS and end up having to implement these routines
just to run they tests.

Avocado has more than 40 utility modules that helps you to perform basic operations.

Bellow a small subset of our utility modules:

• utils.vmimage: This utility provides a API to download/cache VM images (QCOW) from the official distribu-
tions repositories.

• utils.memory: Provides information about memory usage.

• utils.cpu: Get information from the current’s machine CPU.

• utils.software_manager: Software package management library.

• utils.download: Methods to download URLs and regular files.

• utils.archive: Module to help extract and create compressed archives.

9.1.3 Avocado Python API

If the command-line is limiting you, then you can use our new API and create custom jobs and test suites:

import sys

from avocado.core.job import Job

with Job.from_config({'run.references': ['/bin/true']}) as job:
sys.exit(job.run())

9.1.4 How to install

It is super easy, just run the follow command:

$ pip3 install --user avocado-framework

This will install the avocado command in your home directory.

Note: For more details and alternative methods, please visit the Installing section on Avocado User’s Guide.

24 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.1.5 Documentation

Please use the following links for full documentation, including installation methods, tutorials and API or browse this
site for more content.

• latest release

• development version

9.1.6 Bugs/Requests

Please use the GitHub issue tracker to submit bugs or request features.

9.1.7 Changelog

Please consult the Avocado Releases on our official documentation for fixes and enhancements of each version.

9.1.8 License

Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed under the
GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree that these contributions are your own (or approved by your employer) and you grant a full,
complete, irrevocable copyright license to all users and developers of the Avocado project, present and future, pursuant
to the license of the project.

9.1.9 Build and Quality Status

9.2 Avocado User’s Guide

9.2.1 About Avocado

Avocado is a set of tools and libraries to help with automated testing.

9.2. Avocado User’s Guide 25

https://avocado-framework.readthedocs.io/
https://avocado-framework.readthedocs.io/en/latest/
https://www.gnu.org/licenses/gpl-2.0.html
https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/
https://cirrus-ci.com/github/avocado-framework/avocado
https://lgtm.com/projects/g/avocado-framework/avocado/alerts/
https://codeclimate.com/github/avocado-framework/avocado/maintainability
https://lgtm.com/projects/g/avocado-framework/avocado/context:python
https://lgtm.com/projects/g/avocado-framework/avocado/context:javascript
https://codecov.io/gh/avocado-framework/avocado
https://avocado-framework.readthedocs.io/en/latest/

avocado Documentation, Release 88.1

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

Avocado is composed of:

• A test runner that lets you execute tests. Those tests can be either written in your language of choice, or be
written in Python and use the available libraries. In both cases, you get facilities such as automated log and
system information collection.

• Libraries that help you write tests in a concise, yet expressive and powerful way. You can find more information
about what libraries are intended for test writers at Utility Libraries.

• Plugins that can extend and add new functionality to the Avocado Framework.

• A Python API for creating custom jobs and test suites for more advanced users.

Avocado is built on the experience accumulated with Autotest, while improving on its weaknesses and shortcomings.

Avocado tries as much as possible to comply with standard Python testing technology. Tests written using the Avocado
API are derived from the unittest class, while other methods suited to functional and performance testing were added.
The test runner is designed to help people to run their tests while providing an assortment of system and logging
facilities, with no effort, and if you want more features, then you can start using the API features progressively.

9.2.2 Installing

Avocado is primarily written in Python, so a standard Python installation is possible and often preferable. You can
also install from your distro repository, if available.

Note: Please note that this installs the Avocado core functionality. Many Avocado features are distributed as non-core
plugins. Visit the Avocado Plugin section on the left menu.

Tip: If you are looking for Virtualization specific testing, also consider looking at Avocado-VT installation instruc-
tions after finishing the Avocado installation.

Installing from PyPI

The simplest installation method is through pip. On most POSIX systems with Python 3.4 (or later) and pip avail-
able, installation can be performed with a single command:

$ pip3 install --user avocado-framework

This will fetch the Avocado package (and possibly some of its dependecies) from the PyPI repository, and will attempt
to install it in the user’s home directory (usually under ~/.local), which you might want to add to your PATH
variable if not done already.

Tip: If you want to perform a system-wide installation, drop the --user switch.

If you want even more isolation, Avocado can also be installed in a Python virtual environment. with no additional
steps besides creating and activating the “venv” itself:

26 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/unittest.html#module-unittest
http://autotest.github.io/
https://avocado-vt.readthedocs.io/en/latest/GetStartedGuide.html#installing-avocado-vt

avocado Documentation, Release 88.1

$ python3 -m venv /path/to/new/virtual_environment
$ source /path/to/new/virtual_environment/bin/activate
$ pip3 install avocado-framework

Installing from packages

Fedora

Avocado modules are available on standard Fedora repos starting with version 29. To subscribe to the latest version
stream, run:

$ dnf module enable avocado:latest

Or, to use the LTS (Long Term Stability) version stream, run:

$ dnf module enable avocado:69lts

Then proceed to install a module profile or individual packages. If you’re unsure about what to do, simply run:

$ dnf module install avocado

Enterprise Linux

Avocado modules are also available on EPEL (Extra Packages for Enterprise Linux) repos, starting with version 8. To
enable the EPEL repository, run:

$ dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Then to enable the module, run:

$ dnf module enable avocado:latest

And finally, install any number of packages, such as:

$ dnf install python3-avocado python3-avocado-plugins-output-html python3-avocado-
→˓plugins-varianter-yaml-to-mux

Latest Development RPM Packages from COPR

Avocado provides a repository of continuously built packages from the GitHub repository’s master branch. These
packages are currently available for some of the latest Enterprise Linux and Fedora versions, for a few different
architectures.

If you’re interested in using the very latest development version of Avocado from RPM packages, you can do so by
running:

$ dnf copr enable @avocado/avocado-latest
$ dnf install python*-avocado*

The following image shows the status of the Avocado packages building on COPR:

9.2. Avocado User’s Guide 27

avocado Documentation, Release 88.1

OpenSUSE

The OpenSUSE project packages LTS versions of Avocado. You can install packages by running the following com-
mands:

$ sudo zypper install avocado

Debian

DEB package support is available in the source tree (look at the contrib/packages/debian directory. No
actual packages are provided by the Avocado project or the Debian repos.

Installing from source code

First make sure you have a basic set of packages installed. The following applies to Fedora based distributions, please
adapt to your platform:

$ sudo dnf install -y python3 git gcc python3-devel python3-pip libvirt-devel libffi-
→˓devel openssl-devel libyaml-devel redhat-rpm-config xz-devel

Then to install Avocado from the git repository run:

$ git clone git://github.com/avocado-framework/avocado.git
$ cd avocado
$ sudo python3 setup.py install

9.2.3 Introduction

Avocado Hello World

You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

$ avocado run /bin/true
JOB ID : 3a5c4c51ceb5369f23702efb10b4209b111141b2
JOB LOG : $HOME/avocado/job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests. See more at test-types
or just keep reading.

28 Chapter 9. Build and Quality Status

https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/
https://build.opensuse.org/package/show/Virtualization:Tests/avocado

avocado Documentation, Release 88.1

Running a job with multiple tests

You can run any number of test in an arbitrary order, as well as mix and match instrumented and simple tests:

$ avocado run failtest.py sleeptest.py synctest.py failtest.py synctest.py /tmp/
→˓simple_test.sh
JOB ID : 86911e49b5f2c36caeea41307cee4fecdcdfa121
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.42-86911e49/job.log
(1/6) failtest.py:FailTest.test: FAIL (0.00 s)
(2/6) sleeptest.py:SleepTest.test: PASS (1.00 s)
(3/6) synctest.py:SyncTest.test: PASS (2.43 s)
(4/6) failtest.py:FailTest.test: FAIL (0.00 s)
(5/6) synctest.py:SyncTest.test: PASS (2.44 s)
(6/6) /tmp/simple_test.sh.1: PASS (0.02 s)

RESULTS : PASS 4 | ERROR 0 | FAIL 2 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 5.98 s

Note: Although in most cases running avocado run $test1 $test3 ... is fine, it can lead to argument
vs. test name clashes. The safest way to execute tests is avocado run --$argument1 --$argument2 --
$test1 $test2. Everything after – will be considered positional arguments, therefore test names (in case of
avocado run)

Using a different runner

Currently Avocado has two test runners: nrunner (the new runner) and runner (legacy). You can find a list of
current runners installed with the avocado plugins command:

$ avocado plugins
Plugins that run test suites on a job (runners):
nrunner nrunner based implementation of job compliant runner
runner The conventional test runner

During the test execution, you can select the runner using the option --test-runner, where the default is the
legacy one:

$ avocado run --test-runner='nrunner' /bin/true

Interrupting tests

Sending Signals

To interrupt a job execution a user can press ctrl+c which after a single press sends SIGTERM to the main test’s
process and waits for it to finish. If this does not help user can press ctrl+c again (after 2s grace period) which
destroys the test’s process ungracefully and safely finishes the job execution always providing the test results.

To pause the test execution a user can use ctrl+z which sends SIGSTOP to all processes inherited from the test’s
PID. We do our best to stop all processes, but the operation is not atomic and some new processes might not be stopped.
Another ctrl+z sends SIGCONT to all processes inherited by the test’s PID resuming the execution. Note the test
execution time (concerning the test timeout) are still running while the test’s process is stopped.

9.2. Avocado User’s Guide 29

avocado Documentation, Release 88.1

Interrupting the job on first fail (failfast)

The Avocado run command has the option --failfast to exit the job on first failed test:

$ avocado run --failfast /bin/true /bin/false /bin/true /bin/true
JOB ID : eaf51b8c7d6be966bdf5562c9611b1ec2db3f68a
JOB LOG : $HOME/avocado/job-results/job-2016-07-19T09.43-eaf51b8/job.log
(1/4) /bin/true: PASS (0.01 s)
(2/4) /bin/false: FAIL (0.01 s)

Interrupting job (failfast).
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 2 | WARN 0 | INTERRUPT 0
JOB TIME : 0.12 s

The default behavior, that is, when --failfast is not set, is to try to execute all tests in a job, regardless individual
of test failures.

Note: Avocado versions 80.0 and earlier allowed replayed jobs to override the failfast configuration by setting
--failfast=off in a avocado replay .. command line. This is no longer possible.

The hint files

Avocado team has added support to the “hint files”. This feature is present since Avocado #78 and is a configuration
file that you can add to your project root folder to help Avocado on the “test resolution” phase.

The idea is that, you know more about your tests than anybody else. And you can specify where your tests are, and
what type (kind) they are. You just have to add a .avocado.hint in your root folder with the section‘[kinds]‘ and one
section for each kind that you are using.

On the specific test type section, you can specify 3 options: uri, args and kwargs.

Note: Some test types will convert kwargs into variable environments. Please check the documentation of the test
type that you are using.

You can also use the keyworkd $testpath in any of the options inside the test type section. Avocado will replace
$testpath with your test path, after the expansion.

For instance, bellow you will find a hint file example where we have only one test type: tap:

[kinds]
tap = ./tests/unit/*.sh

[tap]
uri = $testpath
args = --tap
kwargs = DEBUG=1

Let’s suppose that you have 2 tests that matches ./tests/unit/*.sh:

• ./tests/unit/foo.sh

• ./tests/unit/bar.sh

Avocado will run each one as a TAP test, as you desired.

30 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Ignoring missing test references

When you provide a list of test references, Avocado will try to resolve all of them to tests. If one or more test references
can not be resolved to tests, the Job will not be created. Example:

$ avocado run passtest.py badtest.py
Unable to resolve reference(s) 'badtest.py' with plugins(s) 'file', 'robot', 'external
→˓', try running 'avocado -V list badtest.py' to see the details.

But if you want to execute the Job anyway, with the tests that could be resolved, you can use
--ignore-missing-references, a boolean command-line option. The same message will appear in the UI,
but the Job will be executed:

$ avocado run passtest.py badtest.py --ignore-missing-references
Unable to resolve reference(s) 'badtest.py' with plugins(s) 'file', 'robot', 'external
→˓', try running 'avocado list -V badtest.py' to see the details.
JOB ID : 85927c113074b9defd64ea595d6d1c3fdfc1f58f
JOB LOG : $HOME/avocado/job-results/job-2017-05-17T10.54-85927c1/job.log
(1/1) passtest.py:PassTest.test: PASS (0.02 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2017-05-17T10.54-85927c1/html/results.html

Running tests with an external runner

It’s quite common to have organically grown test suites in most software projects. These usually include a custom
built, very specific test runner that knows how to find and run their own tests.

Still, running those tests inside Avocado may be a good idea for various reasons, including being able to have results
in different human and machine readable formats, collecting system information alongside those tests (the Avocado’s
sysinfo functionality), and more.

Avocado makes that possible by means of its “external runner” feature. The most basic way of using it is:

$ avocado run --external-runner=/path/to/external_runner foo bar baz

In this example, Avocado will report individual test results for tests foo, bar and baz. The actual results will be based
on the return code of individual executions of /path/to/external_runner foo, /path/to/external_runner bar and finally
/path/to/external_runner baz.

As another way to explain an show how this feature works, think of the “external runner” as some kind of interpreter
and the individual tests as anything that this interpreter recognizes and is able to execute. A UNIX shell, say /bin/sh
could be considered an external runner, and files with shell code could be considered tests:

$ echo "exit 0" > /tmp/pass
$ echo "exit 1" > /tmp/fail
$ avocado run --external-runner=/bin/sh /tmp/pass /tmp/fail
JOB ID : 4a2a1d259690cc7b226e33facdde4f628ab30741
JOB LOG : /home/<user>/avocado/job-results/job-<date>-<shortid>/job.log
(1/2) /tmp/pass: PASS (0.01 s)
(2/2) /tmp/fail: FAIL (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : /home/<user>/avocado/job-results/job-<date>-<shortid>/html/results.html

This example is pretty obvious, and could be achieved by giving /tmp/pass and /tmp/fail shell “shebangs” (#!/bin/sh),
making them executable (chmod +x /tmp/pass /tmp/fail), and running them as “SIMPLE” tests.

9.2. Avocado User’s Guide 31

avocado Documentation, Release 88.1

But now consider the following example:

$ avocado run --external-runner=/bin/curl https://google.com/
JOB ID : 56016a1ffffaba02492fdbd5662ac0b958f51e11
JOB LOG : /home/<user>/avocado/job-results/job-<date>-<shortid>/job.log
(1/1) https://google.com/: PASS (0.02 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 3.14 s
JOB HTML : /home/<user>/avocado/job-results/job-<date>-<shortid>/html/results.html

This effectively makes /bin/curl an “external test runner”, responsible for trying to fetch those URLs, and reporting
PASS or FAIL for each of them.

Warning: The external runner is incompatible with loaders from Understanding the test discovery (Avocado
Loaders). If you use external runner and loader together the job will use the external runner and ignore the loader.

Runner outputs

A test runner must provide an assortment of ways to clearly communicate results to interested parties, be them humans
or machines.

Note: There are several optional result plugins, you can find them in Result plugins.

Results for human beings

Avocado has two different result formats that are intended for human beings:

• Its default UI, which shows the live test execution results on a command line, text based, UI.

• The HTML report, which is generated after the test job finishes running.

Note: The HTML report needs the html plugin enabled that is an optional plugin.

A regular run of Avocado will present the test results in a live fashion, that is, the job and its test(s) results are constantly
updated:

$ avocado run sleeptest.py failtest.py synctest.py
JOB ID : 5ffe479262ea9025f2e4e84c4e92055b5c79bdc9
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/job.log
(1/3) sleeptest.py:SleepTest.test: PASS (1.01 s)
(2/3) failtest.py:FailTest.test: FAIL (0.00 s)
(3/3) synctest.py:SyncTest.test: PASS (1.98 s)

RESULTS : PASS 1 | ERROR 1 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 3.27 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/html/results.html

The most important thing is to remember that programs should never need to parse human output to figure out what
happened to a test job run.

As you can see, Avocado will print a nice UI with the job summary on the console. If you would like to inspect a
detailed output of your tests, you can visit the folder: $HOME/avocado/job-results/latest/ or a specific
job folder.

32 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Results for machine

Another type of results are those intended to be parsed by other applications. Several standards exist in the test
community, and Avocado can in theory support pretty much every result standard out there.

Out of the box, Avocado supports a couple of machine readable results. They are always generated and stored in the
results directory in results.$type files, but you can ask for a different location too.

Currently, you can find three different formats available on this folder: xUnit (XML), JSON and TAP:

1. xUnit:

The default machine readable output in Avocado is xunit.

xUnit is an XML format that contains test results in a structured form, and are used by other test automation projects,
such as jenkins. If you want to make Avocado to generate xunit output in the standard output of the runner, simply
use:

$ avocado run sleeptest.py failtest.py synctest.py --xunit -
<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="avocado" tests="3" errors="0" failures="1" skipped="0" time="3.
→˓5769162178" timestamp="2016-05-04 14:46:52.803365">

<testcase classname="SleepTest" name="1-sleeptest.py:SleepTest.test" time="1.
→˓00204920769"/>

<testcase classname="FailTest" name="2-failtest.py:FailTest.test" time="0.
→˓00120401382446">

<failure type="TestFail" message="This test is supposed to fail"><!
→˓[CDATA[Traceback (most recent call last):
File "$HOME/Work/Projekty/avocado/avocado/avocado/core/test.py", line 490, in _run_

→˓avocado
raise test_exception

TestFail: This test is supposed to fail
]]></failure>

<system-out><![CDATA[14:46:53 ERROR|
14:46:53 ERROR| Reproduced traceback from: $HOME/Work/Projekty/avocado/avocado/
→˓avocado/core/test.py:435
14:46:53 ERROR| Traceback (most recent call last):
14:46:53 ERROR| File "$HOME/Work/Projekty/avocado/avocado/examples/tests/failtest.py
→˓", line 17, in test
14:46:53 ERROR| self.fail('This test is supposed to fail')
14:46:53 ERROR| File "$HOME/Work/Projekty/avocado/avocado/avocado/core/test.py",
→˓line 585, in fail
14:46:53 ERROR| raise exceptions.TestFail(message)
14:46:53 ERROR| TestFail: This test is supposed to fail
14:46:53 ERROR|
14:46:53 ERROR| FAIL 2-failtest.py:FailTest.test -> TestFail: This test is supposed
→˓to fail
14:46:53 INFO |
]]></system-out>

</testcase>
<testcase classname="SyncTest" name="3-synctest.py:SyncTest.test" time="2.

→˓57366299629"/>
</testsuite>

Note: The dash - in the option –xunit, it means that the xunit result should go to the standard output.

Note: In case your tests produce very long outputs, you can limit the number of embedded characters by –xunit-

9.2. Avocado User’s Guide 33

http://help.catchsoftware.com/display/ET/JUnit+Format
http://jenkins-ci.org/

avocado Documentation, Release 88.1

max-test-log-chars. If the output in the log file is longer it only attaches up-to max-test-log-chars characters one half
starting from the beginning of the content, the other half from the end of the content.

2. JSON:

JSON is a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to the
xunit output plugin:

$ avocado run sleeptest.py failtest.py synctest.py --json -
{

"cancel": 0,
"debuglog": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/job.log

→˓",
"errors": 0,
"failures": 1,
"job_id": "10715c4645d2d2b57889d7a4317fcd01451b600e",
"pass": 2,
"skip": 0,
"tests": [

{
"end": 1470761623.176954,
"fail_reason": "None",
"logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/1-sleeptest.py:SleepTest.test",
"logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/1-sleeptest.py:SleepTest.test/debug.log",
"start": 1470761622.174918,
"status": "PASS",
"id": "1-sleeptest.py:SleepTest.test",
"time": 1.0020360946655273,
"whiteboard": ""

},
{

"end": 1470761623.193472,
"fail_reason": "This test is supposed to fail",
"logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/2-failtest.py:FailTest.test",
"logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/2-failtest.py:FailTest.test/debug.log",
"start": 1470761623.192334,
"status": "FAIL",
"id": "2-failtest.py:FailTest.test",
"time": 0.0011379718780517578,
"whiteboard": ""

},
{

"end": 1470761625.656061,
"fail_reason": "None",
"logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/3-synctest.py:SyncTest.test",
"logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/3-synctest.py:SyncTest.test/debug.log",
"start": 1470761623.208165,
"status": "PASS",
"id": "3-synctest.py:SyncTest.test",
"time": 2.4478960037231445,
"whiteboard": ""

(continues on next page)

34 Chapter 9. Build and Quality Status

http://www.json.org/

avocado Documentation, Release 88.1

(continued from previous page)

}
],
"time": 3.4510700702667236,
"total": 3

}

Note: The dash - in the option –json, it means that the xunit result should go to the standard output.

Bear in mind that there’s no documented standard for the Avocado JSON result format. This means that it will probably
grow organically to accommodate newer Avocado features. A reasonable effort will be made to not break backwards
compatibility with applications that parse the current form of its JSON result.

3. TAP:

Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado machine
readable outputs this one is streamlined (per test results):

$ avocado run sleeptest.py --tap -
1..1
debug.log of sleeptest.py:SleepTest.test:
12:04:38 DEBUG| PARAMS (key=sleep_length, path=*, default=1) => 1
12:04:38 DEBUG| Sleeping for 1.00 seconds
12:04:39 INFO | PASS 1-sleeptest.py:SleepTest.test
12:04:39 INFO |
ok 1 sleeptest.py:SleepTest.test

Using the option –show

Probably, you frequently want to look straight at the job log, without switching screens or having to “tail” the job log.

In order to do that, you can use avocado --show=test run ...:

$ avocado --show=test run examples/tests/sleeptest.py
...
Job ID: f9ea1742134e5352dec82335af584d1f151d4b85

START 1-sleeptest.py:SleepTest.test

PARAMS (key=timeout, path=*, default=None) => None
PARAMS (key=sleep_length, path=*, default=1) => 1
Sleeping for 1.00 seconds
PASS 1-sleeptest.py:SleepTest.test

Test results available in $HOME/avocado/job-results/job-2015-06-02T10.45-f9ea174

As you can see, the UI output is suppressed and only the job log is shown, making this a useful feature for test
development and debugging.

It’s possible to silence all output to stdout (while keeping the error messages being printed to stderr). One can then use
the return code to learn about the result:

$ avocado --show=none run failtest.py
$ echo $?
1

9.2. Avocado User’s Guide 35

http://testanything.org/

avocado Documentation, Release 88.1

In practice, this would usually be used by scripts that will in turn run Avocado and check its results:

#!/bin/bash
...
$ avocado --show=none run /path/to/my/test.py
if [$? == 0]; then

echo "great success!"
elif

...

more details regarding exit codes in Exit Codes section.

Multiple results at once

You can have multiple results formats at once, as long as only one of them uses the standard output. For example, it is
fine to use the xunit result on stdout and the JSON result to output to a file:

$ avocado run sleeptest.py synctest.py --xunit - --json /tmp/result.json
<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="avocado" tests="2" errors="0" failures="0" skipped="0" time="3.
→˓64848303795" timestamp="2016-05-04 17:26:05.645665">

<testcase classname="SleepTest" name="1-sleeptest.py:SleepTest.test" time="1.
→˓00270605087"/>

<testcase classname="SyncTest" name="2-synctest.py:SyncTest.test" time="2.
→˓64577698708"/>
</testsuite>

$ cat /tmp/result.json
{

"debuglog": "/home/cleber/avocado/job-results/job-2016-08-09T13.55-1a94ad6/job.
→˓log",

"errors": 0,
...

}

But you won’t be able to do the same without the –json flag passed to the program:

$ avocado run sleeptest.py synctest.py --xunit - --json -
avocado run: error: argument --json: Options --xunit --json are trying to
use stdout simultaneously. Please set at least one of them to a file to
avoid conflicts

That’s basically the only rule, and a sane one, that you need to follow.

Note: Avocado support “paginator” option, which, on compatible terminals, basically pipes the colored output to less
to simplify browsing of the produced output. One can disable it by –paginator {on|off}.

Running simple tests with arguments

This used to be supported out of the box by running avocado run "test arg1 arg2" but it was quite con-
fusing and removed. It is still possible to achieve that by using shell and one can even combine normal tests and the
parametrized ones:

36 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

$ avocado run --loaders file external:/bin/sh -- existing_file.py existing-file
→˓nonexisting-file

This will run 3 tests, the first one is a normal test defined by existing_file.py (most probably an instrumented
test) and will be executed by the “file” loader. Then we have two script files which are going to be executed with
/bin/sh.

Sysinfo collection

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very useful when later we want to know what caused the test’s failure. This system is config-
urable but we provide a sane set of defaults for you.

In the default Avocado configuration (/etc/avocado/avocado.conf) there is a section sysinfo.collect
where you can enable/disable the sysinfo collection as well as configure the basic environment. In sysinfo.
collectibles section you can define basic paths of where to look for what commands/tasks should be performed
before/during the sysinfo collection. Avocado supports three types of tasks:

1. commands - file with new-line separated list of commands to be executed before and after the job/test (single
execution commands). It is possible to set a timeout which is enforced per each executed command in [sys-
info.collect] by setting “commands_timeout” to a positive number. You can also use the environment variable
AVOCADO_SYSINFODIR which points to the sysinfo directory in results.

2. fail_commands - similar to commands, but gets executed only when the test fails.

3. files - file with new-line separated list of files to be copied.

4. fail_files - similar to files, but copied only when the test fails.

5. profilers - file with new-line separated list of commands to be executed before the job/test and killed at the end
of the job/test (follow-like commands).

Additionally this plugin tries to follow the system log via journalctl if available.

By default these are collected per-job but you can also run them per-test by setting per_test = True in the
sysinfo.collect section.

The sysinfo is enabled by default and can also be disabled on the cmdline if needed by --disable-sysinfo.

After the job execution you can find the collected information in $RESULTS/sysinfo of $RESULTS/
test-results/$TEST/sysinfo. They are categorized into pre, post and profile folders and the file-
names are safely-escaped executed commands or file-names. You can also see the sysinfo in html results when you
have html results plugin enabled.

It is also possible to save only the files / commands which were changed during the course of the test, in the post
directory, using the setting optimize = True in the sysinfo.collect section. This collects all sysinfo on
pre, but saves only changed ones on post. It is set to False by default.

Warning: If you are using Avocado from sources, you need to manually place the
commands/fail_commands/fail_files/files/profilers into the /etc/avocado/sysinfo
directories or adjust the paths in $AVOCADO_SRC/etc/avocado/avocado.conf.

9.2. Avocado User’s Guide 37

avocado Documentation, Release 88.1

9.2.4 Basic Concepts

Attention: TODO: This section needs attention! Please, help us contributing to this document.

It is important to understand some basic concepts before start using Avocado.

Test Resolution

Note: Some definitions here may be out of date. The current runner can still be using some of these definitions in
its design, however, we are working on an improved version of the runner, the NextRunner that will use an alternative
strategy.

When you use the Avocado runner, frequently you’ll provide paths to files, that will be inspected, and acted upon
depending on their contents. The diagram below shows how Avocado analyzes a file and decides what to do with it:

It’s important to note that the inspection mechanism is safe (that is, Python classes and files are not actually loaded
and executed on discovery and inspection stage). Due to the fact Avocado doesn’t actually load the code and classes,
the introspection is simple and will not catch things like buggy test modules, missing imports and miscellaneous bugs
in the code you want to list or run. We recommend only running tests from sources you trust, use of static checking
and reviews in your test development process.

Due to the simple test inspection mechanism, Avocado will not recognize test classes that inherit from a class derived
from avocado.Test. Please refer to the WritingTests documentation on how to use the tags functionality to mark

38 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

derived classes as Avocado test classes.

Identifiers and references

Job ID

The Job ID is a random SHA1 string that uniquely identifies a given job.

The full form of the SHA1 string is used is most references to a job:

$ avocado run sleeptest.py
JOB ID : 49ec339a6cca73397be21866453985f88713ac34
...

But a shorter version is also used at some places, such as in the job results location:

JOB LOG : $HOME/avocado/job-results/job-2015-06-10T10.44-49ec339/job.log

Test References

Warning: TODO: We are talking here about Test Resolver, but the reader was not introduced to this concept yet.

A Test Reference is a string that can be resolved into (interpreted as) one or more tests by the Avocado Test Resolver. A
given resolver plugin is free to interpret a test reference, it is completely abstract to the other components of Avocado.

When the test references are about Instrumented Tests, Avocado will find any Instrumented test that starts with the
reference, like a “wildcard”. For instance:

$ avocado run ./test.py:MyTest:test_foo

This command will resolve all tests (methods) that starts with test_foo. For more information about this type of tests,
please visit the Instrumented section of this document.

Note: Mapping the Test References to tests can be affected by command-line switches like –external-runner, which
completelly changes the meaning of the given strings.

Conventions

Even though each resolver implementation is free to interpret a reference string as it sees fit, it’s a good idea to set
common user expectations.

It’s common for a single file to contain multiple tests. In that case, information about the specific test to reference can
be added after the filesystem location and a colon, that is, for the reference:

passtest.py:PassTest.test

Unless a file with that exact name exists, most resolvers will split it into passtest.py as the filesystem path, and
PassTest.test as an additional specification for the individual test. It’s also possible that some resolvers will support
regular expressions and globs for the additional information component.

9.2. Avocado User’s Guide 39

avocado Documentation, Release 88.1

Test Name

A test name is an arbitrarily long string that unambiguously points to the source of a single test. In other words the
Avocado Test Resolver, as configured for a particular job, should return one and only one test as the interpretation of
this name.

This name can be as specific as necessary to make it unique. Therefore it can contain an arbitrary number of variables,
prefixes, suffixes, tags, etc. It all depends on user preferences, what is supported by Avocado via its Test Resolvers
and the context of the job.

The output of the Test Resolver when resolving Test References should always be a list of unambiguous Test Names
(for that particular job).

Notice that although the Test Name has to be unique, one test can be run more than once inside a job.

By definition, a Test Name is a Test Reference, but the reciprocal is not necessarily true, as the latter can represent
more than one test.

Examples of Test Names:

'/bin/true'
'passtest.py:Passtest.test'
'file:///tmp/passtest.py:Passtest.test'
'multiple_tests.py:MultipleTests.test_hello'
'type_specific.io-github-autotest-qemu.systemtap_tracing.qemu.qemu_free'

Variant IDs

The varianter component creates different sets of variables (known as “variants”), to allow tests to be run individually
in each of them.

A Variant ID is an arbitrary and abstract string created by the varianter plugin to identify each variant. It should be
unique per variant inside a set. In other words, the varianter plugin generates a set of variants, identified by unique
IDs.

A simpler implementation of the varianter uses serial integers as Variant IDs. A more sophisticated implementation
could generate Variant IDs with more semantic, potentially representing their contents.

Test ID

A test ID is a string that uniquely identifies a test in the context of a job. When considering a single job, there are no
two tests with the same ID.

A test ID should encapsulate the Test Name and the Variant ID, to allow direct identification of a test. In other words,
by looking at the test ID it should be possible to identify:

• What’s the test name

• What’s the variant used to run this test (if any)

Test IDs don’t necessarily keep their uniqueness properties when considered outside of a particular job, but two
identical jobs run in the exact same environment should generate a identical sets of Test IDs.

Syntax:

<unique-id>-<test-name>[;<variant-id>]

Example of Test IDs:

40 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

'1-/bin/true'
'2-passtest.py:Passtest.test;quiet-'
'3-file:///tmp/passtest.py:Passtest.test'
'4-multiple_tests.py:MultipleTests.test_hello;maximum_debug-df2f'
'5-type_specific.io-github-autotest-qemu.systemtap_tracing.qemu.qemu_free'

Test types

Avocado at its simplest configuration can run three different types of tests1. You can mix and match those in a single
job.

Simple

Any executable in your box. The criteria for PASS/FAIL is the return code of the executable. If it returns 0, the test
PASSes, if it returns anything else, it FAILs.

Python unittest

The discovery of classical Python unittest is also supported, although unlike Python unittest we still use static analysis
to get individual tests so dynamically created cases are not recognized. Also note that test result SKIP is reported as
CANCEL in Avocado as SKIP test meaning differs from our definition. Apart from that there should be no surprises
when running unittests via Avocado.

Instrumented

These are tests written in Python or BASH with the Avocado helpers that use the Avocado test API.

To be more precise, the Python file must contain a class derived from avocado.test.Test. This means that an
executable written in Python is not always an instrumented test, but may work as a simple test.

The instrumented tests allows the writer finer control over the process including logging, test result status and other
more sophisticated test APIs.

Test statuses PASS, WARN and SKIP are considered successful. The ERROR, FAIL and INTERRUPTED signal
failures.

TAP

TAP tests are pretty much like Simple tests in the sense tha they are programs (either binaries or scripts) that will
executed. The difference is that the test result will be decided based on the produced output, that should be in Test
Anything Protocol format.

Test statuses

Avocado sticks to the following definitions of test statuses:

• `PASS`: The test passed, which means all conditions being tested have passed.

1 Avocado plugins can introduce additional test types.

9.2. Avocado User’s Guide 41

https://testanything.org
https://testanything.org

avocado Documentation, Release 88.1

• `FAIL`: The test failed, which means at least one condition being tested has failed. Ideally, it should mean a
problem in the software being tested has been found.

• `ERROR`: An error happened during the test execution. This can happen, for example, if there’s a bug in the
test runner, in its libraries or if a resource breaks unexpectedly. Uncaught exceptions in the test code will also
result in this status.

• `SKIP`: The test runner decided a requested test should not be run. This can happen, for example, due to
missing requirements in the test environment or when there’s a job timeout.

Exit codes

Avocado exit code tries to represent different things that can happen during an execution. That means exit codes can
be a combination of codes that were ORed together as a single exit code. The final exit code can be de-bundled so
users can have a good idea on what happened to the job.

The single individual exit codes are:

• AVOCADO_ALL_OK (0)

• AVOCADO_TESTS_FAIL (1)

• AVOCADO_JOB_FAIL (2)

• AVOCADO_FAIL (4)

• AVOCADO_JOB_INTERRUPTED (8)

If a job finishes with exit code 9, for example, it means we had at least one test that failed and also we had at some
point a job interruption, probably due to the job timeout or a CTRL+C.

9.2.5 Basic Operations

Job Replay

The process of replaying an Avocado Job is simply about loading the source Job’s configuration and running a new
Job based on that configuration.

For users, this is available as the avocado replay command. Its usage is straightforward. Suppose you’ve just
run a simple job, also from the command line, such as:

$ avocado run /bin/true /bin/false
JOB ID : 42c60bea72e6d55756bfc784eb2b354f788541cf
JOB LOG : $HOME/avocado/job-results/job-2020-08-13T11.23-42c60be/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL: Exited with status: '1', stdout: '' stderr: '' (0.08 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB HTML : $HOME/avocado/job-results/job-2020-08-13T11.23-42c60be/results.html
JOB TIME : 0.41 s

To run a new job with the configuration used by the previously executed job, it’s possible to simply execute:

$ avocado replay latest

Resulting in:

42 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

JOB ID : f3139826f1b169a0b456e0e880ffb83ed26d9858
SRC JOB ID : latest
JOB LOG : /home/cleber/avocado/job-results/job-2020-08-13T11.24-f313982/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL: Exited with status: '1', stdout: '' stderr: '' (0.07 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB HTML : /home/cleber/avocado/job-results/job-2020-08-13T11.24-f313982/results.
→˓html
JOB TIME : 0.39 s

It’s also possible to use the other types of references to jobs, like the full directory path of the job results, or the Job
IDs. That is, you can use the same references used in other commands such as avocado jobs show.

Legacy Job Replay

Note: This legacy version is expected to be removed in future versions.

Avocado’s first, and now legacy, job replay version is based on the run command. It supports more command line
options and use cases than the newer implementation discussed earlier, but it has some cons:

• It’s not clear if options given to avocado run --replay are about the replayed job or if overriding aspects
of the source job

• The implementation has to account for each of the options capable of being overriden

It’s expected that more complex use cases for Jobs, including replays, should instead use the Job API directly. Regard-
less, the remainder of this section documents its behavior.

In order to reproduce a given job using the same data, one can use the --replay option for the run command,
informing the hash id from the original job to be replayed. The hash id can be partial, as long as the provided part
corresponds to the initial characters of the original job id and it is also unique enough. Or, instead of the job id, you
can use the string latest and Avocado will replay the latest job executed.

Let’s see an example. First, running a simple job with two test references:

$ avocado run /bin/true /bin/false
JOB ID : 825b860b0c2f6ec48953c638432e3e323f8d7cad
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T16.14-825b860/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.12 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T16.14-825b860/html/results.html

Now we can replay the job by running:

$ avocado run --replay 825b86
JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323f8d7cad
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

9.2. Avocado User’s Guide 43

avocado Documentation, Release 88.1

The replay feature will retrieve the original test references, the variants and the configuration. Let’s see another
example, now using a mux YAML file:

$ avocado run /bin/true /bin/false --mux-yaml mux-environment.yaml
JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T21.56-bd6aa3b/job.log
(1/4) /bin/true;first-c49a: PASS (0.01 s)
(2/4) /bin/true;second-f05f: PASS (0.01 s)
(3/4) /bin/false;first-c49a: FAIL (0.04 s)
(4/4) /bin/false;second-f05f: FAIL (0.04 s)

RESULTS : PASS 2 | ERROR 0 | FAIL 2 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.19 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T21.56-bd6aa3b/html/results.html

We can replay the job as is, using $ avocado run --replay latest, or replay the job ignoring the variants,
as below:

$ avocado run --replay bd6aa3b --replay-ignore variants
Ignoring variants from source job with --replay-ignore.
JOB ID : d5a46186ee0fb4645e3f7758814003d76c980bf9
SRC JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T22.01-d5a4618/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.12 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T22.01-d5a4618/html/results.html

Also, it is possible to replay only the variants that faced a given result, using the option --replay-test-status.
See the example below:

$ avocado run --replay bd6aa3b --replay-test-status FAIL
JOB ID : 2e1dc41af6ed64895f3bb45e3820c5cc62a9b6eb
SRC JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-12T00.38-2e1dc41/job.log
(1/4) /bin/true;first-c49a: SKIP
(2/4) /bin/true;second-f05f: SKIP
(3/4) /bin/false;first-c49a: FAIL (0.03 s)
(4/4) /bin/false;second-f05f: FAIL (0.04 s)

RESULTS : PASS 0 | ERROR 0 | FAIL 24 | SKIP 24 | WARN 0 | INTERRUPT 0
JOB TIME : 0.29 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-12T00.38-2e1dc41/html/results.html

Of which one special example is --replay-test-status INTERRUPTED or simply --replay-resume,
which SKIPs the executed tests and only executes the ones which were CANCELED or not executed after a CAN-
CELED test. This feature should work even on hard interruptions like system crash.

Note: Avocado versions 80.0 and earlier allowed replayed jobs to override the failfast configuration by setting
--failfast in a avocado run --replay .. command line. This is no longer possible.

To be able to replay a job, Avocado records the job data in the same job results directory, inside a subdirectory named
replay. If a given job has a non-default path to record the logs, when the replay time comes, we need to inform
where the logs are. See the example below:

$ avocado run /bin/true --job-results-dir /tmp/avocado_results/
JOB ID : f1b1c870ad892eac6064a5332f1bbe38cda0aaf3

(continues on next page)

44 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

JOB LOG : /tmp/avocado_results/job-2016-01-11T22.10-f1b1c87/job.log
(1/1) /bin/true: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : /tmp/avocado_results/job-2016-01-11T22.10-f1b1c87/html/results.html

Trying to replay the job, it fails:

$ avocado run --replay f1b1
can't find job results directory in '$HOME/avocado/job-results'

In this case, we have to inform where the job results directory is located:

$ avocado run --replay f1b1 --replay-data-dir /tmp/avocado_results
JOB ID : 19c76abb29f29fe410a9a3f4f4b66387570edffa
SRC JOB ID : f1b1c870ad892eac6064a5332f1bbe38cda0aaf3
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T22.15-19c76ab/job.log
(1/1) /bin/true: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T22.15-19c76ab/html/results.html

Job Diff

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

$ avocado diff 7025aaba 384b949c
--- 7025aaba9c2ab8b4bba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d9ba761fd07672ff
@@ -1,15 +1,15 @@

COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
-1-sleeptest.py:SleepTest.test: PASS
+1-passtest.py:PassTest.test: PASS

...

Avocado Diff can compare and create an unified diff of:

• Command line.

• Job time.

• Variants and parameters.

• Tests results.

• Configuration.

• Sysinfo pre and post.

9.2. Avocado User’s Guide 45

avocado Documentation, Release 88.1

Note: Avocado Diff will ignore files containing non UTF-8 characters, like binaries, as an example.

Only sections with different content will be included in the results. You can also enable/disable those sections with
--diff-filter. Please see avocado diff --help for more information.

Jobs can be identified by the Job ID, by the results directory or by the key latest. Example:

$ avocado diff ~/avocado/job-results/job-2016-08-03T15.56-4b3cb5b/ latest
--- 4b3cb5bbbb2435c91c7b557eebc09997d4a0f544
+++ 57e5bbb3991718b216d787848171b446f60b3262
@@ -1,9 +1,9 @@

COMMAND LINE
-/usr/bin/avocado run perfmon.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-11.91 s
+0.00 s

TEST RESULTS
-1-test.py:Perfmon.test: FAIL
+1-examples/tests/passtest.py:PassTest.test: PASS

Along with the unified diff, you can also generate the html (option --html) diff file and, optionally, open it on your
preferred browser (option --open-browser):

$ avocado diff 7025aaba 384b949c --html /tmp/myjobdiff.html
/tmp/myjobdiff.html

If the option --open-browser is used without the --html, we will create a temporary html file.

For those wiling to use a custom diff tool instead of the Avocado Diff tool, we offer the option --create-reports,
so we create two temporary files with the relevant content. The file names are printed and user can copy/paste to the
custom diff tool command line:

$ avocado diff 7025aaba 384b949c --create-reports
/var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_384b949_AcWq02.txt

$ diff -u /var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_384b949_
→˓AcWq02.txt
--- /var/tmp/avocado_diff_7025aab_zQJjJh.txt 2016-08-10 21:48:43.547776715 +0200
+++ /var/tmp/avocado_diff_384b949_AcWq02.txt 2016-08-10 21:48:43.547776715 +0200
@@ -1,250 +1,19 @@

COMMAND LINE
============

-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
==========

-1.00 s
+0.00 s

...

46 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Listing tests

Avocado can list your tests without run it. This can be handy sometimes.

You have two ways of discovering the tests. You can simulate the execution by using the --dry-run argument:

$ avocado run /bin/true --dry-run
JOB ID : 00
JOB LOG : /var/tmp/avocado-dry-run-k2i_uiqx/job-2020-09-02T09.09-0000000/job.log
(1/1) /bin/true: CANCEL: Test cancelled due to --dry-run (0.01 s)

RESULTS : PASS 0 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 1
JOB HTML : /var/tmp/avocado-dry-run-k2i_uiqx/job-2020-09-02T09.09-0000000/results.
→˓html
JOB TIME : 0.29 s

which supports all run arguments, simulates the run and even lists the test params.

The other way is to use list subcommand that lists the discovered tests If no arguments provided, Avocado lists
“default” tests per each plugin. The output might look like this:

$ avocado list
INSTRUMENTED /usr/share/doc/avocado/tests/abort.py
INSTRUMENTED /usr/share/doc/avocado/tests/datadir.py
INSTRUMENTED /usr/share/doc/avocado/tests/doublefail.py
INSTRUMENTED /usr/share/doc/avocado/tests/doublefree.py
INSTRUMENTED /usr/share/doc/avocado/tests/errortest.py
INSTRUMENTED /usr/share/doc/avocado/tests/failtest.py
INSTRUMENTED /usr/share/doc/avocado/tests/fiotest.py
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py
INSTRUMENTED /usr/share/doc/avocado/tests/gendata.py
INSTRUMENTED /usr/share/doc/avocado/tests/linuxbuild.py
INSTRUMENTED /usr/share/doc/avocado/tests/multiplextest.py
INSTRUMENTED /usr/share/doc/avocado/tests/passtest.py
INSTRUMENTED /usr/share/doc/avocado/tests/sleeptenmin.py
INSTRUMENTED /usr/share/doc/avocado/tests/sleeptest.py
INSTRUMENTED /usr/share/doc/avocado/tests/synctest.py
INSTRUMENTED /usr/share/doc/avocado/tests/timeouttest.py
INSTRUMENTED /usr/share/doc/avocado/tests/warntest.py
INSTRUMENTED /usr/share/doc/avocado/tests/whiteboard.py
...

These Python files are considered by Avocado to contain INSTRUMENTED tests.

Let’s now list only the executable shell scripts:

$ avocado list | grep ^SIMPLE
SIMPLE /usr/share/doc/avocado/tests/env_variables.sh
SIMPLE /usr/share/doc/avocado/tests/output_check.sh
SIMPLE /usr/share/doc/avocado/tests/simplewarning.sh
SIMPLE /usr/share/doc/avocado/tests/failtest.sh
SIMPLE /usr/share/doc/avocado/tests/passtest.sh

Here, as mentioned before, SIMPLE means that those files are executables treated as simple tests. You can also give
the --verbose or -V flag to display files that were found by Avocado, but are not considered Avocado tests:

$ avocado --verbose list examples/gdb-prerun-scripts/
Type Test Tag(s)
NOT_A_TEST examples/gdb-prerun-scripts/README: Not an INSTRUMENTED (avocado.Test
→˓based), PyUNITTEST (unittest.TestCase based) or SIMPLE (executable) test

(continues on next page)

9.2. Avocado User’s Guide 47

avocado Documentation, Release 88.1

(continued from previous page)

NOT_A_TEST examples/gdb-prerun-scripts/pass-sigusr1: Not an INSTRUMENTED (avocado.
→˓Test based), PyUNITTEST (unittest.TestCase based) or SIMPLE (executable) test
!GLIB examples/gdb-prerun-scripts/: No GLib-like tests found
!GOLANG examples/gdb-prerun-scripts/: No test matching this reference.
!ROBOT examples/gdb-prerun-scripts/: No robot-like tests found
NOT_A_TEST examples/gdb-prerun-scripts/README: Not a supported test
NOT_A_TEST examples/gdb-prerun-scripts/pass-sigusr1: Not a supported test

TEST TYPES SUMMARY
==================
!glib: 1
!golang: 1
!robot: 1
not_a_test: 4

Notice that the verbose flag also adds summary information.

See also:

To read more about test discovery, visit the section “Understanding the test discovery (Avocado Loaders)”.

9.2.6 Results Specification

On a machine that executed tests, job results are available under [job-results]/job-[timestamp]-[short
job ID], where logdir is the configured Avocado logs directory (see the data dir plugin), and the directory name
includes a timestamp, such as job-2014-08-12T15.44-565e8de. A typical results directory structure can be
seen below

$HOME/avocado/job-results/job-2014-08-13T00.45-4a92bc0/
id
jobdata

args
cmdline
config
multiplex
pwd
test_references

job.log
results.json
results.xml
sysinfo

post
brctl_show
cmdline
cpuinfo
current_clocksource
df_-mP
dmesg_-c
dmidecode
fdisk_-l
gcc_--version
hostname
ifconfig_-a
interrupts
ip_link
ld_--version

(continues on next page)

48 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

lscpu
lspci_-vvnn
meminfo
modules
mount
mounts
numactl_--hardware_show
partitions
scaling_governor
uname_-a
uptime
version

pre
brctl_show
cmdline
cpuinfo
current_clocksource
df_-mP
dmesg_-c
dmidecode
fdisk_-l
gcc_--version
hostname
ifconfig_-a
interrupts
ip_link
ld_--version
lscpu
lspci_-vvnn
meminfo
modules
mount
mounts
numactl_--hardware_show
partitions
scaling_governor
uname_-a
uptime
version

profile
test-results

tests
sleeptest.py.1

data
debug.log
sysinfo

post
pre

sleeptest.py.2
data
debug.log
sysinfo

post
pre

sleeptest.py.3
data
debug.log

(continues on next page)

9.2. Avocado User’s Guide 49

avocado Documentation, Release 88.1

(continued from previous page)

sysinfo
post
pre

22 directories, 65 files

From what you can see, the results dir has:

1) A human readable id in the top level, with the job SHA1.

2) A human readable job.log in the top level, with human readable logs of the task

3) Subdirectory jobdata, that contains machine readable data about the job.

4) A machine readable results.xml and results.json in the top level, with a summary of the job infor-
mation in xUnit/json format.

5) A top level sysinfo dir, with sub directories pre, post and profile, that store sysinfo files pre/post/during
job, respectively.

6) Subdirectory test-results, that contains a number of subdirectories (filesystem-friendly test ids). Those
test ids represent instances of test execution results.

Test execution instances specification

The instances should have:

1) A top level human readable job.log, with job debug information

2) A sysinfo subdir, with sub directories pre, post and profile that store sysinfo files pre test, post test
and profiling info while the test was running, respectively.

3) A data subdir, where the test can output a number of files if necessary.

Test execution environment

Each test is executed in a separate process. Due to how the underlying operating system works, a lot of the attributes
of the parent process (the Avocado test runner) are passed down to the test process.

On GNU/Linux systems, a child process should be “an exact duplicate of the parent process, except” some items that
are documented in the fork(2) man page.

Note: The next Runner (--test-runner='nrunner') has support to different spawners types (podman, pro-
cess, etc..). For more information, visit the nrunner.spawner configuration option.

Besides those operating system exceptions, the Avocado test runner changes the test process in the following ways:

1) The standard input (STDIN) is set to a null device. This is truth both for sys.stdin and for file descrip-
tor 0. Both will point to the same open null device file.

2) The standard output (STDOUT), as in sys.stdout, is redirected so that it doesn’t interfere with the test
runner’s own output. All content written to the test’s sys.stdout will be available in the logs under the
output prefix.

50 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/os.html#os.devnull
https://docs.python.org/3/library/sys.html#sys.stdin
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stdout

avocado Documentation, Release 88.1

Warning: The file descriptor 1 (AKA /dev/stdout, AKA /proc/self/fd/1, etc) is not currently
redirected for INSTRUMENTED tests. Any attempt to write directly to the file descriptor will interfere with
the runner’s own output stream. This behavior will be addressed in a future version.

3) The standard error (STDERR), as in sys.stderr, is redirected so that it doesn’t interfere with the test runner’s
own errors. All content written to the test’s sys.stderrwill be available in the logs under the output prefix.

Warning: The file descriptor 2 (AKA /dev/stderr, AKA /proc/self/fd/2, etc) is not currently
redirected for INSTRUMENTED tests. Any attempt to write directly to the file descriptor will interfere with
the runner’s own error stream. This behavior will be addressed in a future version.

4) A custom handler for signal SIGTERM which will simply raise an exception (with the appropriate message) to
be handled by the Avocado test runner, stating the fact that the test was interrupted by such a signal.

Tip: By following the backtrace that is given alongside the in the test log (look for RuntimeError: Test
interrupted by SIGTERM) a user can quickly grasp at which point the test was interrupted.

Note: If the test handles SIGTERM differently and doesn’t finish the test process quickly enough, it will receive
then a SIGKILL which is supposed to definitely end the test process.

5) A number of environment variables that are set by Avocado, all prefixed with AVOCADO_.

If you want to see for yourself what is described here, you may want to run the example test test_env.py and
examine its log messages.

9.2.7 Filtering tests by tags

Avocado allows tests to be given tags, which can be used to create test categories. With tags set, users can select a
subset of the tests found by the test resolver (also known as test loader).

Usually, listing and executing tests with the Avocado test runner would reveal all three tests:

$ avocado list perf.py
INSTRUMENTED perf.py:Disk.test_device
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput
INSTRUMENTED perf.py:Idle.test_idle

If you want to list or run only the network based tests, you can do so by requesting only tests that are tagged with net:

$ avocado list perf.py --filter-by-tags=net
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

Now, suppose you’re not in an environment where you’re confortable running a test that will write to your raw disk
devices (such as your development workstation). You know that some tests are tagged with safe while others are
tagged with unsafe. To only select the “safe” tests you can run:

9.2. Avocado User’s Guide 51

https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.stderr

avocado Documentation, Release 88.1

$ avocado list perf.py --filter-by-tags=safe
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

But you could also say that you do not want the “unsafe” tests (note the minus sign before the tag):

$ avocado list perf.py --filter-by-tags=-unsafe
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

Tip: The - sign may cause issues with some shells. One know error condition is to use spaces between
--filter-by-tags and the negated tag, that is, --filter-by-tags -unsafe will most likely not work.
To be on the safe side, use --filter-by-tags=-tag.

If you require tests to be tagged with multiple tags, just add them separate by commas. Example:

$ avocado list perf.py --filter-by-tags=disk,slow,superuser,unsafe
INSTRUMENTED perf.py:Disk.test_device

If no test contains all tags given on a single –filter-by-tags parameter, no test will be included:

$ avocado list perf.py --filter-by-tags=disk,slow,superuser,safe | wc -l
0

Multiple tags (AND vs OR)

While multiple tags in a single option will require tests with all the given tags (effectively a logical AND operation),
it’s also possible to use multiple --filter-by-tags (effectively a logical OR operation).

For instance To include all tests that have the disk tag and all tests that have the net tag, you can run:

$ avocado list perf.py --filter-by-tags=disk --filter-by-tags=net
INSTRUMENTED perf.py:Disk.test_device
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

Including tests without tags

The normal behavior when using --filter-by-tags is to require the given tags on all tests. In some situations,
though, it may be desirable to include tests that have no tags set.

For instance, you may want to include tests of certain types that do not have support for tags (such as SIMPLE tests)
or tests that have not (yet) received tags. Consider this command:

$ avocado list perf.py /bin/true --filter-by-tags=disk
INSTRUMENTED perf.py:Disk.test_device

Since it requires the disk tag, only one test was returned. By using the --filter-by-tags-include-empty
option, you can force the inclusion of tests without tags:

$ avocado list perf.py /bin/true --filter-by-tags=disk --filter-by-tags-include-empty
SIMPLE /bin/true

(continues on next page)

52 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

INSTRUMENTED perf.py:Idle.test_idle
INSTRUMENTED perf.py:Disk.test_device

Using further categorization with keys and values

All the examples given so far are limited to “flat” tags. Sometimes, it’s helpful to categorize tests with extra con-
text. For instance, if you have tests that are sensitive to the platform endianess, you may way to categorize them by
endianess, while at the same time, specifying the exact type of endianess that is required.

For instance, your tags can now have a key and value pair, like: endianess:little or endianess:big.

To list tests without any type of filtering would give you:

$ avocado list byteorder.py
INSTRUMENTED byteorder.py:ByteOrder.test_le
INSTRUMENTED byteorder.py:ByteOrder.test_be
INSTRUMENTED byteorder.py:Generic.test

To list tests that are somehow related to endianess, you can use:

$ avocado list byteorder.py --filter-by-tags endianess
INSTRUMENTED byteorder.py:ByteOrder.test_le
INSTRUMENTED byteorder.py:ByteOrder.test_be

And to be even more specific, you can use:

$ avocado list byteorder.py --filter-by-tags endianess:big
INSTRUMENTED byteorder.py:ByteOrder.test_be

Now, suppose you intend to run tests on a little endian platform, but you’d still want to include tests that are generic
enough to run on either little or big endian (but not tests that are specific to other types of endianess), you could use:

$ avocado list byteorder.py --filter-by-tags endianess:big --filter-by-tags-include-
→˓empty-key
INSTRUMENTED byteorder.py:ByteOrder.test_be
INSTRUMENTED byteorder.py:Generic.test

See also:

If you would like to understand how write plugins and how describe tags inside a plugin, please visit the section:
Writing Tests on Avocado Test Writer’s Guide.

9.2.8 Configuring

Warning: Please, keep in mind that we are doing a significant refactoring on settings to have consistency when
using Avocado. Some options are changing soon.

Avocado utilities have a certain default behavior based on educated, reasonable (we hope) guesses about how users
like to use their systems. Of course, different people will have different needs and/or dislike our defaults, and that’s
why a configuration system is in place to help with those cases

9.2. Avocado User’s Guide 53

avocado Documentation, Release 88.1

The Avocado config file format is based on the (informal) INI file specification, that is implemented by Python’s
configparser. The format is simple and straightforward, composed by sections, that contain a number of keys and
values. Take for example a basic Avocado config file:

[datadir.paths]
base_dir = /var/lib/avocado
test_dir = /usr/share/doc/avocado/tests
data_dir = /var/lib/avocado/data
logs_dir = ~/avocado/job-results

The datadir.paths section contains a number of keys, all of them related to directories used by the test runner.
The base_dir is the base directory to other important Avocado directories, such as log, data and test directories.
You can also choose to set those other important directories by means of the variables test_dir, data_dir and
logs_dir. You can do this by simply editing the config files available.

Config file parsing order

Avocado starts by parsing what it calls system wide config file, that is shipped to all Avocado users on a system wide
directory, /etc/avocado/avocado.conf (when installed by your distro’s package manager).

There is another directory that will be scanned by extra config files, /etc/avocado/conf.d. This directory may
contain plugin config files, and extra additional config files that the system administrator/avocado developers might
judge necessary to put there.

Then it’ll verify if there’s a local user config file, that is located usually in ~/.config/avocado/avocado.
conf. The order of the parsing matters, so the system wide file is parsed, then the user config file is parsed last, so
that the user can override values at will.

The order of files described in this section is only valid if Avocado was installed in the system. For people using
Avocado from git repos (usually Avocado developers), that did not install it in the system, keep in mind that Avocado
will read the config files present in the git repos, and will ignore the system wide config files. Running avocado
config will let you know which files are actually being used.

Configuring via command-line

Besides the configuration files, the most used features can also be configured by command-line arguments. For in-
stance, regardless what you have on your configuration files, you can disable sysinfo logging by running:

$ avocado run --disable-sysinfo /bin/true

So, command-line options always will have the highest precedence during the configuration parsing. Use this if you
would like to change some behavior on just one or a few specific executions.

Parsing order recap

So the file parsing order is:

• /etc/avocado/avocado.conf

• /etc/avocado/conf.d/*.conf

• avocado.plugins.settings plugins (but they can insert to any location)

– For more information about this, visit the “Contributor’s Guide” section named “Writing an Avocado
plugin”

• ~/.config/avocado/avocado.conf

54 Chapter 9. Build and Quality Status

http://en.wikipedia.org/wiki/INI_file
https://docs.python.org/3/library/configparser.html#module-configparser

avocado Documentation, Release 88.1

You can see the actual set of files/location by using avocado config which uses * to mark existing and used files:

$ avocado config
Config files read (in order, '*' means the file exists and had been read):

* /etc/avocado/avocado.conf

* /etc/avocado/conf.d/resultsdb.conf

* /etc/avocado/conf.d/result_upload.conf

* /etc/avocado/conf.d/jobscripts.conf

* /etc/avocado/conf.d/gdb.conf

* /etc/avocado_vt/conf.d/vt.conf

* /etc/avocado_vt/conf.d/vt_joblock.conf
$HOME/.config/avocado/avocado.conf

Section.Key Value
datadir.paths.base_dir /var/lib/avocado
datadir.paths.test_dir /usr/share/doc/avocado/tests
...

Where the lower config files override values of the upper files and the $HOME/.config/avocado/avocado.
conf file missing.

Note: Please note that if Avocado is running from git repos, those files will be ignored in favor of in tree configuration
files. This is something that would normally only affect people developing avocado, and if you are in doubt, avocado
config will tell you exactly which files are being used in any given situation.

Note: When Avocado runs inside virtualenv than path for global config files is also changed. For example, avo-
cado.conf comes from the virual-env path venv/etc/avocado/avocado.conf.

Order of precedence for values used in tests

Since you can use the config system to alter behavior and values used in tests (think paths to test programs, for
example), we established the following order of precedence for variables (from least precedence to most):

• default value (from library or test code)

• global config file

• local (user) config file

• command line switch

• test parameters

So the least important value comes from the library or test code default, going all the way up to the test parameters
system.

Supported data types when configuring Avocado

As already said before, Avocado allows users to use both: configuration files and command-line options to configure
its behavior. It is important to have a very well defined system type for the configuration file and argument options.

Although config files options and command-line arguments are always considered strings, you should give a proper
format representation so those values can be parsed into a proper type internally on Avocado.

9.2. Avocado User’s Guide 55

avocado Documentation, Release 88.1

Currently Avocado supports the following data types for the configuration options: string, integer, float,
bool and list. Besides those primitive data types Avocado also supports custom data types that can be used by a
particular plugin.

Bellow, you will find information on how to set options based on those basic data types using both: configuration files
and command-line arguments.

Strings

Strings are the basic ones and the syntax is the same in both configuration files and command-line arguments: Just the
string that can be inside "" or ''.

Example using the configuration file:

[foo]
bar = 'hello world'

String and all following types could be used with or without quotes but using quotes for strings is important on the
command line to safely handle empty spaces and distinguish it from a list type. Therefore, the following example will
also be well handled:

[foo]
bar = hello world

Example using the command-line:

$ avocado run --foo bar /bin/true

Integers

Integer numbers are as simple as strings.

Example using the configuration file:

[run]
job_timeout = 60

Example using the command-line:

$ avocado run --job-timeout 50 /bin/true

Floats

Float numbers has the same representation as integers, but you should use . (dot) to separate the decimals. i.e: 80.3.

Booleans

When talking about configuration files, accepted values for a boolean option are ‘1’, ‘yes’, ‘true’, and ‘on’, which
cause this method to return True, and ‘0’, ‘no’, ‘false’, and ‘off’, which cause it to return False. But, when talking
about command-line, booleans options don’t need any argument, the option itself will enable or disable the settings,
depending on the context.

Example using the configuration file:

56 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

[core]
verbose = true

Example using the command-line:

$ avocado run --verbose /bin/true

Note: Currently we still have some “old style boolean” options where you should pass “on” or “off” on the command-
line. i.e: --json-job-result=off. Those options are going to be replaced soon.

Lists

Lists are peculiar when configuring. On configuration files you can use the default “python” syntax for lists: ["foo",
"bar"], but when using the command-line arguments lists are strings separated by spaces:

Example using the configuration file:

[assets.fetch]
references = ["foo.py", "bar.py"]

Example using the command-line:

$ avocado assets fetch foo.py bar.py

Complete Configuration Reference

For a complete configuration reference, please visit Avocado’s Configuration Reference.

Or you can see in your terminal, typing:

$ avocado config reference

9.2.9 Managing Requirements

Note: Test requirements are supported only on the nrunner runner. To use this feature, remember to use –test-
runner=nrunner argument.

A test’s requirement can be fulfilled by the Requirements Resolver feature.

Test’s requirements are specified in the test definition and are fulfilled based on the supported requirement type.

Test workflow with requirements

When a requirement is defined for a test, it is marked as a dependency for that test. The test will wait for all the
requirements to complete successfully before it is started.

When any of the requirements defined on a test fails, the test is skipped.

9.2. Avocado User’s Guide 57

avocado Documentation, Release 88.1

Defining a test requirement

A test requirement is described in the JSON format. Following is an example of a requirement of type package:

{"type": "package", "name": "hello"}

To define a requirement for the test, use the test’s docstring with the format of keywords :avocado: requirement=. The
following example shows the same package requirement showed above inside a test docstring:

from avocado import Test

class PassTest(Test):
"""
:avocado: requirement={"type": "package", "name": "hello"}
"""
def test(self):

"""
A success test
"""

It is possible to define multiple requirements for a test. Following is an example using more than one requirement
definition:

from avocado import Test

class PassTest(Test):
"""
:avocado: requirement={"type": "package", "name": "hello"}
:avocado: requirement={"type": "package", "name": "bash"}
"""
def test(self):

"""
A success test
"""

Defining a requirement in the class docstring will fulfill the requirement for every test within a test class. Defining a
requirement in the test docstring will fulfill the requirement for that single test only.

Supported types of requirements

The following types of requirements are supported:

Package

Support managing of packages using the Avocado Software Manager utility. The parameters available to use the
package type of requirements are:

• type: package

• name: the package name (required)

• action: one of install, check, or remove (optional, defaults to install)

Following is an example of a test using the Package requirement:

58 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

from avocado import Test

class PassTest(Test):

"""
Example test that passes.

:avocado: requirement={"type": "package", "name": "hello"}
"""

def test(self):
"""
A test simply doesn't have to fail in order to pass
"""

9.2.10 Managing Assets

Note: Please note that we are constantly improving on how we handle assets inside Avocado. Probably some changes
will be delivered during the next releases.

Assets are test artifacts that Avocado can download automatically either during the test execution, or before the test
even starts (by parsing the test code or on-demand, manually registering them at the command-line).

Sometimes those assets, depending on your case, can be a bottleneck when it comes to disk space. If you are constantly
using large assets in your tests, it is important to have a good idea of how Avocado stores and handles those artifacts.

Listing assets

If you would like to list assets that are cached in your system, you can run the following command:

$ avocado assets list

This command supports –by-size-filter and –by-days options. When using the former you should pass a comparison
filter and a size in bytes. For instance:

$ avocado assets list --by-size-filter=">=2048"

The command above will list only assets bigger than 2Kb. We support the following operators: =, >=, <=, < and >.

Now, if you are looking for assets older (based on the acces time) than 10 days, you could use this command:

$ avocado assets list --by-days=10

Removing assets

You can remove the files in your cache directories manually. However, we have provided a utility to help you with
that:

$ avocado assets purge --help

9.2. Avocado User’s Guide 59

avocado Documentation, Release 88.1

Assets can be removed applying the same filters as described when listing them. You can remove assets by a size filter
(–by-size-filter) or assets older than N days (–by-days).

Removing by overall cache limit

Besides the existing features, Avocado is able to set an overall limit, so that it matches the storage limitations of users
(and CI systems).

For instance it may be the case that a GitLab cache limit is 4 GiB, in that case we can sort by last access, and remove all
that exceeds 4 GiB (that is, keep the last accessed 4 GiB worth of cached files). You can run the following command:

$ avocado assets purge --by-overall-limit=4g

This would ensure that the cache is automatically being removed of files that were used last (and possibly not used
anymore).

Please, note that at the moment, you can only use ‘b’, ‘k’, ‘m’, ‘g’ and ‘t’ as suffix.

Changing the default cache dirs

Assets are stored inside the datadir.paths.cache_dirs option. You can change this in your configuration file and dis-
cover your current value with the following command:

$ avocado config | grep datadir.paths.cache_dirs

9.2.11 Avocado Data Directories

When running tests, we are frequently looking to:

• Locate tests

• Write logs to a given location

• Grab files that will be useful for tests, such as ISO files or VM disk images

Avocado has a module dedicated to finding those paths, to avoid cumbersome path manipulation magic that people
had to do in previous test frameworks1.

If you want to list all relevant directories for your test, you can use avocado config –datadir command to list those
directories. Executing it will give you an output similar to the one seen below:

$ avocado config --datadir
Config files read (in order):

* /etc/avocado/avocado.conf

* /etc/avocado/conf.d/resultsdb.conf

* /etc/avocado/conf.d/result_upload.conf

* /etc/avocado/conf.d/jobscripts.conf

* /etc/avocado/conf.d/gdb.conf
$HOME/.config/avocado/avocado.conf

Avocado replaces config dirs that can't be accessed
with sensible defaults. Please edit your local config
file to customize values.

(continues on next page)

1 For example, autotest.

60 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

Avocado Data Directories:
base $HOME/avocado
tests $HOME/Code/avocado/examples/tests
data $HOME/avocado/data
logs $HOME/avocado/job-results

Note that, while Avocado will do its best to use the config values you provide in the config file, if it can’t write values
to the locations provided, it will fall back to (we hope) reasonable defaults, and we notify the user about that in the
output of the command.

The relevant API documentation and meaning of each of those data directories is in avocado.core.data_dir,
so it’s highly recommended you take a look.

You may set your preferred data dirs by setting them in the Avocado config files. The only exception for important
data dirs here is the Avocado tmp dir, used to place temporary files used by tests. That directory will be in normal cir-
cumstances /var/tmp/avocado_XXXXX, (where XXXXX is in actuality a random string) securely created on /var/tmp/,
unless the user has the $TMPDIR environment variable set, since that is customary among unix programs.

The next section of the documentation explains how you can see and set config values that modify the behavior for the
Avocado utilities and plugins.

9.2.12 Avocado logging system

This section describes the logging system used in Avocado.

Tweaking the UI

Avocado uses Python’s logging system to produce UI and to store test’s output. The system is quite flexible and allows
you to tweak the output to your needs either by built-in stream sets, or directly by using the stream name.

To tweak them you can use:

$ avocado --show STREAM[:LEVEL][,STREAM[:LEVEL],...]

Built-in streams with description (followed by list of associated Python streams) are listed below:

app The text based UI (avocado.app)

test Output of the executed tests (avocado.test, “”)

debug Messages useful to debug the Avocado Framework (avocado.app.debug)

early Early logging before the logging system is set. It includes the test output and lots of output produced
by used libraries. (“”, avocado.test)

Additionally you can specify “all” or “none” to enable/disable all of pre-defined streams and you can also supply
custom Python logging streams and they will be passed to the standard output.

Warning: Messages with importance greater or equal WARN in logging stream “avocado.app” are always enabled
and they go to the standard error output.

Storing custom logs

When you run a test, you can also store custom logging streams into the results directory by running:

9.2. Avocado User’s Guide 61

avocado Documentation, Release 88.1

$ avocado run --store-logging-stream [STREAM[:LEVEL][STREAM[:LEVEL] ...]]

This will produce $STREAM.$LEVEL files per each (unique) entry in the test results directory.

Note: You have to specify separated logging streams. You can’t use the built-in streams in this function.

Note: Currently the custom streams are stored only per job, not per each individual test.

9.2.13 Understanding the plugin system

Avocado has a plugin system that can be used to extended it in a clean way.

Note: A large number of out-of-the-box Avocado features are implemented as using the same plugin architecture
available to third-party extensions.

This guide considers “core features”, even though they’re still ‘plugable’, those available with an installation of Av-
ocado by itself (pip install avocado-framework). If a feature is part of an optional or third-party plugin
package, this guide will reference it.”

Listing plugins

The avocado command line tool has a builtin plugins command that lets you list available plugins. The usage is
pretty simple:

$ avocado plugins
Plugins that add new commands (avocado.plugins.cli.cmd):
exec-path Returns path to Avocado bash libraries and exits.
run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information
...
Plugins that add new options to commands (avocado.plugins.cli):
journal Journal options for the 'run' subcommand
...

Since plugins are (usually small) bundles of Python code, they may fail to load if the Python code is broken for any
reason. Example:

$ avocado plugins
Failed to load plugin from module "avocado.plugins.exec_path": ImportError('No module
→˓named foo',)
Plugins that add new commands (avocado.plugins.cli.cmd):
run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information
...

62 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Fully qualified named for a plugin

The Avocado plugin system uses namespaces to recognize and categorize plugins. The namespace separator here is
the dot and every plugin that starts with avocado.plugins. will be recognized by the framework.

An example of a plugin’s full qualified name:

avocado.plugins.result.json

This plugin will generate the job result in JSON format.

Note: Inside Avocado we will omit the prefix ‘avocado.plugins’ to make the things clean.

Note: When listing plugins with avocado plugins pay attention to the namespace inside the parenthesis on each
category description. You will realize that there are, for instance, two plugins with the name ‘JSON’. But when you
concatenate the fully qualified name it will become clear that they are actually two different plugins: result.json
and cli.json.

Disabling a plugin

If you, as Avocado user, would like to disable a plugin, kkyou can disable on config files: points‘_, it can be explicitly
disabled in Avocado.

The mechanism available to do so is to add entries to the disable key under the plugins section of the Avocado
configuration file. Example:

[plugins]
disable = ['cli.hello', 'job.prepost.jobscripts']

The exact effect on Avocado when a plugin is disabled depends on the plugin type. For instance, by disabling plugins
of type cli.cmd, the command implemented by the plugin should no longer be available on the Avocado command
line application. Now, by disabling a job.prepost plugin, those won’t be executed before/after the execution of
the jobs.

Plugin execution order

In many situations, such as result generation, not one, but all of the enabled plugin types will be executed. The order
in which the plugins are executed follows the lexical order of the entry point name.

For example, for the JSON result plugin, whose fully qualified name is result.json, has an entry point name of
json.

So, plugins of the same type, a plugin named automated will be executed before the plugin named uploader.

In the default Avocado set of result plugins, it means that the JSON plugin (json) will be executed before the XUnit
plugin (xunit). If the HTML result plugin is installed and enabled (html) it will be executed before both JSON and
XUnit.

Changing the plugin execution order

On some circumstances it may be necessary to change the order in which plugins are executed. To do so, add a order
entry a configuration file section named after the plugin type. For job.prepost plugin types, the section name has

9.2. Avocado User’s Guide 63

avocado Documentation, Release 88.1

to be named plugins.job.prepost, and it would look like this:

[plugins.job.prepost]
order = ['myplugin', 'jobscripts']

That configuration sets the job.prepost.myplugin plugin to execute before the standard Avocado job.
prepost.jobscripts does.

Note: If you are interested on how plugins works and how to create your own plugin, visit the Plugin section on
Contributor’s Guide.

Pre and post plugins

Avocado provides interfaces (hooks) with which custom plugins can register to be called at various times. For instance,
it’s possible to trigger custom actions before and after the execution of a job, or before and after the execution of the
tests from a job.

Let’s discuss each interface briefly.

Before and after jobs

Avocado supports plug-ins which are (guaranteed to be) executed before the first test and after all tests finished.

The pre method of each installed plugin of type job.prepost will be called by the run command, that is, anytime
an avocado run <valid_test_reference> command is executed.

Note: Conditions such as the SystemExit or KeyboardInterrupt execeptions being raised can interrupt the
execution of those plugins.

Then, immediately after that, the job’s run method is called, which attempts to run all job phases, from test suite
creation to test execution.

Unless a SystemExit or KeyboardInterrupt is raised, or yet another major external event (like a system
condition that Avocado can not control) it will attempt to run the post methods of all the installed plugins of type
job.prepost. This even includes job executions where the pre plugin executions were interrupted.

Before and after tests

If you followed the previous section, you noticed that the job’s run method was said to run all the test phases. Here’s
a sequence of the job phases:

1) Creation of the test suite

2) Pre tests hook

3) Tests execution

4) Post tests hook

Plugin writers can have their own code called at Avocado during a job by writing a that will be called at
phase number 2 (pre_tests) by writing a method according to the avocado.core.plugin_interfaces.
JobPreTests() interface. Accordingly, plugin writers can have their own called at phase num-

64 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt

avocado Documentation, Release 88.1

ber 4 (post_tests) by writing a method according to the avocado.core.plugin_interfaces.
JobPostTests() interface.

Note that there’s no guarantee that all of the first 3 job phases will be executed, so a failure in phase 1
(create_test_suite), may prevent the phase 2 (pre_tests) and/or 3 (run_tests) from from being ex-
ecuted.

Now, no matter what happens in the attempted execution of job phases 1 through 3, job phase 4 (post_tests) will
be attempted to be executed. To make it extra clear, as long as the Avocado test runner is still in execution (that is, has
not been terminated by a system condition that it can not control), it will execute plugin’s post_tests methods.

As a concrete example, a plugin’ post_tests method would not be executed after a SIGKILL is sent to the
Avocado test runner on phases 1 through 3, because the Avocado test runner would be promptly interrupted. But, a
SIGTERM and KeyboardInterrupt sent to the Avocado test runner under phases 1 though 3 would still cause the
test runner to run post_tests (phase 4). Now, if during phase 4 a KeyboardInterrupt or SystemExit is
received, the remaining plugins’ post_tests methods will NOT be executed.

Jobscripts plugin

Avocado ships with a plugin (installed by default) that allows running scripts before and after the actual execution of
Jobs. A user can be sure that, when a given “pre” script is run, no test in that job has been run, and when the “post”
scripts are run, all the tests in a given job have already finished running.

Configuration

By default, the script directory location is:

/etc/avocado/scripts/job

Inside that directory, that is a directory for pre-job scripts:

/etc/avocado/scripts/job/pre.d

And for post-job scripts:

/etc/avocado/scripts/job/post.d

All the configuration about the Pre/Post Job Scripts are placed under the avocado.plugins.jobscripts config
section. To change the location for the pre-job scripts, your configuration should look something like this:

[plugins.jobscripts]
pre = /my/custom/directory/for/pre/job/scripts/

Accordingly, to change the location for the post-job scripts, your configuration should look something like this:

[plugins.jobscripts]
post = /my/custom/directory/for/post/scripts/

A couple of other configuration options are available under the same section:

• warn_non_existing_dir: gives warnings if the configured (or default) directory set for either pre or post
scripts do not exist

• warn_non_zero_status: gives warnings if a given script (either pre or post) exits with non-zero status

9.2. Avocado User’s Guide 65

avocado Documentation, Release 88.1

Script Execution Environment

All scripts are run in separate process with some environment variables set. These can be used in your scripts in any
way you wish:

• AVOCADO_JOB_UNIQUE_ID: the unique job-id.

• AVOCADO_JOB_STATUS: the current status of the job.

• AVOCADO_JOB_LOGDIR: the filesystem location that holds the logs and various other files for a given job run.

Note: Even though these variables should all be set, it’s a good practice for scripts to check if they’re set before using
their values. This may prevent unintended actions such as writing to the current working directory instead of to the
AVOCADO_JOB_LOGDIR if this is not set.

Finally, any failures in the Pre/Post scripts will not alter the status of the corresponding jobs.

Tests’ logs plugin

It’s natural that Avocado will be used in environments where access to the integral job results won’t be easily accessi-
ble.

For instance, on Continuous Integration (CI) services, one usually gets access to the output produced on the console,
while access to other files produced (generally called artifacts) may or may not be acessible.

For this reason, it may be helpful to simply output the logs for tests that have “interesting” outcomes, which usually
means that fail and need to be investigated.

To show the content for test that are canceled, skipped and fail, you can set on your configuration file:

[job.output.testlogs]
statuses = ["CANCEL", "SKIP", "FAIL"]

At the end of the job, a header will be printed for each test that ended with any of the statuses given, followed by the
raw content of its reespective log file.

9.2.14 Understanding the test discovery (Avocado Loaders)

In this section you can learn how tests are being discovered and how to customize this process.

Note: Some definitions here may be out of date. The current runner can still be using some of these definitions in
its design, however, we are working on an improved version of the runner, the NextRunner that will use an alternative
strategy.

Test Loaders

A Test Loader is an Avocado component that is responsible for discovering tests that Avocado can run. In the process,
Avocado gathers enough information to allow the test to be run. Additionally, Avocado collects extra information
available within the test, such as tags that can be used to filter out tests from actual execution.

This whole process is, unless otherwise stated or manually configured, safe, in the sense that no test code will be
executed.

66 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

How Loaders discover tests

Avocado will apply ordering to the discovery process, so loaders that run earlier, will have higher precedence in
discovering tests.

A loader implementation is free to implement whatever logic it needs to discover tests. The important fact about how a
loader discover tests is that it should return one or more “test factory”, an internal data structure that, as stated before,
contains enough information to allow the test to be executed.

The order of test loaders

As described in previous sections, Avocado supports different types of test starting with SIMPLE tests, which are
simply executable files, the basic Python unittest and tests called INSTRUMENTED.

With additional plugins new test types can be supported, like the avocado-vt ones, which uses complex matrix of tests
from config files that don’t directly map to existing files.

Given the number of loaders, the mapping from test names on the command line to executed tests might not always be
unique. Additionally some people might always (or for given run) want to execute only tests of a single type.

To adjust this behavior you can either tweak plugins.loaders in avocado settings (/etc/avocado/), or tem-
porarily using --loaders (option of avocado run) option.

This option allows you to specify order and some params of the available test loaders. You can specify either
loader_name (file), loader_name + TEST_TYPE (file.SIMPLE) and for some loaders even additional params
passed after : (external:/bin/echo -e. You can also supply @DEFAULT, which injects into that position all
the remaining unused loaders.

Example of how --loaders affects the produced tests (manually gathered as some of them result in error):

$ avocado run passtest.py boot this_does_not_exist /bin/echo
> INSTRUMENTED passtest.py:PassTest.test
> VT io-github-autotest-qemu.boot
> MISSING this_does_not_exist
> SIMPLE /bin/echo

$ avocado run passtest.py boot this_does_not_exist /bin/echo --loaders @DEFAULT
→˓"external:/bin/echo -e"

> INSTRUMENTED passtest.py:PassTest.test
> VT io-github-autotest-qemu.boot
> EXTERNAL this_does_not_exist
> SIMPLE /bin/echo

$ avocado run passtest.py boot this_does_not_exist /bin/echo --loaders file.SIMPLE
→˓file.INSTRUMENTED @DEFAULT external.EXTERNAL:/bin/echo

> INSTRUMENTED passtest.py:PassTest.test
> VT io-github-autotest-qemu.boot
> EXTERNAL this_does_not_exist
> SIMPLE /bin/echo

Test References

A Test Reference is a string that can be resolved into (interpreted as) one or more tests by the Avocado Test Resolver.

Each resolver (a.k.a. loader) can handle the Test References differently. For example, External Loader will use the
Test Reference as an argument for the external command, while the File Loader will expect a file path.

9.2. Avocado User’s Guide 67

avocado Documentation, Release 88.1

If you don’t specify the loader that you want to use, all of the available loaders will be used to resolve the provided
Test References. One by one, the Test References will be resolved by the first loader able to create a test list out of
that reference.

Basic Avocado Loaders

Below you can find some extra details about the specific builtin Avocado loaders. For Loaders introduced to Avocado
via plugins (VT, Robot, . . .), please refer to the corresponding loader/plugin documentation.

File Loader

For the File Loader, the loader responsible for discovering INSTRUMENTED, PyUNITTEST (classic python
unittests) and SIMPLE tests.

If the file corresponds to an INSTRUMENTED or PyUNITTEST test, you can filter the Test IDs by adding to the Test
Reference a : followed by a regular expression.

For instance, if you want to list all tests that are present in the gdbtest.py file, you can use the list command below:

$ avocado list examples/tests/gdbtest.py
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_start_exit
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_existing_commands_raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_existing_commands
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_run_exit_raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_run_exit
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_generate_core
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_set_multiple_break
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_disconnect_raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_disconnect
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_remote_exec
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_stream_messages
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_connect_multiple_clients
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_server_exit
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_multiple_servers
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_server_stderr
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_server_stdout
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_remote

To filter the results, listing only the tests that have test_disconnect in their test method names, you can execute:

$ avocado list examples/tests/gdbtest.py:test_disconnect
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_disconnect_raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_disconnect

As the string after the : is a regular expression, two tests were filtered in. You can manipulate the regular expression
to have only the test with that exact name:

$ avocado list examples/tests/gdbtest.py:test_disconnect$
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_disconnect

The regular expression enables you to have more complex filters. Example:

$ avocado list examples/tests/gdbtest.py:GdbTest.test_[le].*raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_existing_commands_raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_run_exit_raw

68 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Once the test reference is providing you the expected outcome, you can replace the list subcommand with the run
subcommand to execute your tests:

$ avocado run examples/tests/gdbtest.py:GdbTest.test_[le].*raw
JOB ID : 333912fb02698ed5339a400b832795a80757b8af
JOB LOG : $HOME/avocado/job-results/job-2017-06-14T14.54-333912f/job.log
(1/2) examples/tests/gdbtest.py:GdbTest.test_existing_commands_raw: PASS (0.59 s)
(2/2) examples/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_run_exit_raw: PASS
→˓(0.42 s)
RESULTS : PASS 2 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 1.15 s
JOB HTML : $HOME/avocado/job-results/job-2017-06-14T14.54-333912f/html/results.html

Warning: Specially when using regular expressions, it’s recommended to individually enclose your Test Refer-
ences in quotes to avoid bash of corrupting them. In that case, the command from the example above would be:
avocado run "examples/tests/gdbtest.py:GdbTest.test_[le].*raw"

External Loader

Using the External Loader, Avocado will consider that and External Runner will be in place and so Avocado doesn’t
really need to resolve the references. Instead, Avocado will pass the references as parameters to the External Runner.
Example:

$ avocado run 20
Unable to resolve reference(s) '20' with plugins(s) 'file', 'robot',
'vt', 'external', try running 'avocado -V list 20' to see the details.

In the command above, no loaders can resolve 20 as a test. But running the command above with the External Runner
/bin/sleep will make Avocado to actually execute /bin/sleep 20 and check for its return code:

$ avocado run 20 --loaders external:/bin/sleep
JOB ID : 42215ece2894134fb9379ee564aa00f1d1d6cb91
JOB LOG : $HOME/avocado/job-results/job-2017-06-19T11.17-42215ec/job.log
(1/1) 20: PASS (20.03 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 20.13 s
JOB HTML : $HOME/avocado/job-results/job-2017-06-19T11.17-42215ec/html/results.html

Warning: It’s safer to put your Test References at the end of the command line, after a –. That will avoid
argument vs. Test References clashes. In that case, everything after the – will be considered positional arguments,
therefore Test References. Considering that syntax, the command for the example above would be: avocado
run --loaders external:/bin/sleep -- 20

TAP Loader

This loader enables Avocado to execute binaries or scripts and parse their Test Anything Protocol output.

The tests can be run as usual:

$ avocado run --loaders tap -- ./mytaptest

9.2. Avocado User’s Guide 69

https://testanything.org

avocado Documentation, Release 88.1

Notice that you have to be explicit about the test loader you’re using, otherwise, since the test files are executable
binaries, the FileLoader will detect the file as a SIMPLE test, making the whole test suite to be executed as one
test only from the Avocado perspective. Because TAP test programs should exit with a zero exit status, this will cause
the test to pass even if there are failures.

9.2.15 Advanced usage

Test Runner Selection

To effectively run a job with tests, Avocado makes use of a well described and pluggable interface. This means that
users can choose (and developers can write) their own runners.

Runner choices can be seen by running avocado plugins:

...
Plugins that run test suites on a job (runners):
nrunner nrunner based implementation of job compliant runner
runner The conventional test runner

And to select a different test runner, say, nrunner:

avocado run --test-runner=nrunner ...

Wrap executables run by tests

Avocado allows the instrumentation of executables being run by a test in a transparent way. The user specifies a script
(“the wrapper”) to be used to run the actual program called by the test.

If the instrumentation script is implemented correctly, it should not interfere with the test behavior. That is, the wrapper
should avoid changing the return status, standard output and standard error messages of the original executable.

The user can be specific about which program to wrap (with a shell-like glob), or if that is omitted, a global wrapper
that will apply to all programs called by the test.

Usage

This feature is implemented as a plugin, that adds the –wrapper option to the Avocado run command. For a detailed
explanation, please consult the Avocado man page.

Example of a transparent way of running strace as a wrapper:

#!/bin/sh
exec strace -ff -o $AVOCADO_TEST_LOGDIR/strace.log -- $@

This example file is available at examples/wrappers/strace.sh.

To have all programs started by test.py wrapped with ~/bin/my-wrapper.sh:

$ avocado run --wrapper ~/bin/my-wrapper.sh tests/test.py

To have only my-binary wrapped with ~/bin/my-wrapper.sh:

$ avocado run --wrapper ~/bin/my-wrapper.sh:*my-binary tests/test.py

The following is a working example:

70 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

$ avocado run --wrapper examples/wrappers/strace.sh /bin/true

The strace file will be located at Avocado log directory, on test-results/1-_bin_true/ subdirectory.

Caveats

• It is not possible to debug with GDB (–gdb-run-bin) and use wrappers (–wrapper) at the same time. These two
options are mutually exclusive.

• You can only set one (global) wrapper. If you need functionality present in two wrappers, you have to combine
those into a single wrapper script.

• Only executables that are run with the avocado.utils.process APIs (and other API modules that make
use of it, like mod:avocado.utils.build) are affected by this feature.

9.2.16 What’s next?

Now that you are familiar with the basic concepts and Avocado usage, you can write your tests.

As said before, you can write test on your favorite language. But if you would like to use the Avocado libraries and
facilities, you can use Python or Bash.

If you would like to move forward on Avocado, we prepared the “Avocado Test Writer’s Guide” for you. Have fun!

9.3 Avocado Test Writer’s Guide

9.3.1 Writing a Simple Test

This very simple example of simple test written in shell script:

$ echo '#!/bin/bash' > /tmp/simple_test.sh
$ echo 'exit 0' >> /tmp/simple_test.sh
$ chmod +x /tmp/simple_test.sh

Notice that the file is given executable permissions, which is a requirement for Avocado to treat it as a simple test.
Also notice that the script exits with status code 0, which signals a successful result to Avocado.

9.3.2 Writing Avocado Tests with Python

We are going to write an Avocado test in Python and we are going to inherit from avocado.Test. This makes this
test a so-called instrumented test.

Basic example

Let’s re-create an old time favorite, sleeptest1. It is so simple, it does nothing besides sleeping for a while:

1 sleeptest is a functional test for Avocado. It’s “old” because we also have had such a test for Autotest for a long time.

9.3. Avocado Test Writer’s Guide 71

http://autotest.github.io

avocado Documentation, Release 88.1

import time

from avocado import Test

class SleepTest(Test):

def test(self):
sleep_length = self.params.get('sleep_length', default=1)
self.log.debug("Sleeping for %.2f seconds", sleep_length)
time.sleep(sleep_length)

This is about the simplest test you can write for Avocado, while still leveraging its API power.

As can be seen in the example above, an Avocado test is a method that starts with test in a class that inherits from
avocado.Test.

Multiple tests and naming conventions

You can have multiple tests in a single class.

To do so, just give the methods names that start with test, say test_foo, test_bar and so on. We recommend
you follow this naming style, as defined in the PEP8 Function Names section.

For the class name, you can pick any name you like, but we also recommend that it follows the CamelCase convention,
also known as CapWords, defined in the PEP 8 document under Class Names.

Convenience Attributes

Note that the test class provides you with a number of convenience attributes:

• A ready to use log mechanism for your test, that can be accessed by means of self.log. It lets you log debug,
info, error and warning messages.

• A parameter passing system (and fetching system) that can be accessed by means of self.params. This is
hooked to the Varianter, about which you can find that more information at Test parameters.

• And many more (see avocado.core.test.Test)

To minimize the accidental clashes we define the public ones as properties so if you see something like
AttributeError: can't set attribute double you are not overriding these.

Test statuses

Avocado supports the most common exit statuses:

• PASS - test passed, there were no untreated exceptions

• WARN - a variant of PASS that keeps track of noteworthy events that ultimately do not affect the test outcome.
An example could be soft lockup present in the dmesg output. It’s not related to the test results and unless
there are failures in the test it means the feature probably works as expected, but there were certain condition
which might be nice to review. (some result plugins does not support this and report PASS instead)

• SKIP - the test’s pre-requisites were not satisfied and the test’s body was not executed (nor its setUp() and
tearDown).

• CANCEL - the test was canceled somewhere during the setUp(), the test method or the tearDown(). The
setUp() and tearDown methods are executed.

72 Chapter 9. Build and Quality Status

https://www.python.org/dev/peps/pep-0008/#function-names
https://www.python.org/dev/peps/pep-0008/

avocado Documentation, Release 88.1

• FAIL - test did not result in the expected outcome. A failure points at a (possible) bug in the tested subject, and
not in the test itself. When the test (and its) execution breaks, an ERROR and not a FAIL is reported.”

• ERROR - this points (probably) at a bug in the test itself, and not in the subject being tested.It is usually caused
by uncaught exception and such failures needs to be thoroughly explored and should lead to test modification to
avoid this failure or to use self.fail along with description how the subject under testing failed to perform
it’s task.

• INTERRUPTED - this result can’t be set by the test writer, it is only possible when the timeout is reached or
when the user hits CTRL+C while executing this test.

• other - there are some other internal test statuses, but you should not ever face them.

As you can see the FAIL is a neat status, if tests are developed correctly. When writing tests always think about what
its setUp should be, what the test body and is expected to go wrong in the test. To support you Avocado supports
several methods:

Test methods

The simplest way to set the status is to use self.fail, self.error or self.cancel directly from test.

To remember a warning, one simply writes to self.log.warning logger. This won’t interrupt the test execution,
but it will remember the condition and, if there are no failures, will report the test as WARN.

Turning errors into failures

Errors on Python code are commonly signaled in the form of exceptions being thrown. When Avocado runs a test, any
unhandled exception will be seen as a test ERROR, and not as a FAIL.

Still, it’s common to rely on libraries, which usually raise custom (or builtin) exceptions. Those exceptions would
normally result in ERROR but if you are certain this is an odd behavior of the object under testing, you should catch
the exception and explain the failure in self.fail method:

try:
process.run("stress_my_feature")

except process.CmdError as details:
self.fail("The stress comamnd failed: %s" % details)

If your test compounds of many executions and you can’t get this exception in other case then expected failure, you
can simplify the code by using fail_on decorator:

@avocado.fail_on(process.CmdError)
def test(self):

process.run("first cmd")
process.run("second cmd")
process.run("third cmd")

Once again, keeping your tests up-to-date and distinguishing between FAIL and ERROR will save you a lot of time
while reviewing the test results.

Turning errors into cancels

It is also possible to assume unhandled exception to be as a test CANCEL instead of a test ERROR simply by using
cancel_on decorator:

9.3. Avocado Test Writer’s Guide 73

avocado Documentation, Release 88.1

def test(self):
@avocado.cancel_on(TypeError)
def foo():

raise TypeError
foo()

Saving test generated (custom) data

Each test instance provides a so called whiteboard. It can be accessed through self.whiteboard. This white-
board is simply a string that will be automatically saved to test results after the test finishes (it’s not synced during the
execution so when the machine or Python crashes badly it might not be present and one should use direct io to the
outputdir for critical data). If you choose to save binary data to the whiteboard, it’s your responsibility to encode
it first (base64 is the obvious choice).

Building on the previously demonstrated sleeptest, suppose that you want to save the sleep length to be used by
some other script or data analysis tool:

def test(self):
sleep_length = self.params.get('sleep_length', default=1)
self.log.debug("Sleeping for %.2f seconds", sleep_length)
time.sleep(sleep_length)
self.whiteboard = "%.2f" % sleep_length

The whiteboard can and should be exposed by files generated by the available test result plugins. The results.
json file already includes the whiteboard for each test. Additionally, we’ll save a raw copy of the whiteboard contents
on a file $RESULTS/test-results/$TEST_ID/whiteboard, for your convenience (maybe you want to use
the result of a benchmark directly with your custom made scripts to analyze that particular benchmark result).

If you need to attach several output files, you can also use self.outputdir, which points to the $RESULTS/
test-results/$TEST_ID/data location and is reserved for arbitrary test result data.

Accessing test data files

Some tests can depend on data files, external to the test file itself. Avocado provides a test API that makes it really
easy to access such files: get_data().

For Avocado tests (that is, INSTRUMENTED tests) get_data() allows test data files to be accessed from up to three
sources:

• file level data directory: a directory named after the test file, but ending with .data. For a test file /home/
user/test.py, the file level data directory is /home/user/test.py.data/.

• test level data directory: a directory named after the test file and the specific test name. These are useful
when different tests part of the same file need different data files (with the same name or not). Considering
the previous example of /home/user/test.py, and supposing it contains two tests, MyTest.test_foo
and MyTest.test_bar, the test level data directories will be, /home/user/test.py.data/MyTest.
test_foo/ and home/user/test.py.data/MyTest.test_bar/ respectively.

• variant level data directory: if variants are being used during the test execution, a directory named after the
variant will also be considered when looking for test data files. For test file /home/user/test.py, and test
MyTest.test_foo, with variant debug-ffff, the data directory path will be /home/user/test.py.
data/MyTest.test_foo/debug-ffff/.

74 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Note: Unlike INSTRUMENTED tests, SIMPLE tests only define file and variant data_dirs, therefore the
most-specific data-dir might look like /bin/echo.data/debug-ffff/.

Avocado looks for data files in the order defined at DATA_SOURCES, which are from most specific one, to most
generic one. That means that, if a variant is being used, the variant directory is used first. Then the test level
directory is attempted, and finally the file level directory. Additionally you can use get_data(filename,
must_exist=False) to get expected location of a possibly non-existing file, which is useful when you intend
to create it.

Tip: When running tests you can use the --log-test-data-directories command line option log the test
data directories that will be used for that specific test and execution conditions (such as with or without variants). Look
for “Test data directories” in the test logs.

Note: The previously existing API avocado.core.test.Test.datadir, used to allow access to the data
directory based on the test file location only. This API has been removed. If, for whatever reason you still
need to access the data directory based on the test file location only, you can use get_data(filename='',
source='file', must_exist=False) instead.

Accessing test parameters

Each test has a set of parameters that can be accessed through self.params.get($name, $path=None,
$default=None) where:

• name - name of the parameter (key)

• path - where to look for this parameter (when not specified uses mux-path)

• default - what to return when param not found

The path is a bit tricky. Avocado uses tree to represent parameters. In simple scenarios you don’t need to worry and
you’ll find all your values in default path, but eventually you might want to check-out Test parameters to understand
the details.

Let’s say your test receives following params (you’ll learn how to execute them in the following section):

$ avocado variants -m examples/tests/sleeptenmin.py.data/sleeptenmin.yaml --variants 2
...
Variant 1: /run/sleeptenmin/builtin, /run/variants/one_cycle

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

...

In test you can access those params by:

self.params.get("sleep_method") # returns "builtin"
self.params.get("sleep_cycles", '*', 10) # returns 1
self.params.get("sleep_length", "/*/variants/*" # returns 600

Note: The path is important in complex scenarios where clashes might occur, because when there are multiple values
with the same key matching the query Avocado raises an exception. As mentioned you can avoid those by using

9.3. Avocado Test Writer’s Guide 75

avocado Documentation, Release 88.1

specific paths or by defining custom mux-path which allows specifying resolving hierarchy. More details can be found
in Test parameters.

Running multiple variants of tests

In the previous section we described how parameters are handled. Now, let’s have a look at how to produce them and
execute your tests with different parameters.

The variants subsystem is what allows the creation of multiple variations of parameters, and the execution of tests with
those parameter variations. This subsystem is pluggable, so you might use custom plugins to produce variants. To
keep things simple, let’s use Avocado’s primary implementation, called “yaml_to_mux”.

The “yaml_to_mux” plugin accepts YAML files. Those will create a tree-like structure, store the variables as parame-
ters and use custom tags to mark locations as “multiplex” domains.

Let’s use examples/tests/sleeptenmin.py.data/sleeptenmin.yaml file as an example:

sleeptenmin: !mux
builtin:

sleep_method: builtin
shell:

sleep_method: shell
variants: !mux

one_cycle:
sleep_cycles: 1
sleep_length: 600

six_cycles:
sleep_cycles: 6
sleep_length: 100

one_hundred_cycles:
sleep_cycles: 100
sleep_length: 6

six_hundred_cycles:
sleep_cycles: 600
sleep_length: 1

Which produces following structure and parameters:

$ avocado variants -m examples/tests/sleeptenmin.py.data/sleeptenmin.yaml --summary 2
→˓--variants 2
Multiplex tree representation:

run
sleeptenmin

builtin
→ sleep_method: builtin

shell
→ sleep_method: shell

variants
one_cycle

→ sleep_length: 600
→ sleep_cycles: 1

six_cycles
→ sleep_length: 100
→ sleep_cycles: 6

one_hundred_cycles
→ sleep_length: 6

(continues on next page)

76 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

→ sleep_cycles: 100
six_hundred_cycles

→ sleep_length: 1
→ sleep_cycles: 600

Multiplex variants (8):

Variant builtin-one_cycle-f659: /run/sleeptenmin/builtin, /run/variants/one_cycle
/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

Variant builtin-six_cycles-723b: /run/sleeptenmin/builtin, /run/variants/six_cycles
/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/six_cycles:sleep_cycles => 6
/run/variants/six_cycles:sleep_length => 100

Variant builtin-one_hundred_cycles-633a: /run/sleeptenmin/builtin, /run/variants/
→˓one_hundred_cycles

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_hundred_cycles:sleep_cycles => 100
/run/variants/one_hundred_cycles:sleep_length => 6

Variant builtin-six_hundred_cycles-a570: /run/sleeptenmin/builtin, /run/variants/
→˓six_hundred_cycles

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/six_hundred_cycles:sleep_cycles => 600
/run/variants/six_hundred_cycles:sleep_length => 1

Variant shell-one_cycle-55f5: /run/sleeptenmin/shell, /run/variants/one_cycle
/run/sleeptenmin/shell:sleep_method => shell
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

Variant shell-six_cycles-9e23: /run/sleeptenmin/shell, /run/variants/six_cycles
/run/sleeptenmin/shell:sleep_method => shell
/run/variants/six_cycles:sleep_cycles => 6
/run/variants/six_cycles:sleep_length => 100

Variant shell-one_hundred_cycles-586f: /run/sleeptenmin/shell, /run/variants/one_
→˓hundred_cycles

/run/sleeptenmin/shell:sleep_method => shell
/run/variants/one_hundred_cycles:sleep_cycles => 100
/run/variants/one_hundred_cycles:sleep_length => 6

Variant shell-six_hundred_cycles-1e84: /run/sleeptenmin/shell, /run/variants/six_
→˓hundred_cycles

/run/sleeptenmin/shell:sleep_method => shell
/run/variants/six_hundred_cycles:sleep_cycles => 600
/run/variants/six_hundred_cycles:sleep_length => 1

You can see that it creates all possible variants of each multiplex domain, which are defined by !mux tag in the
YAML file and displayed as single lines in tree view (compare to double lines which are individual nodes with values).
In total it’ll produce 8 variants of each test:

$ avocado run --mux-yaml examples/tests/sleeptenmin.py.data/sleeptenmin.yaml --
→˓passtest.py

(continues on next page)

9.3. Avocado Test Writer’s Guide 77

avocado Documentation, Release 88.1

(continued from previous page)

JOB ID : cc7ef22654c683b73174af6f97bc385da5a0f02f
JOB LOG : $HOME/avocado/job-results/job-2017-01-22T11.26-cc7ef22/job.log
(1/8) passtest.py:PassTest.test;builtin-one_cycle-f659: PASS (0.01 s)
(2/8) passtest.py:PassTest.test;builtin-six_cycles-723b: PASS (0.01 s)
(3/8) passtest.py:PassTest.test;builtin-one_hundred_cycles-633a: PASS (0.01 s)
(4/8) passtest.py:PassTest.test;builtin-six_hundred_cycles-a570: PASS (0.01 s)
(5/8) passtest.py:PassTest.test;shell-one_cycle-55f5: PASS (0.01 s)
(6/8) passtest.py:PassTest.test;shell-six_cycles-9e23: PASS (0.01 s)
(7/8) passtest.py:PassTest.test;shell-one_hundred_cycles-586f: PASS (0.01 s)
(8/8) passtest.py:PassTest.test;shell-six_hundred_cycles-1e84: PASS (0.01 s)

RESULTS : PASS 8 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.16 s

There are other options to influence the params so please check out avocado run -h and for details use Test
parameters.

unittest.TestCase heritage

Since an Avocado test inherits from unittest.TestCase, you can use all the assertion methods that its parent.

The code example bellow uses assertEqual, assertTrue and assertIsInstace:

from avocado import Test

class RandomExamples(Test):
def test(self):

self.log.debug("Verifying some random math...")
four = 2 * 2
four_ = 2 + 2
self.assertEqual(four, four_, "something is very wrong here!")

self.log.debug("Verifying if a variable is set to True...")
variable = True
self.assertTrue(variable)

self.log.debug("Verifying if this test is an instance of test.Test")
self.assertIsInstance(self, test.Test)

Running tests under other unittest runners

nose is another Python testing framework that is also compatible with unittest.

Because of that, you can run Avocado tests with the nosetests application:

$ nosetests examples/tests/sleeptest.py
.
--
Ran 1 test in 1.004s

OK

Conversely, you can also use the standard unittest.main() entry point to run an Avocado test. Check out the
following code, to be saved as dummy.py:

78 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertTrue
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsInstance
https://nose.readthedocs.org/
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.main

avocado Documentation, Release 88.1

from avocado import Test
from unittest import main

class Dummy(Test):
def test(self):

self.assertTrue(True)

if __name__ == '__main__':
main()

It can be run by:

$ python dummy.py
.
--
Ran 1 test in 0.000s

OK

But we’d still recommend using avocado.main instead which is our main entry point.

Setup and cleanup methods

To perform setup actions before/after your test, you may use setUp and tearDown methods. The tearDown
method is always executed even on setUp failure so don’t forget to initialize your variables early in the setUp.
Example of usage is in the next section Running third party test suites.

Running third party test suites

It is very common in test automation workloads to use test suites developed by third parties. By wrapping the execution
code inside an Avocado test module, you gain access to the facilities and API provided by the framework. Let’s say
you want to pick up a test suite written in C that it is in a tarball, uncompress it, compile the suite code, and then
executing the test. Here’s an example that does that:

#!/usr/bin/env python

import os

from avocado import Test
from avocado.utils import archive, build, process

class SyncTest(Test):

"""
Execute the synctest test suite.

:param sync_tarball: path to the tarball relative to a data directory
:param default_symbols: whether to build with debug symbols (bool)
:param sync_length: how many data should by used in sync test
:param sync_loop: how many writes should be executed in sync test
"""

def setUp(self):
"""

(continues on next page)

9.3. Avocado Test Writer’s Guide 79

avocado Documentation, Release 88.1

(continued from previous page)

Build the synctest suite.
"""
self.cwd = os.getcwd()
sync_tarball = self.params.get('sync_tarball', '*', 'synctest.tar.bz2')
tarball_path = self.get_data(sync_tarball)
if tarball_path is None:

self.cancel('Test is missing data file %s' % tarball_path)
archive.extract(tarball_path, self.workdir)
srcdir = os.path.join(self.workdir, 'synctest')
os.chdir(srcdir)
if self.params.get('debug_symbols', default=True):

build.make(srcdir,
env={'CFLAGS': '-g -O0'},
extra_args='synctest',
allow_output_check='none')

else:
build.make(srcdir,

allow_output_check='none')

def test(self):
"""
Execute synctest with the appropriate params.
"""
path = os.path.join(os.getcwd(), 'synctest')
cmd = ('%s %s %s' %

(path, self.params.get('sync_length', default=100),
self.params.get('sync_loop', default=10)))

process.system(cmd)
os.chdir(self.cwd)

Here we have an example of the setUp method in action: Here we get the location of the test suite code (tarball)
through avocado.Test.get_data(), then uncompress the tarball through avocado.utils.archive.
extract(), an API that will decompress the suite tarball, followed by avocado.utils.build.make(), that
will build the suite.

In this example, the test method just gets into the base directory of the compiled suite and executes the ./
synctest command, with appropriate parameters, using avocado.utils.process.system().

Fetching asset files

To run third party test suites as mentioned above, or for any other purpose, we offer an asset fetcher as a method
of Avocado Test class. The asset fetch method looks for a list of directories in the cache_dirs key, inside the
[datadir.paths] section from the configuration files. Read-only directories are also supported. When the asset
file is not present in any of the provided directories, Avocado will try to download the file from the provided locations,
copying it to the first writable cache directory. Example:

cache_dirs = ['/usr/local/src/', '~/avocado/data/cache']

In the example above, /usr/local/src/ is a read-only directory. In that case, when Avocado needs to fetch the
asset from the locations, the asset will be copied to the ~/avocado/data/cache directory.

If the tester does not provide a cache_dirs for the test execution, Avocado creates a cache directory inside the
Avocado data_dir location to put the fetched files in.

• Use case 1: no cache_dirs key in config files, only the asset name provided in the full URL format:

80 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

...
def setUp(self):

stress = 'https://fossies.org/linux/privat/stress-1.0.4.tar.gz'
tarball = self.fetch_asset(stress)
archive.extract(tarball, self.workdir)

...

In this case, fetch_asset() will download the file from the URL provided, copying it to the $data_dir/
cache directory. The fetch_asset() method returns the target location of the fetched asset. In this exam-
ple, the tarball variable holds /home/user/avocado/data/cache/stress-1.0.4.tar.gz.

• Use case 2: Read-only cache directory provided. cache_dirs = ['/mnt/files']:

...
def setUp(self):

stress = 'https://fossies.org/linux/privat/stress-1.0.4.tar.gz'
tarball = self.fetch_asset(stress)
archive.extract(tarball, self.workdir)

...

In this case, Avocado tries to find stress-1.0.4.tar.gz file in /mnt/files directory. If it’s not found,
since /mnt/files cache is read-only, Avocado tries to download the asset file to the $data_dir/cache
directory.

• Use case 3: Writable cache directory provided, along with a list of locations. Use of the default cache directory,
cache_dirs = ['~/avocado/data/cache']:

...
def setUp(self):

st_name = 'stress-1.0.4.tar.gz'
st_hash = 'e1533bc704928ba6e26a362452e6db8fd58b1f0b'
st_loc = ['https://fossies.org/linux/privat/stress-1.0.4.tar.gz',

'ftp://foo.bar/stress-1.0.4.tar.gz']
tarball = self.fetch_asset(st_name, asset_hash=st_hash,

locations=st_loc)
archive.extract(tarball, self.workdir)

...

In this case, Avocado tries to download stress-1.0.4.tar.gz from the provided locations list (if it’s not
already in the default cache, ~/avocado/data/cache). As the hash was also provided, Avocado verifies
the hash. To do so, Avocado first looks for a hash file named stress-1.0.4.tar.gz.CHECKSUM in the
same directory. If the hash file is not available, Avocado computes the hash and creates the hash file for later
use.

The resulting tarball variable content will be ~/avocado/cache/stress-1.0.4.tar.gz. An ex-
ception is raised if Avocado fails to download or to verify the file.

• Use case 4: Low bandwidth available for download of a large file which takes a lot of time to download and
causes a CI, like Travis, for example, to timeout the test execution. Do not cancel the test if the file is not
available:

...
def setUp(self):

st_name = 'stress-1.0.4.tar.gz'
st_hash = 'e1533bc704928ba6e26a362452e6db8fd58b1f0b'
st_loc = ['https://fossies.org/linux/privat/stress-1.0.4.tar.gz',

'ftp://foo.bar/stress-1.0.4.tar.gz']
tarball = self.fetch_asset(st_name, asset_hash=st_hash,

(continues on next page)

9.3. Avocado Test Writer’s Guide 81

avocado Documentation, Release 88.1

(continued from previous page)

locations=st_loc, find_only=True)
archive.extract(tarball, self.workdir)

...

Setting the find_only parameter to True will make Avocado look for the asset in the cache, but will not
attempt to download it if the asset is not available. The asset download can be done prior to the test execution
using the command-line avocado assets fetch INSTRUMENTED.

In this example, if the asset is not available in the cache, the test will continue to run and when the test tries to
use the asset, it will fail. A solution for that is presented in the next use case.

• Use case 5: Low bandwidth available for download or a large file which takes a lot of time to download and
causes a CI, like Travis, for example, to timeout the test execution. Cancel the test if the file is not available:

...
def setUp(self):

st_name = 'stress-1.0.4.tar.gz'
st_hash = 'e1533bc704928ba6e26a362452e6db8fd58b1f0b'
st_loc = ['https://fossies.org/linux/privat/stress-1.0.4.tar.gz',

'ftp://foo.bar/stress-1.0.4.tar.gz']
tarball = self.fetch_asset(st_name, asset_hash=st_hash,

locations=st_loc, find_only=True,
cancel_on_missing=True)

archive.extract(tarball, self.workdir)
...

With cancel_on_missing set to True and find_only set to True, if the file is not available in the
cache, the test is canceled.

Detailing the fetch_asset() parameters:

• name: The destination name used to the fetched file. It can also contains a full URI. The URI will be used as
the location (after searching into the cache directories).

• asset_hash: (optional) The expected hash for the file. If missing, Avocado skips the hash check. If provided,
before computing the hash, Avocado looks for a hash file to verify the asset. If the hash file is not available,
Avocado computes the hash and creates the hash file in the same cache directory for later use.

• algorithm: (optional) Provided hash algorithm format. Defaults to sha1.

• locations: (optional) List of locations used to try to fetch the file. The supported schemes are http://,
https://, ftp:// and file://. The tester should inform the full url to the file, including the file name.
The first fetch success skips the next locations. Notice that for file:// Avocado creates a symbolic link in
the cache directory, pointing to the original location of the file.

• expire: (optional) period while a cached file is considered valid. After that period, the file will be downloaded
again. The value can be an integer or a string containing the time and the unit. Example: ‘10d’ (ten days). Valid
units are s (second), m (minute), h (hour) and d (day).

• find_only: (optional) tries to find the asset in the cache. If the asset file is not available in the cache,
Avocado will not attempt to download it.

• cancel_on_missing (optional) if set to True, cancel the current running test if there is a problem while
downloading the asset or if find_only=True and the asset is not available in the cache.

The expected return of the method is the asset file path or an exception.

82 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Test Output Check and Output Record Mode

In a lot of occasions, you want to go simpler: just check if the output of a given test matches an expected output. In
order to help with this common use case, Avocado provides the --output-check-record option:

--output-check-record {none,stdout,stderr,both,combined,all}
Record the output produced by each test (from stdout
and stderr) into both the current executing result and
into reference files. Reference files are used on
subsequent runs to determine if the test produced the
expected output or not, and the current executing
result is used to check against a previously recorded
reference file. Valid values: 'none' (to explicitly
disable all recording) 'stdout' (to record standard
output *only*), 'stderr' (to record standard error

only), 'both' (to record standard output and error
in separate files), 'combined' (for standard output
and error in a single file). 'all' is also a valid but
deprecated option that is a synonym of 'both'.

If this option is used, Avocado will store the content generated by the test in the standard (POSIX) streams, that is,
STDOUT and STDERR. Depending on the option chosen, you may end up with different files recorded (into what we
call “reference files”):

• stdout will produce a file named stdout.expected with the contents from the test process standard
output stream (file descriptor 1)

• stderr will produce a file named stderr.expected with the contents from the test process standard error
stream (file descriptor 2)

• both will produce both a file named stdout.expected and a file named stderr.expected

• combined: will produce a single file named output.expected, with the content from both test process
standard output and error streams (file descriptors 1 and 2)

• none will explicitly disable all recording of test generated output and the generation reference files with that
content

The reference files will be recorded in the first (most specific) test’s data dir (Accessing test data files). Let’s take
as an example the test synctest.py. In a fresh checkout of the Avocado source code you can find the following
reference files:

examples/tests/synctest.py.data/stderr.expected
examples/tests/synctest.py.data/stdout.expected

From those 2 files, only stdout.expected has some content:

$ cat examples/tests/synctest.py.data/stdout.expected
PAR : waiting
PASS : sync interrupted

This means that during a previous test execution, output was recorded with option --output-check-record
both and content was generated on the STDOUT stream only:

$ avocado run --output-check-record both synctest.py
JOB ID : b6306504351b037fa304885c0baa923710f34f4a
JOB LOG : $JOB_RESULTS_DIR/job-2017-11-26T16.42-b630650/job.log
(1/1) examples/tests/synctest.py:SyncTest.test: PASS (2.03 s)

(continues on next page)

9.3. Avocado Test Writer’s Guide 83

avocado Documentation, Release 88.1

(continued from previous page)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 2.26 s

After the reference files are added, the check process is transparent, in the sense that you do not need to provide special
flags to the test runner. From this point on, after such as test (one with a reference file recorded) has finished running,
Avocado will check if the output generated match the reference(s) file(s) content. If they don’t match, the test will
finish with a FAIL status.

You can disable this automatic check when a reference file exists by passing --disable-output-check to the
test runner.

Tip: The avocado.utils.process APIs have a parameter called allow_output_check that let you indi-
vidually select the output that will be part of the test output and recorded reference files. Some other APIs built on top
of avocado.utils.process, such as the ones in avocado.utils.build also provide the same parameter.

This process works fine also with simple tests, which are programs or shell scripts that returns 0 (PASSed) or != 0
(FAILed). Let’s consider our bogus example:

$ cat output_check.sh
#!/bin/bash
echo "Hello, world!"

Let’s record the output for this one:

$ avocado run output_check.sh --output-check-record all
JOB ID : 25c4244dda71d0570b7f849319cd71fe1722be8b
JOB LOG : $HOME/avocado/job-results/job-2014-09-25T20.49-25c4244/job.log
(1/1) output_check.sh: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s

After this is done, you’ll notice that the test data directory appeared in the same level of our shell script, containing 2
files:

$ ls output_check.sh.data/
stderr.expected stdout.expected

Let’s look what’s in each of them:

$ cat output_check.sh.data/stdout.expected
Hello, world!
$ cat output_check.sh.data/stderr.expected
$

Now, every time this test runs, it’ll take into account the expected files that were recorded, no need to do anything else
but run the test. Let’s see what happens if we change the stdout.expected file contents to Hello, Avocado!:

$ avocado run output_check.sh
JOB ID : f0521e524face93019d7cb99c5765aedd933cb2e
JOB LOG : $HOME/avocado/job-results/job-2014-09-25T20.52-f0521e5/job.log
(1/1) output_check.sh: FAIL (0.02 s)

RESULTS : PASS 0 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.12 s

Verifying the failure reason:

84 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

$ cat $HOME/avocado/job-results/latest/job.log
2017-10-16 14:23:02,567 test L0381 INFO | START 1-output_check.sh
2017-10-16 14:23:02,568 test L0402 DEBUG| Test metadata:
2017-10-16 14:23:02,568 test L0403 DEBUG| filename: $HOME/output_

→˓check.sh
2017-10-16 14:23:02,596 process L0389 INFO | Running '$HOME/output_check.

→˓sh'
2017-10-16 14:23:02,603 process L0499 INFO | Command '$HOME/output_check.

→˓sh' finished with 0 after 0.00131011009216s
2017-10-16 14:23:02,602 process L0479 DEBUG| [stdout] Hello, world!
2017-10-16 14:23:02,603 test L1084 INFO | Exit status: 0
2017-10-16 14:23:02,604 test L1085 INFO | Duration: 0.00131011009216
2017-10-16 14:23:02,604 test L0274 DEBUG| DATA (filename=stdout.

→˓expected) => $HOME/output_check.sh.data/stdout.expected (found at file source dir)
2017-10-16 14:23:02,605 test L0740 DEBUG| Stdout Diff:
2017-10-16 14:23:02,605 test L0742 DEBUG| --- $HOME/output_check.sh.

→˓data/stdout.expected
2017-10-16 14:23:02,605 test L0742 DEBUG| +++ $HOME/avocado/job-

→˓results/job-2017-10-16T14.23-8cba866/test-results/1-output_check.sh/stdout
2017-10-16 14:23:02,605 test L0742 DEBUG| @@ -1 +1 @@
2017-10-16 14:23:02,605 test L0742 DEBUG| -Hello, Avocado!
2017-10-16 14:23:02,605 test L0742 DEBUG| +Hello, world!
2017-10-16 14:23:02,606 stacktrace L0041 ERROR|
2017-10-16 14:23:02,606 stacktrace L0044 ERROR| Reproduced traceback from:

→˓$HOME/git/avocado/avocado/core/test.py:872
2017-10-16 14:23:02,606 stacktrace L0047 ERROR| Traceback (most recent call

→˓last):
2017-10-16 14:23:02,606 stacktrace L0047 ERROR| File "$HOME/git/avocado/

→˓avocado/core/test.py", line 743, in _check_reference_stdout
2017-10-16 14:23:02,606 stacktrace L0047 ERROR| self.fail('Actual test

→˓sdtout differs from expected one')
2017-10-16 14:23:02,606 stacktrace L0047 ERROR| File "$HOME//git/avocado/

→˓avocado/core/test.py", line 983, in fail
2017-10-16 14:23:02,607 stacktrace L0047 ERROR| raise exceptions.

→˓TestFail(message)
2017-10-16 14:23:02,607 stacktrace L0047 ERROR| TestFail: Actual test

→˓sdtout differs from expected one
2017-10-16 14:23:02,607 stacktrace L0048 ERROR|
2017-10-16 14:23:02,607 test L0274 DEBUG| DATA (filename=stderr.

→˓expected) => $HOME//output_check.sh.data/stderr.expected (found at file source dir)
2017-10-16 14:23:02,608 test L0965 ERROR| FAIL 1-output_check.sh ->

→˓TestFail: Actual test sdtout differs from expected one

As expected, the test failed because we changed its expectations, so an unified diff was logged. The unified diffs are
also present in the files stdout.diff and stderr.diff, present in the test results directory:

$ cat $HOME/avocado/job-results/latest/test-results/1-output_check.sh/stdout.diff
--- $HOME/output_check.sh.data/stdout.expected
+++ $HOME/avocado/job-results/job-2017-10-16T14.23-8cba866/test-results/1-output_
→˓check.sh/stdout
@@ -1 +1 @@
-Hello, Avocado!
+Hello, world!

Note: Currently the stdout, stderr and output files are stored in text mode. Data that can not be decoded according
to current locale settings, will be replaced according to https://docs.python.org/3/library/codecs.html#codecs.replace_

9.3. Avocado Test Writer’s Guide 85

https://docs.python.org/3/library/codecs.html#codecs.replace_errors
https://docs.python.org/3/library/codecs.html#codecs.replace_errors

avocado Documentation, Release 88.1

errors.

Test log, stdout and stderr in native Avocado modules

If needed, you can write directly to the expected stdout and stderr files from the native test scope. It is important to
make the distinction between the following entities:

• The test logs

• The test expected stdout

• The test expected stderr

The first one is used for debugging and informational purposes. Additionally writing to self.log.warning causes test to
be marked as dirty and when everything else goes well the test ends with WARN. This means that the test passed but
there were non-related unexpected situations described in warning log.

You may log something into the test logs using the methods in avocado.Test.log class attributes. Consider the
example:

class output_test(Test):

def test(self):
self.log.info('This goes to the log and it is only informational')
self.log.warn('Oh, something unexpected, non-critical happened, '

'but we can continue.')
self.log.error('Describe the error here and don't forget to raise '

'an exception yourself. Writing to self.log.error '
'won't do that for you.')

self.log.debug('Everybody look, I had a good lunch today...')

If you need to write directly to the test stdout and stderr streams, Avocado makes two preconfigured loggers available
for that purpose, named avocado.test.stdout and avocado.test.stderr. You can use Python’s standard
logging API to write to them. Example:

import logging

class output_test(Test):

def test(self):
stdout = logging.getLogger('avocado.test.stdout')
stdout.info('Informational line that will go to stdout')
...
stderr = logging.getLogger('avocado.test.stderr')
stderr.info('Informational line that will go to stderr')

Avocado will automatically save anything a test generates on STDOUT into a stdout file, to be found at the test
results directory. The same applies to anything a test generates on STDERR, that is, it will be saved into a stderr
file at the same location.

Additionally, when using the runner’s output recording features, namely the --output-check-record argu-
ment with values stdout, stderr or all, everything given to those loggers will be saved to the files stdout.
expected and stderr.expected at the test’s data directory (which is different from the job/test results direc-
tory).

86 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/codecs.html#codecs.replace_errors
https://docs.python.org/3/library/codecs.html#codecs.replace_errors

avocado Documentation, Release 88.1

Setting a Test Timeout

Sometimes your test suite/test might get stuck forever, and this might impact your test grid. You can account for that
possibility and set up a timeout parameter for your test. The test timeout can be set through the test parameters, as
shown below.

sleep_length: 5
timeout: 3

$ avocado run sleeptest.py --mux-yaml /tmp/sleeptest-example.yaml
JOB ID : c78464bde9072a0b5601157989a99f0ba32a288e
JOB LOG : $HOME/avocado/job-results/job-2016-11-02T11.13-c78464b/job.log
(1/1) sleeptest.py:SleepTest.test: INTERRUPTED (3.04 s)

RESULTS : PASS 0 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 1
JOB TIME : 3.14 s
JOB HTML : $HOME/avocado/job-results/job-2016-11-02T11.13-c78464b/html/results.html

$ cat $HOME/avocado/job-results/job-2016-11-02T11.13-c78464b/job.log
2016-11-02 11:13:01,133 job L0384 INFO | Multiplex tree representation:
2016-11-02 11:13:01,133 job L0386 INFO | \-- run
2016-11-02 11:13:01,133 job L0386 INFO | -> sleep_length: 5
2016-11-02 11:13:01,133 job L0386 INFO | -> timeout: 3
2016-11-02 11:13:01,133 job L0387 INFO |
2016-11-02 11:13:01,134 job L0391 INFO | Temporary dir: /var/tmp/avocado_
→˓PqDEyC
2016-11-02 11:13:01,134 job L0392 INFO |
2016-11-02 11:13:01,134 job L0399 INFO | Variant 1: /run
2016-11-02 11:13:01,134 job L0402 INFO |
2016-11-02 11:13:01,134 job L0311 INFO | Job ID:
→˓c78464bde9072a0b5601157989a99f0ba32a288e
2016-11-02 11:13:01,134 job L0314 INFO |
2016-11-02 11:13:01,345 sysinfo L0107 DEBUG| Not logging /proc/pci (file
→˓does not exist)
2016-11-02 11:13:01,351 sysinfo L0105 DEBUG| Not logging /proc/slabinfo
→˓(lack of permissions)
2016-11-02 11:13:01,355 sysinfo L0107 DEBUG| Not logging /sys/kernel/debug/
→˓sched_features (file does not exist)
2016-11-02 11:13:01,388 sysinfo L0388 INFO | Commands configured by file: /
→˓etc/avocado/sysinfo/commands
2016-11-02 11:13:01,388 sysinfo L0399 INFO | Files configured by file: /etc/
→˓avocado/sysinfo/files
2016-11-02 11:13:01,388 sysinfo L0419 INFO | Profilers configured by file: /
→˓etc/avocado/sysinfo/profilers
2016-11-02 11:13:01,388 sysinfo L0427 INFO | Profiler disabled
2016-11-02 11:13:01,394 multiplexer L0166 DEBUG| PARAMS (key=timeout, path=*,
→˓default=None) => 3
2016-11-02 11:13:01,395 test L0216 INFO | START 1-sleeptest.py:SleepTest.
→˓test
2016-11-02 11:13:01,396 multiplexer L0166 DEBUG| PARAMS (key=sleep_length,
→˓path=*, default=1) => 5
2016-11-02 11:13:01,396 sleeptest L0022 DEBUG| Sleeping for 5.00 seconds
2016-11-02 11:13:04,411 stacktrace L0038 ERROR|
2016-11-02 11:13:04,412 stacktrace L0041 ERROR| Reproduced traceback from:
→˓$HOME/src/avocado/avocado/core/test.py:454
2016-11-02 11:13:04,412 stacktrace L0044 ERROR| Traceback (most recent call
→˓last):
2016-11-02 11:13:04,413 stacktrace L0044 ERROR| File "/usr/share/doc/avocado/
→˓tests/sleeptest.py", line 23, in test (continues on next page)

9.3. Avocado Test Writer’s Guide 87

avocado Documentation, Release 88.1

(continued from previous page)

2016-11-02 11:13:04,413 stacktrace L0044 ERROR| time.sleep(sleep_length)
2016-11-02 11:13:04,413 stacktrace L0044 ERROR| File "$HOME/src/avocado/
→˓avocado/core/runner.py", line 293, in sigterm_handler
2016-11-02 11:13:04,413 stacktrace L0044 ERROR| raise SystemExit("Test
→˓interrupted by SIGTERM")
2016-11-02 11:13:04,414 stacktrace L0044 ERROR| SystemExit: Test interrupted by
→˓SIGTERM
2016-11-02 11:13:04,414 stacktrace L0045 ERROR|
2016-11-02 11:13:04,414 test L0459 DEBUG| Local variables:
2016-11-02 11:13:04,440 test L0462 DEBUG| -> self <class 'sleeptest.
→˓SleepTest'>: 1-sleeptest.py:SleepTest.test
2016-11-02 11:13:04,440 test L0462 DEBUG| -> sleep_length <type 'int'>: 5
2016-11-02 11:13:04,440 test L0592 ERROR| ERROR 1-sleeptest.py:SleepTest.
→˓test -> TestError: SystemExit('Test interrupted by SIGTERM',): Test interrupted by
→˓SIGTERM

The YAML file defines a test parameter timeout which overrides the default test timeout before the runner ends the
test forcefully by sending a class:signal.SIGTERM to the test, making it raise a avocado.core.exceptions.
TestTimeoutError.

Skipping Tests

To skip tests is in Avocado, you must use one of the Avocado skip decorators:

• avocado.skip(): Skips a test.

• avocado.skipIf(): Skips a test if the condition is True.

• avocado.skipUnless(): Skips a test if the condition is False

Those decorators can be used with classes and both setUp() method and/or and in the test*() methods. The test
below:

import avocado

class MyTest(avocado.Test):

@avocado.skipIf(1 == 1, 'Skipping on True condition.')
def test1(self):

pass

@avocado.skip("Don't want this test now.")
def test2(self):

pass

@avocado.skipUnless(1 == 1, 'Skipping on False condition.')
def test3(self):

pass

Will produce the following result:

$ avocado run test_skip_decorators.py
JOB ID : 59c815f6a42269daeaf1e5b93e52269fb8a78119
JOB LOG : $HOME/avocado/job-results/job-2017-02-03T17.41-59c815f/job.log
(1/3) test_skip_decorators.py:MyTest.test1: SKIP
(2/3) test_skip_decorators.py:MyTest.test2: SKIP
(3/3) test_skip_decorators.py:MyTest.test3: PASS (0.02 s)

(continues on next page)

88 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 2 | WARN 0 | INTERRUPT 0
JOB TIME : 0.13 s
JOB HTML : $HOME/avocado/job-results/job-2017-02-03T17.41-59c815f/html/results.html

Notice the test3 was not skipped because the provided condition was not False.

Using the skip decorators, nothing is actually executed. We will skip the setUp() method, the test method and the
tearDown() method.

Note: It’s an erroneous condition, reported with test status ERROR, to use any of the skip decorators on the
tearDown() method.

Advanced Conditionals

More advanced use cases may require to evaluate the condition for skipping tests later, and may also need to introspect
into the class that contains the test method in question.

It’s possible to achieve both by supplying a callable to the condition parameters instead. The following example does
just that:

from avocado import Test, skipIf, skipUnless

class BaseTest(Test):
"""Base class for tests

:avocado: disable
"""

SUPPORTED_ENVS = []

@skipUnless(lambda x: 'BARE_METAL' in x.SUPPORTED_ENVS,
'Bare metal environment is required')

def test_bare_metal(self):
pass

@skipIf(lambda x: getattr(x, 'MEMORY', 0) < 4096,
'Not enough memory for test')

def test_large_memory(self):
pass

@skipUnless(lambda x: 'VIRTUAL_MACHINE' in x.SUPPORTED_ENVS,
'Virtual Machine environment is required')

def test_nested_virtualization(self):
pass

@skipUnless(lambda x: 'CONTAINER' in x.SUPPORTED_ENVS,
'Container environment is required')

def test_container(self):
pass

class BareMetal(BaseTest):

(continues on next page)

9.3. Avocado Test Writer’s Guide 89

avocado Documentation, Release 88.1

(continued from previous page)

SUPPORTED_ENVS = ['BARE_METAL']
MEMORY = 2048

def test_specific(self):
pass

class NonBareMetal(BaseTest):

SUPPORTED_ENVS = ['VIRTUAL_MACHINE', 'CONTAINER']

def test_specific(self):
pass

Even though the conditions for skipping tests are defined in the BaseTest class, the conditions will be evaluated
when the tests are actually checked for execution, in the BareMetal and NonBareMetal classes. The result of
running that test is:

JOB ID : 77d636c93ed3b5e6fef9c7b6c8d9fe0c84af1518
JOB LOG : $HOME/avocado/job-results/job-2021-03-17T20.10-77d636c/job.log
(01/10) skip_conditional.py:BareMetal.test_specific: PASS (0.00 s)
(02/10) skip_conditional.py:BareMetal.test_bare_metal: PASS (0.00 s)
(03/10) skip_conditional.py:BareMetal.test_large_memory: SKIP: Not enough memory for
→˓test
(04/10) skip_conditional.py:BareMetal.test_nested_virtualization: SKIP: Virtual
→˓Machine environment is required
(05/10) skip_conditional.py:BareMetal.test_container: SKIP: Container environment is
→˓required
(06/10) skip_conditional.py:NonBareMetal.test_specific: PASS (0.00 s)
(07/10) skip_conditional.py:NonBareMetal.test_bare_metal: SKIP: Bare metal
→˓environment is required
(08/10) skip_conditional.py:NonBareMetal.test_large_memory: SKIP: Not enough memory
→˓for test
(09/10) skip_conditional.py:NonBareMetal.test_nested_virtualization: PASS (0.00 s)
(10/10) skip_conditional.py:NonBareMetal.test_container: PASS (0.00 s)

RESULTS : PASS 5 | ERROR 0 | FAIL 0 | SKIP 5 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB HTML : $HOME/avocado/job-results/job-2021-03-17T20.10-77d636c/results.html
JOB TIME : 0.82 s

Canceling Tests

You can cancel a test calling self.cancel() at any phase of the test (setUp(), test method or tearDown()). Test will finish
with CANCEL status and will not make the Job to exit with a non-0 status. Example:

from avocado import Test

from avocado.utils.process import run
from avocado.utils.software_manager import SoftwareManager

class CancelTest(Test):

"""
Example tests that cancel the current test from inside the test.
"""

(continues on next page)

90 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

def setUp(self):
sm = SoftwareManager()
self.pkgs = sm.list_all(software_components=False)

def test_iperf(self):
if 'iperf-2.0.8-6.fc25.x86_64' not in self.pkgs:

self.cancel('iperf is not installed or wrong version')
self.assertIn('pthreads',

run('iperf -v', ignore_status=True).stderr)

def test_gcc(self):
if 'gcc-6.3.1-1.fc25.x86_64' not in self.pkgs:

self.cancel('gcc is not installed or wrong version')
self.assertIn('enable-gnu-indirect-function',

run('gcc -v', ignore_status=True).stderr)

In a system missing the iperf package but with gcc installed in the correct version, the result will be:

$ avocado run cancel_test.py
JOB ID : 39c1f120830b9769b42f5f70b6b7bad0b1b1f09f
JOB LOG : $HOME/avocado/job-results/job-2017-03-10T16.22-39c1f12/job.log
(1/2) /home/apahim/avocado/tests/test_cancel.py:CancelTest.test_iperf: CANCEL (1.15
→˓s)
(2/2) /home/apahim/avocado/tests/test_cancel.py:CancelTest.test_gcc: PASS (1.13 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 1
JOB TIME : 2.38 s
JOB HTML : $HOME/avocado/job-results/job-2017-03-10T16.22-39c1f12/html/results.html

Notice that using the self.cancel() will cancel the rest of the test from that point on, but the tearDown() will
still be executed.

Depending on the result format you’re referring to, the CANCEL status is mapped to a corresponding valid status in
that format. See the table below:

Format Corresponding Status
json cancel
xunit skipped
tap ok
html CANCEL (warning)

Docstring Directives

Some Avocado features, usually only available to instrumented tests, depend on setting directives on the test’s class
docstring. A docstring directive is composed of a marker (a literal :avocado: string), followed by the custom
content itself, such as :avocado: directive.

This is similar to docstring directives such as :param my_param: description and shouldn’t be a surprise
to most Python developers.

The reason Avocado uses those docstring directives (instead of real Python code) is that the inspection done while
looking for tests does not involve any execution of code.

For a detailed explanation about what makes a docstring format valid or not, please refer to our section on Docstring
Directives Rules.

9.3. Avocado Test Writer’s Guide 91

avocado Documentation, Release 88.1

Now let’s follow with some docstring directives examples.

Declaring test as NOT-INSTRUMENTED

In order to say this class is not an Avocado instrumented test, one can use :avocado: disable directive. The
result is that this class itself is not discovered as an instrumented test, but children classes might inherit it’s test*
methods (useful for base-classes):

from avocado import Test

class BaseClass(Test):
"""
:avocado: disable
"""
def test_shared(self):

pass

class SpecificTests(BaseClass):
def test_specific(self):

pass

Results in:

$ avocado list test.py
INSTRUMENTED test.py:SpecificTests.test_specific
INSTRUMENTED test.py:SpecificTests.test_shared

The test.py:BaseBase.test is not discovered due the tag while the test.py:SpecificTests.
test_shared is inherited from the base-class.

Declaring test as INSTRUMENTED

The :avocado: enable tag might be useful when you want to override that this is an INSTRUMENTED test,
even though it is not inherited from avocado.Test class and/or when you want to only limit the test* methods
discovery to the current class:

from avocado import Test

class NotInheritedFromTest:
"""
:avocado: enable
"""
def test(self):

pass

class BaseClass(Test):
"""
:avocado: disable
"""
def test_shared(self):

pass

class SpecificTests(BaseClass):
"""
:avocado: enable

(continues on next page)

92 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

"""
def test_specific(self):

pass

Results in:

$ avocado list test.py
INSTRUMENTED test.py:NotInheritedFromTest.test
INSTRUMENTED test.py:SpecificTests.test_specific

The test.py:NotInheritedFromTest.test will not really work as it lacks several required methods, but
still is discovered as an INSTRUMENTED test due to enable tag and the SpecificTests only looks at it’s
test* methods, ignoring the inheritance, therefor the test.py:SpecificTests.test_shared will not be
discovered.

(Deprecated) enabling recursive discovery

The :avocado: recursive tag was used to enable recursive discovery, but nowadays this is the default. By
using this tag one explicitly sets the class as INSTRUMENTED, therefor inheritance from avocado.Test is not required.

Categorizing tests

Avocado allows tests to be given tags, which can be used to create test categories. With tags set, users can select a
subset of the tests found by the test resolver (also known as test loader).

To make this feature easier to grasp, let’s work with an example: a single Python source code file, named perf.py,
that contains both disk and network performance tests:

from avocado import Test

class Disk(Test):

"""
Disk performance tests

:avocado: tags=disk,slow,superuser,unsafe
"""

def test_device(self):
device = self.params.get('device', default='/dev/vdb')
self.whiteboard = measure_write_to_disk(device)

class Network(Test):

"""
Network performance tests

:avocado: tags=net,fast,safe
"""

def test_latency(self):
self.whiteboard = measure_latency()

(continues on next page)

9.3. Avocado Test Writer’s Guide 93

avocado Documentation, Release 88.1

(continued from previous page)

def test_throughput(self):
self.whiteboard = measure_throughput()

class Idle(Test):

"""
Idle tests
"""

def test_idle(self):
self.whiteboard = "test achieved nothing"

Warning: All docstring directives in Avocado require a strict format, that is, :avocado: followed by one
or more spaces, and then followed by a single value with no white spaces in between. This means that an
attempt to write a docstring directive like :avocado: tags=foo, bar will be interpreted as :avocado:
tags=foo,.

Test tags can be applied to test classes and to test methods. Tags are evaluated per method, meaning that the class tags
will be inherited by all methods, being merged with method local tags. Example:

from avocado import Test

class MyClass(Test):
"""
:avocado: tags=furious
"""

def test1(self):
"""
:avocado: tags=fast
"""
pass

def test2(self):
"""
:avocado: tags=slow
"""
pass

If you use the tag furious, all tests will be included:

$ avocado list furious_tests.py --filter-by-tags=furious
INSTRUMENTED test_tags.py:MyClass.test1
INSTRUMENTED test_tags.py:MyClass.test2

But using fast and furious will include only test1:

$ avocado list furious_tests.py --filter-by-tags=fast,furious
INSTRUMENTED test_tags.py:MyClass.test1

94 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Python unittest Compatibility Limitations And Caveats

When executing tests, Avocado uses different techniques than most other Python unittest runners. This brings some
compatibility limitations that Avocado users should be aware.

Execution Model

One of the main differences is a consequence of the Avocado design decision that tests should be self contained and
isolated from other tests. Additionally, the Avocado test runner runs each test in a separate process.

If you have a unittest class with many test methods and run them using most test runners, you’ll find that all test
methods run under the same process. To check that behavior you could add to your setUp method:

def setUp(self):
print("PID: %s", os.getpid())

If you run the same test under Avocado, you’ll find that each test is run on a separate process.

Class Level setUp and tearDown

Because of Avocado’s test execution model (each test is run on a separate process), it doesn’t make sense to support
unittest’s unittest.TestCase.setUpClass() and unittest.TestCase.tearDownClass(). Test
classes are freshly instantiated for each test, so it’s pointless to run code in those methods, since they’re supposed
to keep class state between tests.

The setUp method is the only place in Avocado where you are allowed to call the skip method, given that, if a test
started to be executed, by definition it can’t be skipped anymore. Avocado will do its best to enforce this boundary,
so that if you use skip outside setUp, the test upon execution will be marked with the ERROR status, and the error
message will instruct you to fix your test’s code.

If you require a common setup to a number of tests, the current recommended approach is to to write regular setUp
and tearDown code that checks if a given state was already set. One example for such a test that requires a binary
installed by a package:

from avocado import Test

from avocado.utils import software_manager
from avocado.utils import path as utils_path
from avocado.utils import process

class BinSleep(Test):

"""
Sleeps using the /bin/sleep binary
"""
def setUp(self):

self.sleep = None
try:

self.sleep = utils_path.find_command('sleep')
except utils_path.CmdNotFoundError:

software_manager.install_distro_packages({'fedora': ['coreutils']})
self.sleep = utils_path.find_command('sleep')

(continues on next page)

9.3. Avocado Test Writer’s Guide 95

https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUpClass
https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDownClass
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown

avocado Documentation, Release 88.1

(continued from previous page)

def test(self):
process.run("%s 1" % self.sleep)

If your test setup is some kind of action that will last across processes, like the installation of a software package given
in the previous example, you’re pretty much covered here.

If you need to keep other type of data a class across test executions, you’ll have to resort to saving and restoring the
data from an outside source (say a “pickle” file). Finding and using a reliable and safe location for saving such data is
currently not in the Avocado supported use cases.

Environment Variables for Tests

Avocado exports some information, including test parameters, as environment variables to the running test.

While these variables are available to all tests, they are usually more interesting to SIMPLE tests. The reason is that
SIMPLE tests can not make direct use of Avocado API. INSTRUMENTED tests will usually have more powerful
ways, to access the same information.

Here is a list of the variables that Avocado currently exports to tests:

Environment
Variable

Meaning Example

AVO-
CADO_VERSION

Version of Avocado test runner 0.12.0

AVO-
CADO_TEST_BASEDIR

Base directory of Avocado tests $HOME/Downloads/avocado-
source/avocado

AVO-
CADO_TEST_WORKDIR

Work directory for the test /var/tmp/avocado_Bjr_rd/my_test.sh

AVO-
CADO_TESTS_COMMON_TMPDIR

Temporary directory created by the teststmpdir
plugin. The directory is persistent throughout
the tests in the same Job

/var/tmp/avocado_XhEdo/

AVO-
CADO_TEST_LOGDIR

Log directory for the test $HOME/logs/job-results/job-
2014-09-16T14.38-ac332e6/test-
results/$HOME/my_test.sh.1

AVO-
CADO_TEST_LOGFILE

Log file for the test $HOME/logs/job-results/job-
2014-09-16T14.38-ac332e6/test-
results/$HOME/my_test.sh.1/debug.log

AVO-
CADO_TEST_OUTPUTDIR

Output directory for the test $HOME/logs/job-results/job-
2014-09-16T14.38-ac332e6/test-
results/$HOME/my_test.sh.1/data

AVO-
CADO_TEST_SYSINFODIR

The system information directory $HOME/logs/job-results/job-
2014-09-16T14.38-ac332e6/test-
results/$HOME/my_test.sh.1/sysinfo

*** All variables from –mux-yaml TIMEOUT=60; IO_WORKERS=10;
VM_BYTES=512M; . . .

Warning: AVOCADO_TEST_SRCDIR was present in earlier versions, but has been deprecated on version 60.0,
and removed on version 62.0. Please use AVOCADO_TEST_WORKDIR instead.

96 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Warning: AVOCADO_TEST_DATADIR was present in earlier versions, but has been deprecated on version 60.0,
and removed on version 62.0. The test data files (and directories) are now dynamically evaluated and are not
available as environment variables

SIMPLE Tests BASH extensions

SIMPLE tests written in shell can use a few Avocado utilities. In your shell code, check if the libraries are available
with something like:

AVOCADO_SHELL_EXTENSIONS_DIR=$(avocado exec-path 2>/dev/null)

And if available, injects that directory containing those utilities into the PATH used by the shell, making those utilities
readily accessible:

if [$? == 0]; then
PATH=$AVOCADO_SHELL_EXTENSIONS_DIR:$PATH

fi

For a full list of utilities, take a look into at the directory return by avocado exec-path (if any). Also, the example
test examples/tests/simplewarning.sh can serve as further inspiration.

Tip: These extensions may be available as a separate package. For RPM packages, look for the bash sub-package.

SIMPLE Tests Status

With SIMPLE tests, Avocado checks the exit code of the test to determine whether the test PASSed or FAILed.

If your test exits with exit code 0 but you still want to set a different test status in some conditions, Avocado can search
a given regular expression in the test outputs and, based on that, set the status to WARN or SKIP.

To use that feature, you have to set the proper keys in the configuration file. For instance, to set the test status to SKIP
when the test outputs a line like this: ‘11:08:24 Test Skipped’:

[simpletests.output]
skip_regex = ^\d\d:\d\d:\d\d Test Skipped$

That configuration will make Avocado to search the Python Regular Expression on both stdout and stderr. If you want
to limit the search for only one of them, there’s another key for that configuration, resulting in:

[simpletests.output]
skip_regex = ^\d\d:\d\d:\d\d Test Skipped$
skip_location = stderr

The equivalent settings can be present for the WARN status. For instance, if you want to set the test status to WARN
when the test outputs a line starting with string WARNING:, the configuration file will look like this:

[simpletests.output]
skip_regex = ^\d\d:\d\d:\d\d Test Skipped$
skip_location = stderr
warn_regex = ^WARNING:
warn_location = all

9.3. Avocado Test Writer’s Guide 97

http://docs.python.org/2.7/howto/regex.html

avocado Documentation, Release 88.1

Job Cleanup

It’s possible to register a callback function that will be called when all the tests have finished running. This effectively
allows for a test job to clean some state it may have left behind.

At the moment, this feature is not intended to be used by test writers, but it’s seen as a feature for Avocado extensions
to make use.

To register a callback function, your code should put a message in a very specific format in the “runner queue”. The
Avocado test runner code will understand that this message contains a (serialized) function that will be called once all
tests finish running.

Example:

from avocado import Test

def my_cleanup(path_to_file):
if os.path.exists(path_to_file):

os.unlink(path_to_file)

class MyCustomTest(Test):
...

cleanup_file = '/tmp/my-custom-state'
self.runner_queue.put({"func_at_exit": self.my_cleanup,

"args": (cleanup_file),
"once": True})

...

This results in the my_cleanup function being called with positional argument cleanup_file.

Because once was set to True, only one unique combination of function, positional arguments and keyword argu-
ments will be registered, not matter how many times they’re attempted to be registered. For more information check
avocado.utils.data_structures.CallbackRegister.register().

Docstring Directives Rules

Avocado INSTRUMENTED tests, those written in Python and using the avocado.Test API, can make use of
special directives specified as docstrings.

To be considered valid, the docstring must match this pattern: avocado.core.safeloader.
DOCSTRING_DIRECTIVE_RE_RAW .

An Avocado docstring directive has two parts:

1) The marker, which is the literal string :avocado:.

2) The content, a string that follows the marker, separated by at least one white space or tab.

The following is a list of rules that makes a docstring directive be a valid one:

• It should start with :avocado:, which is the docstring directive “marker”

• At least one whitespace or tab must follow the marker and precede the docstring directive “content”

• The “content”, which follows the marker and the space, must begin with an alphanumeric character, that is,
characters within “a-z”, “A-Z” or “0-9”.

• After at least one alphanumeric character, the content may contain the following special symbols too: _, ,, =
and :.

• An end of string (or end of line) must immediately follow the content.

98 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Signal Handlers

Avocado normal operation is related to run code written by users/test-writers. It means the test code can carry its own
handlers for different signals or even ignore then. Still, as the code is being executed by Avocado, we have to make
sure we will finish all the subprocesses we create before ending our execution.

Signals sent to the Avocado main process will be handled as follows:

• SIGSTP/Ctrl+Z: On SIGSTP, Avocado will pause the execution of the subprocesses, while the main process
will still be running, respecting the timeout timer and waiting for the subprocesses to finish. A new SIGSTP
will make the subprocesses to resume the execution.

• SIGINT/Ctrl+C: This signal will be forwarded to the test process and Avocado will wait until it’s finished. If
the test process does not finish after receiving a SIGINT, user can send a second SIGINT (after the 2 seconds
ignore period). The second SIGINT will make Avocado to send a SIGKILL to the whole subprocess tree and
then complete the main process execution.

• SIGTERM: This signal will make Avocado to terminate immediately. A SIGKILL will be sent to the whole
subprocess tree and the main process will exit without completing the execution. Notice that it’s a best-effort
attempt, meaning that in case of fork-bomb, newly created processes might still be left behind.

Wrap Up

We recommend you take a look at the example tests present in the examples/tests directory, that contains a
few samples to take some inspiration from. That directory, besides containing examples, is also used by the Av-
ocado self test suite to do functional testing of Avocado itself. Although one can inspire in https://github.com/
avocado-framework-tests where people are allowed to share their basic system tests.

It is also recommended that you take a look at the Test APIs. for more possibilities.

9.3.3 Advanced logging capabilities

Avocado provides advanced logging capabilities at test run time. These can be combined with the standard Python
library APIs on tests.

One common example is the need to follow specific progress on longer or more complex tests. Let’s look at a very
simple test example, but one multiple clear stages on a single test:

import logging
import time

from avocado import Test

progress_log = logging.getLogger("progress")

class Plant(Test):

def test_plant_organic(self):
rows = int(self.params.get("rows", default=3))

Preparing soil
for row in range(rows):

progress_log.info("%s: preparing soil on row %s",
self.name, row)

Letting soil rest

(continues on next page)

9.3. Avocado Test Writer’s Guide 99

https://github.com/avocado-framework-tests
https://github.com/avocado-framework-tests

avocado Documentation, Release 88.1

(continued from previous page)

progress_log.info("%s: letting soil rest before throwing seeds",
self.name)

time.sleep(2)

Throwing seeds
for row in range(rows):

progress_log.info("%s: throwing seeds on row %s",
self.name, row)

Let them grow
progress_log.info("%s: waiting for Avocados to grow",

self.name)
time.sleep(5)

Harvest them
for row in range(rows):

progress_log.info("%s: harvesting organic avocados on row %s",
self.name, row)

From this point on, you can ask Avocado to show your logging stream, either exclusively or in addition to other builtin
streams:

$ avocado --show app,progress run plant.py

The outcome should be similar to:

JOB ID : af786f86db530bff26cd6a92c36e99bedcdca95b
JOB LOG : /home/cleber/avocado/job-results/job-2016-03-18T10.29-af786f8/job.log
(1/1) plant.py:Plant.test_plant_organic: progress: 1-plant.py:Plant.test_plant_
→˓organic: preparing soil on row 0
progress: 1-plant.py:Plant.test_plant_organic: preparing soil on row 1
progress: 1-plant.py:Plant.test_plant_organic: preparing soil on row 2
progress: 1-plant.py:Plant.test_plant_organic: letting soil rest before throwing seeds
-progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 0
progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 1
progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 2
progress: 1-plant.py:Plant.test_plant_organic: waiting for Avocados to grow
\progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 0
progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 1
progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 2
PASS (7.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 7.11 s
JOB HTML : /home/cleber/avocado/job-results/job-2016-03-18T10.29-af786f8/html/
→˓results.html

The custom progress stream is combined with the application output, which may or may not suit your needs or
preferences. If you want the progress stream to be sent to a separate file, both for clarity and for persistence, you
can run Avocado like this:

$ avocado run plant.py --store-logging-stream progress

The result is that, besides all the other log files commonly generated, there will be another log file named progress.
INFO at the job results dir. During the test run, one could watch the progress with:

100 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

$ tail -f ~/avocado/job-results/latest/progress.INFO
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 0
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 1
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 2
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: letting soil rest before
→˓throwing seeds
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 0
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 1
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 2
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: waiting for Avocados to grow
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on
→˓row 0
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on
→˓row 1
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on
→˓row 2

The very same progress logger, could be used across multiple test methods and across multiple test modules. In
the example given, the test name is used to give extra context.

9.3.4 Test parameters

Note: This section describes in detail what test parameters are and how the whole variants mechanism works in Avo-
cado. If you’re interested in the basics, see Accessing test parameters or practical view by examples in Yaml_to_mux
plugin.

Avocado allows passing parameters to tests, which effectively results in several different variants of each test. These
parameters are available in (test’s) self.params and are of avocado.core.varianter.AvocadoParams
type. You can also access these parameters via the configuration dict at run.test_parameters namespace.

The data for self.params are supplied by avocado.core.varianter.Varianter which asks all regis-
tered plugins for variants or uses default when no variants are defined.

Overall picture of how the params handling works is:

+-----------+
| | // Test uses AvocadoParams, with content either from
| Test | // a variant or from the test parameters given by
| | // "--test-parameter"
+-----^-----+

|
|

+-----------+
| Runner | // iterates through tests and variants to run all
+-----^-----+ // desired combinations specified by "--execution-order".

| // if no variants are produced by varianter plugins,
| // use the test parameters given by "--test-parameter"
|

+-------------------+ provide variants +-----------------------+
	<-----------------	
Varianter API		Varianter plugins API
+-------------------+ +-----------------------+

^

(continues on next page)

9.3. Avocado Test Writer’s Guide 101

avocado Documentation, Release 88.1

(continued from previous page)

|
| // All plugins are invoked
| // in turns
|

+----------------------------+-----+
| |
| |
v v

+--------------------+ +-------------------------+
| yaml_to_mux plugin | | Other variant plugin(s) |
+-----^--------------+ +-------------------------+

|
| // yaml is parsed to MuxTree,
| // multiplexed and yields variants

+---------------------------------+
| +------------+ +--------------+ |
| | --mux-yaml | | --mux-inject | |
| +------------+ +--------------+ |
+---------------------------------+

Let’s introduce the basic keywords.

TreeNode

avocado.core.tree.TreeNode

Is a node object allowing to create tree-like structures with parent->multiple_children relations and storing params. It
can also report it’s environment, which is set of params gathered from root to this node. This is used in tests where
instead of passing the full tree only the leaf nodes are passed and their environment represents all the values of the
tree.

AvocadoParams

avocado.core.varianter.AvocadoParams

Is a “database” of params present in every (instrumented) Avocado test. It’s produced during avocado.core.
test.Test’s __init__ from a variant. It accepts a list of TreeNode objects; test name avocado.core.test.
TestID (for logging purposes) and a list of default paths (Parameter Paths).

In test it allows querying for data by using:

self.params.get($name, $path=None, $default=None)

Where:

• name - name of the parameter (key)

• path - where to look for this parameter (when not specified uses mux-path)

• default - what to return when param not found

Each variant defines a hierarchy, which is preserved so AvocadoParams follows it to return the most appropriate value
or raise Exception on error.

102 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Parameter Paths

As test params are organized in trees, it’s possible to have the same variant in several locations. When they are
produced from the same TreeNode, it’s not a problem, but when they are a different values there is no way to distinguish
which should be reported. One way is to use specific paths, when asking for params, but sometimes, usually when
combining upstream and downstream variants, we want to get our values first and fall-back to the upstream ones when
they are not found.

For example let’s say we have upstream values in /upstream/sleeptest and our values in /downstream/
sleeptest. If we asked for a value using path "*", it’d raise an exception being unable to distinguish whether we
want the value from /downstream or /upstream. We can set the parameter paths to ["/downstream/*",
"/upstream/*"] to make all relative calls (path starting with *) to first look in nodes in /downstream and if
not found look into /upstream.

More practical overview of parameter paths is in Yaml_to_mux plugin in Resolution order section.

Variant

Variant is a set of params produced by Varianter‘_s and passed to the test by the test runner as ‘‘params‘ argu-
ment. The simplest variant is None, which still produces an empty AvocadoParams. Also, the Variant can also be a
tuple(list, paths) or just the list of avocado.core.tree.TreeNode with the params.

Dumping/Loading Variants

Depending on the number of parameters, generating the Variants can be very compute intensive. As the Variants are
generated as part of the Job execution, that compute intensive task will be executed by the systems under test, causing
a possibly unwanted cpu load on those systems.

To avoid such situation, you can acquire the resulting JSON serialized variants file, generated out of the variants
computation, and load that file on the system where the Job will be executed.

There are two ways to acquire the JSON serialized variants file:

• Using the --json-variants-dump option of the avocado variants command:

$ avocado variants --mux-yaml examples/yaml_to_mux/hw/hw.yaml --json-variants-
→˓dump variants.json
...

$ file variants.json
variants.json: ASCII text, with very long lines, with no line terminators

• Getting the auto-generated JSON serialized variants file after a Avocado Job execution:

$ avocado run passtest.py --mux-yaml examples/yaml_to_mux/hw/hw.yaml
...

$ file $HOME/avocado/job-results/latest/jobdata/variants.json
$HOME/avocado/job-results/latest/jobdata/variants.json: ASCII text, with very
→˓long lines, with no line terminators

Once you have the variants.json file, you can load it on the system where the Job will take place:

$ avocado run passtest.py --json-variants-load variants.json
JOB ID : f2022736b5b89d7f4cf62353d3fb4d7e3a06f075
JOB LOG : $HOME/avocado/job-results/job-2018-02-09T14.39-f202273/job.log

(continues on next page)

9.3. Avocado Test Writer’s Guide 103

avocado Documentation, Release 88.1

(continued from previous page)

(1/6) passtest.py:PassTest.test;intel-scsi-56d0: PASS (0.04 s)
(2/6) passtest.py:PassTest.test;intel-virtio-3d4e: PASS (0.02 s)
(3/6) passtest.py:PassTest.test;amd-scsi-fa43: PASS (0.02 s)
(4/6) passtest.py:PassTest.test;amd-virtio-a59a: PASS (0.02 s)
(5/6) passtest.py:PassTest.test;arm-scsi-1c14: PASS (0.03 s)
(6/6) passtest.py:PassTest.test;arm-virtio-5ce1: PASS (0.04 s)

RESULTS : PASS 6 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.51 s
JOB HTML : $HOME/avocado/job-results/job-2018-02-09T14.39-f202273/results.html

Varianter

avocado.core.varianter.Varianter

Is an internal object which is used to interact with the variants mechanism in Avocado. It’s lifecycle is compound
of two stages. First it allows the core/plugins to inject default values, then it is parsed and only allows querying for
values, number of variants and such.

Example workflow of avocado run passtest.py -m example.yaml is:

avocado run passtest.py -m example.yaml
|
+ parser.finish -> Varianter.__init__ // dispatcher initializes all plugins
|
+ job.run_tests -> Varianter.is_parsed
|
+ job.run_tests -> Varianter.parse
| // processes default params
| // initializes the plugins
| // updates the default values
|
+ job._log_variants -> Varianter.to_str // prints the human readable

→˓representation to log
|
+ runner.run_suite -> Varianter.get_number_of_tests
|
+ runner._iter_variants -> Varianter.itertests // Yields variants

In order to allow force-updating the Varianter it supports ignore_new_data, which can be used to ignore new
data. This is used by Replay to replace the current run Varianter with the one loaded from the replayed job. The
workflow with ignore_new_data could look like this:

avocado run --replay latest -m example.yaml
|
+ replay.run -> Varianter.is_parsed
|
+ replay.run // Varianter object is replaced with the replay job's one
| // Varianter.ignore_new_data is set
|
+ job.run_tests -> Varianter.is_parsed
|
+ job._log_variants -> Varianter.to_str
|
+ runner.run_suite -> Varianter.get_number_of_tests
|
+ runner._iter_variants -> Varianter.itertests

104 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

The Varianter itself can only produce an empty variant, but it invokes all Varianter plugins and if any of them reports
variants it yields them instead of the default variant.

Test parameters

This is an Avocado core feature, that is, it’s not dependent on any varianter plugin. In fact, it’s only active when no
Varianter plugin is used and produces a valid variant.

Avocado will use those simple parameters, and will pass them to all tests in a job execution. This is done on the
command line via --test-parameter, or simply, -p. It can be given multiple times for multiple parameters.

Because Avocado parameters do not have a mechanism to define their types, test code should always consider that a
parameter value is a string, and convert it to the appropriate type.

Note: Some varianter plugins would implicitly set parameters with different data types, but given that the same test
can be used with different, or none, varianter plugins, it’s safer if the test does an explicit check or type conversion.

Because the avocado.core.varianter.AvocadoParams mandates the concept of a parameter path (a legacy
of the tree based Multiplexer) and these test parameters are flat, those test parameters are placed in the / path. This is
to ensure maximum compatibility with tests that do not choose an specific parameter location.

Varianter plugins

avocado.core.plugin_interfaces.Varianter

A plugin interface that can be used to build custom plugins which are used by Varianter to get test variants. For in-
spiration see avocado_varianter_yaml_to_mux.YamlToMux which is an optional varianter plugin. Details
about this plugin can be found here Yaml_to_mux plugin.

9.3.5 Utility Libraries

Avocado gives to you more than 40 Python utility libraries (so far), that can be found under the avocado.utils.
You can use these libraries to avoid having to write necessary routines for your tests. These are very general in nature
and can help you speed up your test development.

The utility libraries may receive incompatible changes across minor versions, but these will be done in a staged fashion.
If a given change to an utility library can cause test breakage, it will first be documented and/or deprecated, and only
on the next subsequent minor version it will actually be changed.

What this means is that upon updating to later minor versions of Avocado, you should look at the Avocado Release
Notes for changes that may impact your tests.

See also:

If you would like a detailed API reference of this libraries, please visit the “Reference API” section on the left menu.

The following pages are the documentation for some of the Avocado utilities:

Warning: TODO: Looks like the utils libraries documentation will be mainly on docstrings, right? If so, maybe
makes sense to have only documented on API reference? And any general instruction would be on module doc-
string. What you guys think?

9.3. Avocado Test Writer’s Guide 105

avocado Documentation, Release 88.1

avocado.utils.gdb

The avocado.utils.gdb APIs that allows a test to interact with GDB, including setting a executable to be run,
setting breakpoints or any other types of commands. This requires a test written with that approach and API in mind.

Tip: Even though this section describes the use of the Avocado GDB features, it’s also possible to debug some appli-
cation offline by using tools such as rr. Avocado ships with an example wrapper script (to be used with --wrapper)
for that purpose.

APIs

Avocado’s GDB module, provides three main classes that lets a test writer interact with a gdb process, a gdbserver
process and also use the GDB remote protocol for interaction with a remote target.

Please refer to avocado.utils.gdb for more information.

Example

Take a look at examples/tests/modify_variable.py test:

def test(self):
"""
Execute 'print_variable'.
"""
path = os.path.join(self.workdir, 'print_variable')
app = gdb.GDB()
app.set_file(path)
app.set_break(6)
app.run()
self.log.info("\n".join(app.read_until_break()))
app.cmd("set variable a = 0xff")
app.cmd("c")
out = "\n".join(app.read_until_break())
self.log.info(out)
app.exit()
self.assertIn("MY VARIABLE 'A' IS: ff", out)

This allows us to automate the interaction with the GDB in means of setting breakpoints, executing commands and
querying for output.

When you check the output (--show=test) you can see that despite declaring the variable as 0, ff is injected and
printed instead.

avocado.utils.vmimage

This utility provides a API to download/cache VM images (QCOW) from the official distributions repositories.

Basic Usage

Import vmimage module:

106 Chapter 9. Build and Quality Status

http://rr-project.org

avocado Documentation, Release 88.1

>>> from avocado.utils import vmimage

Get an image, which consists in an object with the path of the dowloaded/cached base image and the path of the
external snapshot created out of that base image:

>>> image = vmimage.get()
>>> image
<Image name=Fedora version=26 arch=x86_64>
>>> image.name
'Fedora'
>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-d369c285.qcow2'
>>> image.get()
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-e887c743.qcow2'
>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-e887c743.qcow2'
>>> image.version
26
>>> image.base_image
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64.qcow2'

If you provide more details about the image, the object is expected to reflect those details:

>>> image = vmimage.get(arch='aarch64')
>>> image
<Image name=FedoraSecondary version=26 arch=aarch64>
>>> image.name
'FedoraSecondary'
>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.aarch64-07b8fbda.qcow2'

>>> image = vmimage.get(version=7)
>>> image
<Image name=CentOS version=7 arch=x86_64>
>>> image.path
'/tmp/CentOS-7-x86_64-GenericCloud-1708-dd8139c5.qcow2'

Notice that, unlike the base_image attribute, the path attribute will be always different in each instance, as it
actually points to an external snapshot created out of the base image:

>>> i1 = vmimage.get()
>>> i2 = vmimage.get()
>>> i1.path == i2.path
False

Custom Image Provider

If you need your own Image Provider, you can extend the vmimage.IMAGE_PROVIDERS list, including your
provider class. For instance, using the vmimage utility in an Avocado test, we could add our own provider with:

from avocado import Test

from avocado.utils import vmimage

class MyProvider(vmimage.ImageProviderBase):
(continues on next page)

9.3. Avocado Test Writer’s Guide 107

avocado Documentation, Release 88.1

(continued from previous page)

name = 'MyDistro'

def __init__(self, version='[0-9]+', build='[0-9]+.[0-9]+',
arch=os.uname()[4]):

"""
:params version: The regular expression that represents

your distro version numbering.
:params build: The regular expression that represents

your build version numbering.
:params arch: The default architecture to look images for.
"""
super(MyProvider, self).__init__(version, build, arch)

The URL which contains a list of the distro versions
self.url_versions = 'https://dl.fedoraproject.org/pub/fedora/linux/releases/'

The URL which contains a list of distro images
self.url_images = self.url_versions + '{version}/CloudImages/{arch}/images/'

The images naming pattern
self.image_pattern = 'Fedora-Cloud-Base-{version}-{build}.{arch}.qcow2$'

class MyTest(Test):

def setUp(self):
vmimage.IMAGE_PROVIDERS.add(MyProvider)
image = vmimage.get('MyDistro')
...

def test(self):
...

Supported images

The vmimage library has no hardcoded limitations of versions or architectures that can be supported. You can use it
as you wish. This is the list of images that we tested and they work with vmimage:

Provider Version Architecture
centos 8 aarch64
centos 8 ppc64le
centos 8 x86_64
centos 7 x86_64
cirros 0.5.1 arm
cirros 0.5.1 aarch64
cirros 0.5.1 i386
cirros 0.5.1 ppc64
cirros 0.5.1 ppc64le
cirros 0.5.1 powerpc
cirros 0.5.1 x86_64
cirros 0.5.0 arm
cirros 0.5.0 aarch64

Continued on next page

108 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Table 1 – continued from previous page
Provider Version Architecture
cirros 0.5.0 i386
cirros 0.5.0 ppc64
cirros 0.5.0 ppc64le
cirros 0.5.0 powerpc
cirros 0.5.0 x86_64
cirros 0.4.0 arm
cirros 0.4.0 aarch64
cirros 0.4.0 i386
cirros 0.4.0 ppc64
cirros 0.4.0 ppc64le
cirros 0.4.0 powerpc
cirros 0.4.0 x86_64
debian 9.13.21-20210511 arm64
debian 9.13.21-20210511 amd64
debian 10.9.1-20210423 arm64
debian 10.9.1-20210423 amd64
fedora 32 aarch64
fedora 32 ppc64le
fedora 32 s390x
fedora 32 x86_64
fedora 33 aarch64
fedora 33 ppc64le
fedora 33 s390x
fedora 33 x86_64
ubuntu 18.04 aarch64
ubuntu 18.04 i386
ubuntu 18.04 ppc64el
ubuntu 18.04 s390x
ubuntu 18.04 x86_64
ubuntu 19.10 aarch64
ubuntu 19.10 i386
ubuntu 19.10 ppc64el
ubuntu 19.10 s390x
ubuntu 19.10 x86_64
opensuse 15.2 x86_64
opensuse 15.1 aarch64
opensuse 15.1 x86_64
opensuse 42.3 x86_64

9.3.6 Subclassing Avocado

Subclassing Avocado Test class to extend its features is quite straight forward and it might constitute a very useful
resource to have some shared/recurrent code hosted in your project repository.

In this section we propose an project organization that will allow you to create and install your so called sub-
framework.

Let’s use, as an example, a project called Apricot Framework. Here’s the proposed filesystem structure:

9.3. Avocado Test Writer’s Guide 109

avocado Documentation, Release 88.1

~/git/apricot (master)$ tree
.

apricot
__init__.py
test.py

README.rst
setup.py
tests

test_example.py
VERSION

• setup.py: In the setup.py it is important to specify the avocado-framework package as a dependency:

from setuptools import setup, find_packages

setup(name='apricot',
description='Apricot - Avocado SubFramwork',
version=open("VERSION", "r").read().strip(),
author='Apricot Developers',
author_email='apricot-devel@example.com',
packages=['apricot'],
include_package_data=True,
install_requires=['avocado-framework']
)

• VERSION: Version your project as you wish:

1.0

• apricot/__init__.py: Make your new test class available in your module root:

__all__ = ['ApricotTest']

from apricot.test import ApricotTest

• apricot/test.py: Here you will be basically extending the Avocado Test class with your own methods
and routines:

from avocado import Test

class ApricotTest(Test):
def setUp(self):

self.log.info("setUp() executed from Apricot")

def some_useful_method(self):
return True

• tests/test_example.py: And this is how your test will look like:

from apricot import ApricotTest

class MyTest(ApricotTest):
def test(self):

self.assertTrue(self.some_useful_method())

To (non-intrusively) install your module, use:

110 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

~/git/apricot (master)$ python setup.py develop --user
running develop
running egg_info
writing requirements to apricot.egg-info/requires.txt
writing apricot.egg-info/PKG-INFO
writing top-level names to apricot.egg-info/top_level.txt
writing dependency_links to apricot.egg-info/dependency_links.txt
reading manifest file 'apricot.egg-info/SOURCES.txt'
writing manifest file 'apricot.egg-info/SOURCES.txt'
running build_ext
Creating /home/apahim/.local/lib/python2.7/site-packages/apricot.egg-link (link to .)
apricot 1.0 is already the active version in easy-install.pth

Installed /home/apahim/git/apricot
Processing dependencies for apricot==1.0
Searching for avocado-framework==55.0
Best match: avocado-framework 55.0
avocado-framework 55.0 is already the active version in easy-install.pth

Using /home/apahim/git/avocado
Using /usr/lib/python2.7/site-packages
Searching for six==1.10.0
Best match: six 1.10.0
Adding six 1.10.0 to easy-install.pth file

Using /usr/lib/python2.7/site-packages
Searching for pbr==3.1.1
Best match: pbr 3.1.1
Adding pbr 3.1.1 to easy-install.pth file
Installing pbr script to /home/apahim/.local/bin

Using /usr/lib/python2.7/site-packages
Finished processing dependencies for apricot==1.0

And to run your test:

~/git/apricot$ avocado run tests/test_example.py
JOB ID : 02c663eb77e0ae6ce67462a398da6972791793bf
JOB LOG : $HOME/avocado/job-results/job-2017-11-16T12.44-02c663e/job.log
(1/1) tests/test_example.py:MyTest.test: PASS (0.03 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.95 s
JOB HTML : $HOME/avocado/job-results/job-2017-11-16T12.44-02c663e/results.html

9.4 Avocado Contributor’s Guide

Useful pointers on how to participate of the Avocado community and contribute.

9.4.1 Brief introduction

First of all, we would like to thank you for taking the time to contribute! We collected here useful pointers on how to
participate in the Avocado community and how to contribute.

9.4. Avocado Contributor’s Guide 111

avocado Documentation, Release 88.1

And keep in mind that our procedures and guides are far from perfection, and need constant improvements. Feel free
to propose changes to this, or any other, guide in a pull request.

Happy Hacking!

9.4.2 How can I contribute?

Note: Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed
under the GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree with: a) our code of conduct; b) that these contributions are your own (or approved by your
employer), and c) you grant a full, complete, irrevocable copyright license to all users and developers of the Avocado
project, present and future, pursuant to the license of the project.

Report a bug

If a test fails, congratulations, you have just found a bug. And If you have precise steps to reproduce, awesome! You’re
on your way to reporting a useful bug report.

Warning: TODO: Describe how to report a bug!

Suggest enhancements

Warning: TOOD: Describe how to suggest features

Contribute with code

Avocado uses Github and the Github pull request development model. You can find a primer on how to use github pull
requests here.

Every Pull Request you send will be automatically tested by Travis CI and review will take place in the Pull Request
as well.

For people who don’t like the Github development model, there is the option of sending the patches to the Mailing
List, following a workflow more traditional in Open Source development communities. The patches will be reviewed
in the Mailing List, should you opt for that. Then a maintainer will collect the patches, integrate them on a branch,
and then those patches will be submitted as a github Pull Request. This process tries to ensure that every contributed
patch goes through the CI jobs before it is considered good for inclusion.

Git workflow

• Fork the repository in github.

• Clone from your fork:

$ git clone git@github.com:<username>/avocado.git

• Enter the directory:

112 Chapter 9. Build and Quality Status

https://www.gnu.org/licenses/gpl-2.0.html
https://help.github.com/articles/using-pull-requests
https://travis-ci.org/avocado-framework/avocado

avocado Documentation, Release 88.1

$ cd avocado

• Create a remote, pointing to the upstream:

$ git remote add upstream git@github.com:avocado-framework/avocado.git

• Configure your name and e-mail in git:

$ git config --global user.name "Your Name"
$ git config --global user.email email@foo.bar

• Golden tip: never work on local branch master. Instead, create a new local branch and checkout to it:

$ git checkout -b my_new_local_branch

• Code and then commit your changes:

$ git add new-file.py
$ git commit -s
or "git commit -as" to commit all changes

See also:

Please, read our Commit Style Guide on Style Guides section manual.

• Make sure your code is working (install your version of avocado, test your change, run make check to make
sure you didn’t introduce any regressions).

• Paste the job.log file content from the previous step in a pastebin service, like fpaste.org. If you have fpaste
installed, you can simply run:

$ fpaste ~/avocado/job-results/latest/job.log

• Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

• Push your commit(s) to your fork:

$ git push origin my_new_local_branch

• Create the Pull Request on github. Add the relevant information to the Pull Request description.

• In the Pull Request discussion page, comment with the link to the job.log output/file.

• Check if your Pull Request passes the CI (travis). Your Pull Request will probably be ignored until it’s all green.

Now you’re waiting for feedback on github Pull Request page. Once you get some, join the discussion, answer the
questions, make clear if you’re going to change the code based on some review and, if not, why. Feel free to disagree
with the reviewer, they probably have different use cases and opinions, which is expected. Try describing yours and
suggest other solutions, if necessary.

New versions of your code should not be force-updated (unless explicitly requested by the code reviewer). Instead,
you should:

• Create a new branch out of your previous branch:

9.4. Avocado Contributor’s Guide 113

avocado Documentation, Release 88.1

$ git checkout my_new_local_branch
$ git checkout -b my_new_local_branch_v2

• Code, and amend the commit(s) and/or create new commits. If you have more than one commit in the PR, you
will probably need to rebase interactively to amend the right commits. git cola or git citool can be
handy here.

• Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

• Push your changes:

$ git push origin my_new_local_branch_v2

• Create a new Pull Request for this new branch. In the Pull Request description, point the previous Pull Request
and the changes the current Pull Request introduced when compared to the previous Pull Request(s).

• Close the previous Pull Request on github.

After your PR gets merged, you can sync the master branch on your local repository propagate the sync to the master
branch in your fork repository on github:

$ git checkout master
$ git pull upstream master
$ git push

From time to time, you can remove old branches to avoid pollution:

To list branches along with time reference:
$ git for-each-ref --sort='-authordate:iso8601' --format=' %(authordate:iso8601)%09
→˓%(refname)' refs/heads
To remove branches from your fork repository:
$ git push origin :my_old_branch

Code Review

Every single Pull Request in Avocado has to be reviewed by at least one other developer. All members of the core
team have permission to merge a Pull Request, but there are some conditions that have to be fulfilled before merging
the code:

• Pull Request has to pass the CI tests.

• One ‘Approved’ code review should be given.

• No explicit disapproval should be present.

Pull Requests failing in CI will not be merged, and reviews won’t be given to them until all the problems are sorted out.
In case of a weird failure, or false-negative (eg. due to too many commits in a single PR), please reach the developers
by @name/email/irc or other means.

While reviewing the code, one should:

• Verify that the code is sound and clean.

• Run the highest level of selftests per each new commit in the merge. The contrib/scripts/
avocado-check-pr.sh contrib script should simplify this step.

114 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• Verify that code works to its purpose.

• Make sure the commits organization is proper (i.e. code is well organized in atomic commits, there’s no ex-
tra/unwanted commits, . . .).

• Provide an in-line feedback with explicit questions and/or requests of improvements.

• Provide a general feedback in the review message, being explicit about what’s expected for the next Pull Request
version, if that’s the case.

When the Pull Request is approved, the reviewer will merge the code or wait for someone with merge permission to
merge it.

Using avocado-check-pr.sh

The contrib/scripts/avocado-check-pr.sh script is here to simplify the per-commit-check.
You can simply prepare the merge and initiate AVOCADO_CHECK_LEVEL=99 contrib/scripts/
avocado-check-pr.sh to run all checks per each commit between your branch and the same branch on the
origin/master (you can specify different remote origin).

Use ./contrib/scripts/avocado-check-pr.sh -h to learn more about the options. We can recommend
the following command:

$ AVOCADO_PARALLEL_CHECK=yes AVOCADO_CHECK_LEVEL=99
$./contrib/scripts/avocado-check-pr.sh -i -v

And due to PARALLEL false-negatives running in a second terminal to re-check potential failures:

$$ while :; do read AAA; python -m unittest $AAA; done

Note: Before first use you might need to create ~/.config/github_checker.ini and fill github user/token
entries (while on it you can also specify some defaults)

Share your tests

We encourage you or your company to create public Avocado tests repositories so the community can also benefit of
your tests. We will be pleased to advertise your repository here in our documentation.

List of known community and third party maintained repositories:

• https://github.com/avocado-framework-tests/avocado-misc-tests: Community maintained Avocado miscella-
neous tests repository. There you will find, among others, performance tests like lmbench, stress, cpu
tests like ebizzy and generic tests like ltp. Some of them were ported from Autotest Client Tests repository.

• https://github.com/scylladb/scylla-cluster-tests: Avocado tests for Scylla Clusters. Those tests can automatically
create a scylla cluster, some loader machines and then run operations defined by the test writers, such as database
workloads.

Documentation

Warning: TODO: Create how to contribute with documentation.

9.4. Avocado Contributor’s Guide 115

https://github.com/avocado-framework-tests/avocado-misc-tests
https://github.com/scylladb/scylla-cluster-tests

avocado Documentation, Release 88.1

9.4.3 Development environment

Attention: TODO: This section needs attention! Please, help us contributing to this document.

Warning: TODO: Needs improvment here. i.e: virtualenvs, GPG, etc.

Installing dependencies

You need to install few dependencies before start coding:

$ sudo dnf install gcc libvirt-devel

Installing in develop mode

Since version 0.31.0, our plugin system requires Setuptools entry points to be registered. If you’re hacking on Avocado
and want to use the same, possibly modified, source for running your tests and experiments, you may do so with one
additional step:

$ make develop

On POSIX systems this will create an “egg link” to your original source tree under “$HOME/.local/lib/pythonX.Y/site-
packages”. Then, on your original source tree, an “egg info” directory will be created, containing, among other things,
the Setuptools entry points mentioned before. This works like a symlink, so you only need to run this once (unless
you add a new entry-point, then you need to re-run it to make it available).

Avocado supports various plugins, which are distributed as separate projects, for example “avocado-vt”. These also
need to be deployed and “linked” in order to work properly with the Avocado from sources (installed version works
out of the box).

You can install external plugins as you wish, and/or according to the specific plugin’s maintainer recommendations.

Plugins that are developed by the Avocado team, will try to follow the same Setuptools standard for distributing the
packages. Because of that, as a facility, you can use make requirements-plugins from the main Avocado project to
install requirements of the plugins and make develop-external to install plugins in develop mode to. You just need to
set where your plugins are installed, by using the environment variable $AVOCADO_EXTERNAL_PLUGINS_PATH.
The workflow could be:

$ cd $AVOCADO_PROJECTS_DIR
$ git clone $AVOCADO_GIT
$ git clone $AVOCADO_PROJECT2
$ # Add more projects
$ cd avocado # go into the main Avocado project dir
$ make requirements-plugins
$ export AVOCADO_EXTERNAL_PLUGINS_PATH=$AVOCADO_PROJECTS_DIR
$ make develop-external

You should see the process and status of each directory.

9.4.4 Style guides

116 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Commit style guide

Write a good commit message, pointing motivation, issues that you’re addressing. Usually you should try to explain 3
points in the commit message: motivation, approach and effects:

header <- Limited to 72 characters. No period.
<- Blank line

message <- Any number of lines, limited to 72 characters per line.
<- Blank line

Reference: <- External references, one per line (issue, trello, ...)
Signed-off-by: <- Signature and acknowledgment of licensing terms when

contributing to the project (created by git commit -s)

Signing commits

Optionally you can sign the commits using GPG signatures. Doing it is simple and it helps from unauthorized code
being merged without notice.

All you need is a valid GPG signature, git configuration, slightly modified workflow to use the signature and eventually
even setup in github so one benefits from the “nice” UI.

Get a GPG signature:

Google for howto, but generally it works like this
$ gpg --gen-key # defaults are usually fine (using expiration is recommended)
$ gpg --send-keys $YOUR_KEY # to propagate the key to outer world

Enable it in git:

$ git config --global user.signingkey $YOUR_KEY

(optional) Link the key with your GH account:

1. Login to github
2. Go to settings->SSH and GPG keys
3. Add New GPG key
4. run $(gpg -a --export $YOUR_EMAIL) in shell to see your key
5. paste the key there

Use it:

You can sign commits by using '-S'
$ git commit -S
You can sign merges by using '-S'
$ git merge -S

Warning: You can not use the merge button on github to do signed merges as github does not have your private
key.

9.4. Avocado Contributor’s Guide 117

avocado Documentation, Release 88.1

Code style guide

9.4.5 Writing an Avocado plugin

What better way to understand how an Avocado plugin works than creating one? Let’s use another old time favorite
for that, the “Print hello world” theme.

Code example

Let’s say you want to write a plugin that adds a new subcommand to the test runner, hello. This is how you’d do it:

from avocado.core.output import LOG_UI
from avocado.core.plugin_interfaces import CLICmd

class HelloWorld(CLICmd):

name = 'hello'
description = 'The classical Hello World! plugin example.'

def run(self, config):
LOG_UI.info(self.description)

This plugins inherits from avocado.core.plugin_interfaces.CLICmd. This specific base class allows for
the creation of new commands for the Avocado CLI tool. The only mandatory method to be implemented is run and
it’s the plugin main entry point.

This plugin uses avocado.core.output.LOG_UI to produce the hello world output in the console.

Note: Different loggers can be used in other contexts and for different purposes. One such example is avocado.
core.output.LOG_JOB, which can be used to output to job log files when running a job.

Registering configuration options (settings)

It is usual for a plugin to allow users to do some degree of configuration based on command-line options and/or
configuration options. A plugin might change its behavior depending on a specific configuration option.

Frequently, those settings come from configuration files and, sometimes, from the command-line arguments. Like in
most UNIX-like tools, command-line options will override values defined inside the configuration files.

You, as a plugin writer, don’t need to handle this configuration by yourself. Avocado provides a common API that can
be used by plugins in order to register options and get values.

If your plugin has options available to the users, it can register it using the Settings.register_option()
method during your plugin configuration stage. The options are parsed and provided to the plugin as a config dictio-
nary.

Let’s take our Hello World example and change the message based on a “message” option:

from avocado.core.output import LOG_UI
from avocado.core.plugin_interfaces import CLICmd
from avocado.core.settings import settings

(continues on next page)

118 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

class HelloWorld(CLICmd):

name = 'hello'
description = "The classical Hello World plugin example!"

def configure(self, parser):
settings.register_option(section='hello',

key='message',
key_type=str,
default=self.description,
help_msg="Configure the message to display")

def run(self, config):
msg = config.get('hello.message')
LOG_UI.info(msg)

This registration will register a “configuration namespace” (“hello.message”) inside the configuration file only. A
namespace is a “section” (“hello”) followed by a “key” (“message”). In other words, the following entry in your
configuration file is valid and will be parsed:

[hello]
message = My custom message

As you can see in the example above, you need to set a “default” value and this value will be used if the option is not
present in the configuration file. This means that you can have a very small configuration file or even an empty one.

This is a very basic example of how to configure options inside your plugin.

Adding command-line options

Now, let’s say you would like to also allow this change via the command-line option of your plugin (if your plugin is a
command-line plugin). You need to register in any case and use the same method to connect your “option namespace”
with your command-line option.

from avocado.core.output import LOG_UI
from avocado.core.plugin_interfaces import CLICmd
from avocado.core.settings import settings

class HelloWorld(CLICmd):

name = 'hello_parser'
description = "The classical Hello World plugin example!"

def configure(self, parser):
parser = super(HelloWorld, self).configure(parser)

settings.register_option(section='hello',
key='message',
key_type=str,
default=self.description,
help_msg="Configure the message to display",
parser=parser,
long_arg='--hello-message')

(continues on next page)

9.4. Avocado Contributor’s Guide 119

avocado Documentation, Release 88.1

(continued from previous page)

def run(self, config):
msg = config.get('hello.message')
LOG_UI.info(msg)

Note: Keep in mind that not all options should have a “command-line” option. Try to keep the command-line as clean
as possible. We use command-line only for options that constantly need to change and when editing the configuration
file is not handy.

For more information about how this registration process works, visit the Settings.register_option()
method documentation.

Registering plugins

Avocado makes use of the setuptools and its entry points to register and find Python objects. So, to make your new
plugin visible to Avocado, you need to add to your setuptools based setup.py file something like:

from setuptools import setup

if __name__ == '__main__':
setup(name='avocado-hello-world-option',

version='1.0',
description='Avocado Hello World CLI command with config option',
py_modules=['hello_option'],
entry_points={

'avocado.plugins.cli.cmd': ['hello_option = hello_option:HelloWorld'],
}

)

Then, by running either $ python setup.py install or $ python setup.py develop your plugin
should be visible to Avocado.

Namespace

The plugin registry mentioned earlier, (setuptools and its entry points) is global to a given Python installation. Avocado
uses the namespace prefix avocado.plugins. to avoid name clashes with other software. Now, inside Avocado
itself, there’s no need keep using the avocado.plugins. prefix.

Take for instance, the Job Pre/Post plugins are defined on setup.py:

'avocado.plugins.job.prepost': [
'jobscripts = avocado.plugins.jobscripts:JobScripts'

]

The setuptools entry point namespace is composed of the mentioned prefix avocado.plugins., which is is then
followed by the Avocado plugin type, in this case, job.prepost.

Inside Avocado itself, the fully qualified name for a plugin is the plugin type, such as job.prepost concatenated
to the name used in the entry point definition itself, in this case, jobscripts.

To summarize, still using the same example, the fully qualified Avocado plugin name is going to be job.prepost.
jobscripts.

120 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Plugin config files

Plugins can extend the list of config files parsed by Settings objects by dropping the individual config files into /
etc/avocado/conf.d (linux/posix-way) or they can take advantages of the Python entry point using avocado.
plugins.settings.

1. /etc/avocado/conf.d:

In order to not disturb the main Avocado config file, those plugins, if they wish so, may install additional config files
to /etc/avocado/conf.d/[pluginname].conf, that will be parsed after the system wide config file. Users
can override those values as well at the local config file level. Considering the config for the hypothethical plugin
salad:

[salad.core]
base = ceasar
dressing = ceasar

If you want, you may change dressing in your config file by simply adding a [salad.core] new section in your
local config file, and set a different value for dressing there.

2. avocado.plugins.settings:

This entry-point uses avocado.core.plugin_interfaces.Settings-like object to extend the list of parsed
files. It only accepts individual files, but you can use something like glob.glob("*.conf") to add all config files
inside a directory.

You need to create the plugin (eg. my_plugin/settings.py):

from avocado.core.plugin_interfaces import Settings

class MyPluginSettings(Settings):
def adjust_settings_paths(self, paths):

paths.extend(glob.glob("/etc/my_plugin/conf.d/*.conf"))

And register it in your setup.py entry-points:

from setuptools import setup
...
setup(name="my-plugin",

entry_points={
'avocado.plugins.settings': [

"my-plugin-settings = my_plugin.settings.MyPluginSettings",
],

...

Which extends the list of files to be parsed by settings object. Note this has to be executed early in the code so try to
keep the required deps minimal (for example the avocado.core.settings.settings is not yet available).

New test type plugin example

For a new test type to be recognized and executed by Avocado’s “nrunner” architecture, there needs to be two types of
plugins:

• resolvers: they resolve references into proper test descriptions that Avocado can run

• runners: these make use of the resolutions made by resolvers and actually execute the tests, reporting the results
back to Avocado

9.4. Avocado Contributor’s Guide 121

avocado Documentation, Release 88.1

The following example shows real code for a resolver and a runner for a “magic” test type. This “magic” test simply
passes or fails depending on the test reference.

Resolver example

The resolver implementation will simply set the test type (“magic”) and transform the reference given into its “url”:

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#
See LICENSE for more details.
#
Copyright: Red Hat Inc. 2020
Authors: Cleber Rosa <crosa@redhat.com>

"""
Test resolver for magic test words
"""

from avocado.core.nrunner import Runnable
from avocado.core.plugin_interfaces import Resolver
from avocado.core.resolver import (ReferenceResolution,

ReferenceResolutionResult)

VALID_MAGIC_WORDS = ['pass', 'fail']

class MagicResolver(Resolver):

name = 'magic'
description = 'Test resolver for magic words'

@staticmethod
def resolve(reference):

if reference not in VALID_MAGIC_WORDS:
return ReferenceResolution(

reference,
ReferenceResolutionResult.NOTFOUND,
info='Word "%s" is not a valid magic word' % (reference))

return ReferenceResolution(reference,
ReferenceResolutionResult.SUCCESS,
[Runnable('magic', reference)])

Runner example

The runner will receive the Runnable information created by the resolver plugin. Runners can be written in any
language, but this implementation reuses some base Python classes.

122 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

First, avocado.core.nrunner.BaseRunner is used to write the runner class. And second, the avocado.
core.nrunner.BaseRunner is used to create the command line application, which uses the previously imple-
mented runner class for magic test types.

from avocado.core import nrunner

class MagicRunner(nrunner.BaseRunner):
"""Runner for magic words

When creating the Runnable, use the following attributes:

* kind: should be 'magic';

* uri: the magic word, either "pass" or "fail";

* args: not used;

* kwargs: not used;

Example:

runnable = Runnable(kind='magic',
uri='pass')

"""

def run(self):
yield self.prepare_status('started')
if self.runnable.uri in ['pass', 'fail']:

result = self.runnable.uri
else:

result = 'error'
yield self.prepare_status('finished', {'result': result})

class RunnerApp(nrunner.BaseRunnerApp):
PROG_NAME = 'avocado-runner-magic'
PROG_DESCRIPTION = 'nrunner application for magic tests'
RUNNABLE_KINDS_CAPABLE = {'magic': MagicRunner}

def main():
nrunner.main(RunnerApp)

if __name__ == '__main__':
main()

Activating the new test type plugins

The plugins need to be registered so that Avocado knows about it. See Registering plugins for more information. This
is the code that can be used to register these plugins:

from setuptools import setup

name = 'magic'

(continues on next page)

9.4. Avocado Contributor’s Guide 123

avocado Documentation, Release 88.1

(continued from previous page)

module = 'avocado_magic'
resolver_ep = '%s = %s.resolver:%s' % (name, module, 'MagicResolver')
runner_ep = '%s = %s.runner:%s' % (name, module, 'MagicRunner')
runner_script = 'avocado-runner-%s = %s.runner:main' % (name, module)

if __name__ == '__main__':
setup(name=name,

version='1.0',
description='Avocado "magic" test type',
py_modules=[module],
entry_points={

'avocado.plugins.resolver': [resolver_ep],
'avocado.plugins.runnable.runner': [runner_ep],
'console_scripts': [runner_script],
}

)

With that, you need to either run python setup.py install or python setup.py develop.

Note: The last entry, registering a console_script, is recommended because it allows one to experiment with
the runner as a command line application (avocado-runner-magic in this case). Also, depending on the spawner
implementation used to run the tests, having a runner that can be executed as an application (and not a Python class)
is a requirement.

Listing the new test type plugins

With the plugins activated, you should be able to run avocado plugins and find (among other output):

Plugins that resolve test references (resolver):
...
magic Test resolver for magic words
...

Resolving magic tests

Resolving the “pass” and “fail” references that the magic plugin knows about can be seen by running avocado
list --resolver pass fail:

magic pass
magic fail

And you may get more insight into the resolution results, by adding a verbose parameter and another reference. Try
running avocado -V list --resolver pass fail something-else:

Type Test Tag(s)
magic pass
magic fail

Resolver Reference Info
avocado-instrumented pass File "pass" does not end with ".py"

(continues on next page)

124 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

exec-test pass File "pass" does not exist or is not a executable
→˓file
golang pass
avocado-instrumented fail File "fail" does not end with ".py"
exec-test fail File "fail" does not exist or is not a executable
→˓file
golang fail
avocado-instrumented something-else File "something-else" does not end with ".py"
exec-test something-else File "something-else" does not exist or is not a
→˓executable file
golang something-else
magic something-else Word "something-else" is not a valid magic word
python-unittest something-else File "something-else" does not end with ".py"
robot something-else File "something-else" does not end with ".robot"
tap something-else File "something-else" does not exist or is not a
→˓executable file

TEST TYPES SUMMARY
==================
magic: 2

It’s worth realizing that magic (and other plugins) were asked to resolve the something-else reference, but
couldn’t:

Resolver Reference Info
...
magic something-else Word "something-else" is not a valid magic word
...

Running magic tests

The common way of running Avocado tests is to run them through avocado run. In this case, we’re discussing
tests for the “nrunner” architecture, so the common way of running these “magic” tests is through a command starting
with avocado run --test-runner=nrunner.

To run both the pass and fail magic tests, you’d run avocado run --test-runner=nrunner -- pass
fail:

$ avocado run --test-runner=nrunner -- pass fail
JOB ID : 86fd45f8c1f2fe766c252eefbcac2704c2106db9
JOB LOG : $HOME/avocado/job-results/job-2021-02-05T12.43-86fd45f/job.log
(1/2) pass: STARTED
(1/2) pass: PASS (0.00 s)
(2/2) fail: STARTED
(2/2) fail: FAIL (0.00 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB HTML : $HOME/avocado/job-results/job-2021-02-05T12.43-86fd45f/results.html
JOB TIME : 1.83 s

9.4.6 The “nrunner” and “runner” test runner

This section details a test runner called “nrunner”, also known as N(ext) Runner, and the architecture around. It
compares it with the older (and default) test runner, simply called “runner”.

9.4. Avocado Contributor’s Guide 125

avocado Documentation, Release 88.1

At its essence, this new architecture is about making Avocado more capable and flexible, and even though it starts with
a major internal paradigm change within the test runner, it will also affect users and test writers.

The avocado.core.nrunner module was initially responsible for most of the N(ext)Runner code, but as devel-
opment continues, it’s spreading around to other places in the Avocado source tree. Other components with different
and seemingly unrelated names, say the “resolvers” or the “spawners”, are also pretty much about the N(ext)Runner
and are not used in the current (default) architecture.

Motivation

There are a number of reasons for introducing a different architecture and implementation. Some of them are related
to limitations found in the current implementation, that were found to be too hard to remove without major breakage.
Also, missing features that are deemed important would be a better fit wihin a different architecture.

For instance, these are the current limitations of the Avocado test runner:

• Test execution limited to the same machine, given that the communication between runner and test is a Python
queue

• Test execution is limited to a single test at a time (serial execution)

• Test processes are not properly isolated and can affect the test runner (including the “UI”)

And these are some features which it’s believed to be more easily implemented under a different architecture and
implementation:

• Remote test execution

• Different test execution isolation models provided by the test runner (process, container, virtual machine)

• Distributed execution of tests across a pool of any combination of processes, containers, virtual machines, etc.

• Parallel execution of tests

• Optimized runners for a given environment and or test type (for instance, a runner written in RUST to run tests
written in RUST in an environment that already has RUST installed but not much else)

• Notification of execution results to many simultaneous “status servers”

• Disconnected test execution, so that results can be saved to a device and collected by the runner

• Simplified and automated deployment of the runner component into execution environments such as containers
and virtual machines

Current and N(ext) Runner components of Avocado

Whenever we mention the current architecture or implementation, we are talking about:

• avocado list command

• avocado run command

• avocado.core.loader module to find tests

Whenever we talk about the N(ext)Runner, we are talking about:

• avocado list --resolver command

• avocado run --test-runner=nrunner command

• avocado.core.resolver module to resolve tests

• avocado.core.spawners modules to spawn tasks

126 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Basic Avocado usage and workflow

Avocado is described as “a set of tools and libraries to help with automated testing”. The most visible aspect of
Avocado is its ability to run tests, and display the results. We’re talking about someone doing:

$ avocado run mytests.py othertests.sh

To be able to complete such a command, Avocado needs to find the tests, and then to execute them. Those two major
steps are described next.

Finding tests

The first thing Avocado needs to do, before actually running any tests, is translating the “names” given as arguments
to avocado run into actual tests. Even though those names will usually be file names, this is not a requirement.
Avocado calls those “names” given as arguments to avocado run “test references”, because they are references
that hopefully “point to” tests.

Here we need to make a distincion between the current architecture, and the architecture which the N(ext)Runner
introduces. In the current Avocado test runner, this process happens by means of the avocado.core.loader
module. The very same mechanism, is used when listing tests. This produces an internal representation of the tests,
which we simply call a “factory”:

+--------------------+ +---------------------+
| avocado list | run | -> | avocado.core.loader | ---+
+--------------------+ +---------------------+ |

|
+--+
|
v

+--------------------------------------+
| Test Factory 1 |
+--------------------------------------+
| Class: TestFoo |
| Parameters: |
| - modulePath: /path/to/module.py |
| - methodName: test_foo |
| ... |
+--------------------------------------+

+--------------------------------------+
| Test Factory 2 |
+--------------------------------------+
| Class: TestBar |
| Parameters: |
| - modulePath: /path/to/module.py |
| - methodName: test_bar |
| ... |
+--------------------------------------+

...

Because the N(ext)Runner is living side by side with the current architecture, command line options
have been introduced to distinguish between them: avocado list --resolver and avocado run
--test-runner=nrunner.

On the N(ext)Runner architecture, a different terminology and foundation is used. Each one of the test ref-
erences given to list --resolver or run --test-runner=runner will be “resolved” into zero or

9.4. Avocado Contributor’s Guide 127

avocado Documentation, Release 88.1

more tests. Being more precise and verbose, resolver plugins will produce avocado.core.resolver.
ReferenceResolution, which contain zero or more avocado.core.nrunner.Runnable, which are de-
scribed in the following section. Overall, the process looks like:

+-------------------------+ +-----------------------+
| avocado list --resolver | -> | avocado.core.resolver | ---+
+-------------------------+ +-----------------------+ |

|
+---+
|
v

+--------------------------------------+
| ReferenceResolution #1 |
+--------------------------------------+
| Reference: /bin/true |
| Result: SUCCESS |
| +----------------------------------+ |
	Resolution #1 (Runnable):	
	- kind: exec-test	
	- uri: /bin/true	
+----------------------------------+		
+--------------------------------------+

+--------------------------------------+
| ReferenceResolution #2 |
+--------------------------------------+
| Reference: test.py |
| Result: SUCCESS |
| +----------------------------------+ |
	Resolution #1 (Runnable):	
	- kind: python-unittest	
	- uri: test.py:Test.test_1	
+----------------------------------+		
+----------------------------------+		
	Resolution #2 (Runnable):	
	- kind: python-unittest	
	- uri: test.py:Test.test_2	
+----------------------------------+		
+--------------------------------------+

...

Running Tests

The idea of testing has to do with checking the expected output of a given action. This action, within the realm of
software development with automated testing, has to do with the output or outcome of a “code payload” when executed
under a given controlled environment.

The current Avocado architecture uses the “Test Factories” described earlier to load and execute such a “code payload”.
Each of those test factories contain the name of a Python class to be instantiated, and a number of arguments that will
be given to that class initialization.

So the primary “code payload” for every Avocado test in the current architecture will always be Python code that inher-
its from avocado.core.test.Test. Even when the user wants to run a standalone executable (a SIMPLE test
in the current architecture terminology), that still means loading and instantiating (effectively executing) the Python
class’ avocado.core.test.SimpleTest code.

128 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Once all the test factories are found by avocado.core.loader, as described in the previous section, the current
architecture runs tests roughly following these steps:

1. Create one (and only one) queue to communicate with the test processes

2. For each test factory found by the loader:

a. Unpack the test factory into a test class and its parameters, that is, test_class, parameters =
test_factory

b. Instantiate a new process for the test

c. Within the new process, instantiate the Python class, that is, test = test_class(**parameters)

d. Give the test access to queue, that is test.set_runner_queue(queue)

e. Monitor the queue and the test process until it finishes or needs to be terminated.

Having to describe the “Test factory” as Python classes and its parameters, besides increasing the complexity for new
types of tests, severely limits or prevents some of goals for the N(ext)Runner architecture listed earlier. It should be
clear that:

1. one unique queue makes communicating with multiple tests at the same time hard

2. test factories contain a Python class (code) that will be instantiated in the new process

3. to instantiate Python classes in other systems would require serializing them, which is error prone (AKA pickling
nightmares)

4. the execution of tests depends on the previous point, so running tests in a local process is tightly coupled and
hard coded into the test execution code

Now let’s shift our attention to the N(ext)Runner architecture. In the N(ext)Runner architecture, a avocado.core.
nrunner.Runnable describe a “code payload” that will be executed, but they are not executable code themselves.
Because they are data and not code, they are easily serialized and transported to different environments. Running the
payload described by a Runnable is delegated to another component.

Most often, this component is a standalone executable (see avocado.core.spawners.common.
SpawnMethod.STANDALONE_EXECUTABLE) compatible with a specific command line interface. The most im-
portant interfaces such scripts must implement are the runnable-run and task-run interfaces.

Once all the Runnable(s) (within the ReferenceResolution(s)) are created by avocado.core.
resolver, the avocado run --test-runner=nrunner implementation follows roughly the following
steps:

1. Creates a status server that binds to a TCP port and waits for status messages from any number of clients

2. Creates the chosen Spawner, with ProcessSpawner being the default

3. For each avocado.core.nrunner.Runnable found by the resolver, turns it into a avocado.core.
nrunner.Task, which means giving it the following extra information:

a. The status server(s) that it should report to

b. An unique identification, so that its messages to the status server can be uniquely identified

4. For each resulting avocado.core.nrunner.Task in the previous step:

a. Asks the spawner to spawn it

b. Asks the spawner to check if the task seems to be alive right after spawning it, to give the user early indication
of possible crashes

5. Waits until all tasks have provided a result to the status server

If any of the concepts mentioned here were not clear, please check their full descriptions in the next section.

9.4. Avocado Contributor’s Guide 129

avocado Documentation, Release 88.1

Concepts

Runnable

A runnable is a description of an entity that can be executed and produce some kind of result. It’s a passive entity that
can not execute itself and can not produce results itself.

This description of a runnable is abstract on purpose. While the most common use case for a Runnable is to describe
how to execute a test, there seems to be no reason to bind that concept to a test. Other Avocado subsystems, such as
sysinfo, could very well leverage the same concept to describe say, commands to be executed.

A Runnable’s kind

The most important information about a runnable is the declaration of its kind. A kind should be a globally unique
name across the entire Avocado community and users.

When choosing a Runnable kind name, it’s advisable that it should be:

• Informative

• Succinct

• Unique

If a kind is thought to be generally useful to more than one user (where a user may mean a project using Avocado), it’s
a good idea to also have a generic name. For instance, if a Runnable is going to describe how to run native tests for
the Go programming language, its kind should probably be go.

On the other hand, if a Runnable is going to be used to describe tests that behave in a very peculiar way for a specific
project, it’s probably a good idea to map its kind name to the project name. For instance, if one is describing how to
run an iotest that is part of the QEMU project, it may be a good idea to name this kind qemu-iotest.

A Runnable’s uri

Besides a kind, each runnable kind may require a different amount of information to be provided so that it can be
instantiated.

Based on the accumulated experience so far, it’s expected that a Runnable’s uri is always going to be required. Think
of the URI as the one piece of information that can uniquely distinguish the entity (of a given kind) that will be
executed.

If, for instance, a given runnable describes the execution of a executable file already present in the system, it may use
its path, say /bin/true, as its uri value. If a runnable describes a web service endpoint, its uri value may just as
well be its network URI, such as https://example.org:8080.

Runnable examples

Possibly the simplest example for the use of a Runnable is to describe how to run a standalone executable, such as the
ones available on your /bin directory.

As stated earlier, a runnable must declare its kind. For standalone executables, a name such as exec fulfills the naming
suggestions given earlier.

A Runnable can be created in a number of ways. The first one is through avocado.core.nrunner.Runnable,
a very low level (and internal) API. Still, it serves as an example:

130 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

>>> from avocado.core import nrunner
>>> runnable = nrunner.Runnable('exec', '/bin/true')
>>> runnable
<Runnable kind="exec" uri="/bin/true" args="()" kwargs="{}" tags="None" requirements=
→˓"None">

The second way is through a JSON based file, which, for the lack of a better term, we’re calling a (Runnable) “recipe”.
The recipe file itself will look like:

{"kind": "exec", "uri": "/bin/true"}

And example the code to create it:

>>> from avocado.core import nrunner
>>> runnable = nrunner.Runnable.from_recipe("/path/to/recipe.json")
>>> runnable
<Runnable kind="exec" uri="/bin/true" args="()" kwargs="{}" tags="None" requirements=
→˓"None">>

The third way to create a Runnable, is even more internal. Its usage is discouraged, unless you are creating a tool that
needs to create Runnables based on the user’s input from the command line:

>>> from avocado.core import nrunner
>>> runnable = nrunner.Runnable.from_args({'kind': 'exec', 'uri': '/bin/true'})
>>> runnable
<Runnable kind="exec" uri="/bin/true" args="()" kwargs="{}" tags="None" requirements=
→˓"None">>

Runner

A Runner, within the context of the N(ext)Runner architecture, is an active entity. It acts on the information that a
runnable contains, and quite simply, should be able to run what the Runnable describes.

A Runner will usually be tied to a specific kind of Runnable. That type of relationship (Runner is capable of running
kind “foo” and Runnable is of the same kind “foo”) is the expected mechanism that will be employed when selecting
a Runner.

A Runner can take different forms, depending on which layer one is interacting with. At the lowest layer, a Runner
may be a Python class that inherits from avocado.core.nrunner.BaseRunner, and implements at least a
matching constructor method, and a run() method that should yield dictionary(ies) as result(s).

At a different level, a runner can take the form of an executable that follows the avocado-runner-$KIND naming
pattern and conforms to a given interface/behavior, including accepting standardized command line arguments and
producing standardized output.

Tip: for a very basic example of the interface expected, refer to selftests/functional/
test_nrunner_interface.py on the Avocado source code tree.

Runner output

A Runner should, if possible, produce status information on the progress of the execution of a Runnable. While the
Runner is executing what a Runnable describes, should it produce interesting information, the Runner should attempt
to forward that along its generated status.

9.4. Avocado Contributor’s Guide 131

avocado Documentation, Release 88.1

For instance, using the exec Runner example, it’s helpful to start producing status that the process has been created
and it’s running as soon as possible, even if no other output has been produced by the executable itself. These can be
as simple as a sequence of:

{"status": "started"}
{"status": "running"}
{"status": "running"}

When the process is finished, the Runner may return:

{"status": "finished", "returncode": 0, 'stdout': b'', 'stderr': b''}

Tip: Besides the status of finished, and a return code which can be used to determine a success or failure
status, a Runner may not be obliged to determine the overall PASS/FAIL outcome. Whoever called the runner may be
responsible to determine its overall result, including a PASS/FAIL judgement.

Even though this level of information is expected to be generated by the Runner, whoever is calling a Runner, should
be prepared to receive as little information as possible, and act accordingly. That includes receiving no information at
all.

For instance, if a Runner fails to produce any information within a given amount of time, it may be considered faulty
and be completely discarded. This would probably end up being represented as a TIMED_OUT kind of status on a
higher layer (say at the “Job” layer).

Task

A task is one specific instance/occurrence of the execution of a runnable with its respective runner. They should have
a unique identifier, although a task by itself wont’t enforce its uniqueness in a process or any other type of collection.

A task is responsible for producing and reporting status updates. This status updates are in a format similar to those
received from a runner, but will add more information to them, such as its unique identifier.

A different agreggate structure should be used to keep track of the execution of tasks.

Recipe

A recipe is the serialization of the runnable information in a file. The format chosen is JSON, and that should allow
both quick and easy machine handling and also manual creation of recipes when necessary.

Runners

A runner can be capable of running one or many different kinds of runnables. A runner should implement a
capabilities command that returns, among other info, a list of runnable kinds that it can (to the best of its
knowledge) run. Example:

python3 -m avocado.core.nrunner capabilities
{"runnables": ["noop", "exec", "exec-test", "python-unittest"],
"commands": ["capabilities", "runnable-run", "runnable-run-recipe",
"task-run", "task-run-recipe"]}

132 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Runner scripts

The primary runner implementation is a Python module that can be run, as shown before, with the avocado.core.
nrunner module name. Additionally it’s also available as the avocado-runner script.

Runner Execution

While the exec runner given as example before will need to create an extra process to actually run the standalone
executable given, that is an implementation detail of that specific runner. Other types of runners may be able to run
the code the users expects it to run, while still providing feedback about it in the same process.

The runner’s main method (run()) operates like a generator, and yields results which are dictionaries with relevant
information about it.

Trying it out - standalone

It’s possible to interact with the runner features by using the command line. This interface is not stable at all, and may
be changed or removed in the future.

Runnables from parameters

You can run a “noop” runner with:

avocado-runner runnable-run -k noop

You can run an “exec” runner with:

avocado-runner runnable-run -k exec -u /bin/sleep -a 3.0

You can run an “exec-test” runner with:

avocado-runner runnable-run -k exec-test -u /bin/true

You can run a “python-unittest” runner with:

avocado-runner runnable-run -k python-unittest -u unittest.TestCase

Runnables from recipes

You can run a “noop” recipe with:

avocado-runner runnable-run-recipe examples/nrunner/recipes/runnables/noop.json

You can run an “exec” runner with:

avocado-runner runnable-run-recipe examples/nrunner/recipes/runnables/exec_sleep_3.
→˓json

You can run a “python-unittest” runner with:

avocado-runner runnable-run-recipe examples/nrunner/recipes/runnables/python_unittest.
→˓json

9.4. Avocado Contributor’s Guide 133

avocado Documentation, Release 88.1

Writing new runner scripts

Even though you can write runner scripts in any language, if you’re writing a new runner script in Python, you can
benefit from the avocado.core.nrunner.BaseRunnerApp class and from the avocado.core.nrunner.
BaseRunner class.

The following is a complete example of a script that could be named avocado-runner-foo that could act as a
nrunner compatible runner for runnables with kind foo.

1 #!/usr/bin/env python3
2

3 from avocado.core import nrunner
4

5

6 class FooRunner(nrunner.BaseRunner):
7 def run(self):
8 yield self.prepare_status('started')
9 yield self.prepare_status('finished', {'result': 'pass'})

10

11

12 class RunnerApp(nrunner.BaseRunnerApp):
13 PROG_NAME = 'avocado-runner-foo'
14 PROG_DESCRIPTION = '*EXPERIMENTAL* N(ext) Runner for tests foo'
15 RUNNABLE_KINDS_CAPABLE = {'foo': FooRunner}
16

17

18 def main():
19 nrunner.main(RunnerApp)
20

21

22 if __name__ == '__main__':
23 main()

Runners messages

When run as part of a job, every runner has to send information about its execution status to the Avocado job. That
information is sent by messages which have different types based on the information which they are transmitting.

Avocado understands three main types of messages:

• started (required)

• running

• finished (required)

The started and finished messages are obligatory and every runner has to send those. The running messages can contain
different information during runner run-time like logs, warnings, errors .etc and that information will be processed by
the avocado core.

Supported message types

Started message

This message has to be sent when the runner starts the test.

param status ‘started’

134 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

param time start time of the test

type time float

example {‘status’: ‘started’, ‘time’: 16444.819830573}

Finished message

This message has to be sent when the runner finishes the test.

param status ‘finished’

param result test result

type result Lowercase values for the statuses defined in avocado.core.teststatus.STATUSES

param time end time of the test

type time float

example {‘status’: ‘finished’, ‘result’: ‘pass’, ‘time’: 16444.819830573}

Running messages

This message can be used during the run-time and has different properties based on the information which is being
transmitted.

Log message

It will save the log to the debug.log file in the task directory.

param status ‘running’

param type ‘log’

param log log message

type log string

param time Time stamp of the message

type time float

example {‘status’: ‘running’, ‘type’: ‘log’, ‘log’: ‘log message’, ‘time’: 18405.55351474}

Stdout message

It will save the stdout to the stdout file in the task directory.

param status ‘running’

param type ‘stdout’

param log stdout message

type log string

param time Time stamp of the message

type time float

9.4. Avocado Contributor’s Guide 135

avocado Documentation, Release 88.1

example {‘status’: ‘running’, ‘type’: ‘stdout’, ‘log’: ‘stdout message’, ‘time’: 18405.55351474}

Stderr message

It will save the stderr to the stderr file in the task directory.

param status ‘running’

param type ‘stderr’

param log stderr message

type log string

param time Time stamp of the message

type time float

example {‘status’: ‘running’, ‘type’: ‘stderr’, ‘log’: ‘stderr message’, ‘time’: 18405.55351474}

Whiteboard message

It will save the stderr to the whiteboard file in the task directory.

param status ‘running’

param type ‘whiteboard’

param log whiteboard message

type log string

param time Time stamp of the message

type time float

example {‘status’: ‘running’, ‘type’: ‘whiteboard’, ‘log’: ‘whiteboard message’, ‘time’:
18405.55351474}

9.4.7 Implementing other result formats

If you are looking to implement a new machine or human readable output format, you can refer to avocado.
plugins.xunit and use it as a starting point.

If your result is something that is produced at once, based on the complete job outcome, you should create a
new class that inherits from avocado.core.plugin_interfaces.Result and implements the avocado.
core.plugin_interfaces.Result.render() method.

But, if your result implementation is something that outputs information live before/during/after tests, then the
avocado.core.plugin_interfaces.ResultEvents interface is the one to look at. It will require you
to implement the methods that will perform actions (write to a file/stream) for each of the defined events on a Job and
test execution.

You can take a look at Plugins for more information on how to write a plugin that will activate and execute the new
result format.

136 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.4.8 Request for Comments (RFCs)

What is a RFC?

Warning: TODO: Better describe our RFC model here.

Submiting a RFC

Warning: TODO: Better describe our RFC model here.

Previous RFCs

The following list contains archivals of accepted, Request For Comments posted and discussed on the Avocado Devel
Mailing List.

RFC: Long Term Stability

This RFC contains proposals and clarifications regarding the maintenance and release processes of Avocado.

We understand there are multiple teams currently depending on the stability of Avocado and we don’t want their work
to be disrupted by incompatibilities nor instabilities in new releases.

This version is a minor update to previous versions of the same RFC (see Changelog) which drove the release of
Avocado 36.0 LTS. The Avocado team has plans for a new LTS release in the near future, so please consider reading
and providing feedback on the proposals here.

TL;DR

We plan to keep the current approach of sprint releases every 3-4 weeks, but we’re introducing “Long Term Stability”
releases which should be adopted in production environments where users can’t keep up with frequent upgrades.

Introduction

We make new releases of Avocado every 3-4 weeks on average. In theory at least, we’re very careful with backwards
compatibility. We test Avocado for regressions and we try to document any issues, so upgrading to a new version
should be (again, in theory) safe.

But in practice both intended and unintended changes are introduced during development, and both can be frustrat-
ing for conservative users. We also understand it’s not feasible for users to upgrade Avocado very frequently in a
production environment.

The objective of this RFC is to clarify our maintenance practices and introduce Long Term Stability (LTS) releases,
which are intended to solve, or at least mitigate, these problems.

Our definition of maintained, or stable

First of all, Avocado and its sub-projects are provided ‘AS IS’ and WITHOUT ANY WARRANTY, as described in
the LICENSE file.

9.4. Avocado Contributor’s Guide 137

https://www.redhat.com/mailman/listinfo/avocado-devel
https://www.redhat.com/mailman/listinfo/avocado-devel

avocado Documentation, Release 88.1

The process described here doesn’t imply any commitments or promises. It’s just a set of best practices and recom-
mendations.

When something is identified as “stable” or “maintained”, it means the development community makes a conscious
effort to keep it working and consider reports of bugs and issues as high priorities. Fixes submitted for these issues
will also be considered high priorities, although they will be accepted only if they pass the general acceptance criteria
for new contributions (design, quality, documentation, testing, etc), at the development team discretion.

Maintained projects and platforms

The only maintained project as of today is the Avocado Test Runner, including its APIs and core plugins (the contents
of the main avocado git repository).

Other projects kept under the “Avocado Umbrella” in github may be maintained by different teams (e.g.: Avocado-VT)
or be considered experimental (e.g.: avocado-server and avocado-virt).

More about Avocado-VT in its own section further down.

As a general rule, fixes and bug reports for Avocado when running in any modern Linux distribution are welcome.

But given the limited capacity of the development team, packaged versions of Avocado will be tested and maintained
only for the following Linux distributions:

• RHEL 7.x (latest)

• Fedora (stable releases from the Fedora projects)

Currently all packages produced by the Avocado projects are “noarch”. That means that they could be installable on
any hardware platform. Still, the development team will currently attempt to provide versions that are stable for the
following platforms:

• x86

• ppc64le

Contributions from the community to maintain other platforms and operating systems are very welcome.

The lists above may change without prior notice.

Avocado Releases

The proposal is to have two different types of Avocado releases:

Sprint Releases

(This is the model we currently adopt in Avocado)

They happen every 3-4 weeks (the schedule is not fixed) and their versions are numbered serially, with decimal digits
in the format <major>.<minor>. Examples: 47.0, 48.0, 49.0. Minor releases are rare, but necessary to correct some
major issue with the original release (47.1, 47.2, etc).

Only the latest Sprint Release is maintained.

In Sprint Releases we make a conscious effort to keep backwards compatibility with the previous version (APIs and
behavior) and as a general rule and best practice, incompatible changes in Sprint Releases should be documented in
the release notes and if possible deprecated slowly, to give users time to adapt their environments.

But we understand changes are inevitable as the software evolves and therefore there’s no absolute promise for API
and behavioral stability.

138 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Long Term Stability (LTS) Releases

LTS releases should happen whenever the team feels the code is stable enough to be maintained for a longer period of
time, ideally once or twice per year (no fixed schedule).

They should be maintained for 18 months, receiving fixes for major bugs in the form of minor (sub-)releases. With the
exception of these fixes, no API or behavior should change in a minor LTS release.

They will be versioned just like Sprint Releases, so looking at the version number alone will not reveal the differentiate
release process and stability characteristics.

In practice each major LTS release will imply in the creation of a git branch where only important issues affecting
users will be fixed, usually as a backport of a fix initially applied upstream. The code in a LTS branch is stable, frozen
for new features.

Notice that although within a LTS release there’s a expectation of stability because the code is frozen, different (major)
LTS releases may include changes in behavior, API incompatibilities and new features. The development team will
make a considerable effort to minimize and properly document these changes (changes when comparing it to the last
major LTS release).

Sprint Releases are replaced by LTS releases. I.e., in the cycle when 52.0 (LTS) is released, that’s also the version
used as a Sprint Release (there’s no 52.0 – non LTS – in this case).

New LTS releases should be done carefully, with ample time for announcements, testing and documentation. It’s
recommended that one or two sprints are dedicated as preparations for a LTS release, with a Sprint Release serving as
a “LTS beta” release.

Similarly, there should be announcements about the end-of-life (EOL) of a LTS release once it approaches its 18
months of life.

Deployment details

Sprint and LTS releases, when packaged, whenever possible, will be preferably distributed through different package
channels (repositories).

This is possible for repository types such as YUM/DNF repos. In such cases, users can disable the regular channel,
and enable the LTS version. A request for the installation of Avocado packages will fetch the latest version available
in the enabled repository. If the LTS repository channel is enabled, the packages will receive minor updates (bugfixes
only), until a new LTS version is released (roughly every 12 months).

If the non-LTS channel is enabled, users will receive updates every 3-4 weeks.

On other types of repos such as PyPI which have no concept of “sub-repos” or “channels”, users can request a version
smaller than the version that succeeds the current LTS to get the latest LTS (including minor releases). Suppose the
current LTS major version is 52, but there have been minor releases 52.1 and 52.2. By running:

pip install 'avocado-framework<53.0'

pip provide LTS version 52.2. If 52.3 gets released, they will be automatically deployed instead. When a new LTS is
released, users would still get the latest minor release from the 52.0 series, unless they update the version specification.

The existence of LTS releases should never be used as an excuse to break a Sprint Release or to introduce gratuitous
incompatibilities there. In other words, Sprint Releases should still be taken seriously, just as they are today.

Timeline example

Consider the release numbers as date markers. The bullet points beneath them are information about the release itself
or events that can happen anytime between one release and the other. Assume each sprint is taking 3 weeks.

9.4. Avocado Contributor’s Guide 139

https://pypi.python.org/pypi

avocado Documentation, Release 88.1

36.0

• LTS release (the only LTS release available at the time of writing)

37.0 .. 49.0

• sprint releases

• 36.1 LTS release

• 36.2 LTS release

• 36.3 LTS release

• 36.4 LTS release

50.0

• sprint release

• start preparing a LTS release, so 51.0 will be a beta LTS

51.0

• sprint release

• beta LTS release

52.0

• LTS release

• 52lts branch is created

• packages go into LTS repo

• both 36.x LTS and 52.x LTS maintained from this point on

53.0

• sprint release

• minor bug that affects 52.0 is found, fix gets added to master and 52lts branches

• bug does not affect 36.x LTS, so a backport is not added to the 36lts branch

54.0

• sprint release 54.0

• LTS release 52.1

• minor bug that also affects 52.x LTS and 36.x LTS is found, fix gets added to master, 52lts and
36lts branches

55.0

• sprint release

• LTS release 36.5

• LTS release 52.2

• critical bug that affects 52.2 only is found, fix gets added to 52lts and 52.3 LTS is immediately
released

56.0

• sprint release

57.0

140 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• sprint release

58.0

• sprint release

59.0

• sprint release

• EOL for 36.x LTS (18 months since the release of 36.0), 36lts branch is frozen permanently.

A few points are worth taking notice here:

• Multiple LTS releases can co-exist before EOL

• Bug discovery can happen at any time

• The bugfix occurs ASAP after its discovery

• The severity of the defect determines the timing of the release

– moderate and minor bugfixes to lts branches are held until the next sprint release

– critical bugs are released asynchronously, without waiting for the next sprint release

Avocado-VT

Avocado-VT is an Avocado plugin that allows “VT tests” to be run inside Avocado. It’s a third-party project maintained
mostly by Engineers from Red Hat QE with assistance from the Avocado team and other community members.

It’s a general consensus that QE teams use Avocado-VT directly from git, usually following the master branch, which
they control.

There’s no official maintenance or stability statement for Avocado-VT. Even though the upstream community is quite
friendly and open to both contributions and bug reports, Avocado-VT is made available without any promises for
compatibility or supportability.

When packaged and versioned, Avocado-VT rpms should be considered just snapshots, available in packaged form as
a convenience to users outside of the Avocado-VT development community. Again, they are made available without
any promises of compatibility or stability.

• Which Avocado version should be used by Avocado-VT?

This is up to the Avocado-VT community to decide, but the current consensus is that to guarantee some stability
in production environments, Avocado-VT should stick to a specific LTS release of Avocado. In other words, the
Avocado team recommends production users of Avocado-VT not to install Avocado from its master branch or
upgrade it from Sprint Releases.

Given each LTS release will be maintained for 18 months, it should be reasonable to expect Avocado-VT to
upgrade to a new LTS release once a year or so. This process will be done with support from the Avocado team
to avoid disruptions, with proper coordination via the avocado mailing lists.

In practice the Avocado development team will keep watching Avocado-VT to detect and document incompati-
bilities, so when the time comes to do an upgrade in production, it’s expected that it should happen smoothly.

• Will it be possible to use the latest Avocado and Avocado-VT together?

Users are welcome to try this combination. The Avocado development team itself will do it internally as a way
to monitor incompatibilities and regressions.

Whenever Avocado is released, a matching versioned snapshot of Avocado-VT will be made. Packages con-
taining those Avocado-VT snapshots, for convenience only, will be made available in the regular Avocado
repository.

9.4. Avocado Contributor’s Guide 141

avocado Documentation, Release 88.1

Changelog

Changes from Version 4:

• Moved changelog to the bottom of the document

• Changed wording on bug handling for LTS releases (“important issues”)

• Removed ppc64 (big endian) from list of platforms

• If bugs also affect older LTS release during the transition period, a backport will also be added to the corre-
sponding branch

• Further work on the Timeline example, adding summary of important points and more release examples, such as
the whole list of 36.x releases and the (fictional) 36.5 and 52.3

Changes from Version 3:

• Converted formatting to REStructuredText

• Replaced “me” mentions on version 1 changelog with proper name (Ademar Reis)

• Renamed section “Misc Details” to Deployment Details

• Renamed “avocado-vt” to “Avocado-VT”

• Start the timeline example with version 36.0

• Be explicit on timeline example that a minor bug did not generate an immediate release

Changes from Version 2:

• Wording changes on second paragraph (”. . . nor instabilities. . . ”)

• Clarified on “Introduction” that change of behavior is introduced between regular releases

• Updated distro versions for which official packages are built

• Add more clear explanation on official packages on the various hardware platforms

• Used more recent version numbers as examples, and the planned new LTS version too

• Explain how users can get the LTS version when using tools such as pip

• Simplified the timeline example, with examples that will possibly match the future versions and releases

• Documented current status of Avocado-VT releases and packages

Changes from Version 1:

• Changed “Support” to “Stability” and “supported” to “maintained” [Jeff Nelson]

• Misc improvements and clarifications in the supportability/stability statements [Jeff Nelson, Ademar Reis]

• Fixed a few typos [Jeff Nelson, Ademar Reis]

9.4.9 Releasing Avocado

So you have all PRs approved, the Sprint meeting is done and now Avocado is ready to be released. Great, let’s go
over (most of) the details you need to pay attention to.

142 Chapter 9. Build and Quality Status

https://www.redhat.com/archives/avocado-devel/2017-April/msg00041.html
https://www.redhat.com/archives/avocado-devel/2017-April/msg00032.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00006.html

avocado Documentation, Release 88.1

Which repositories you should pay attention to

In general, a release of Avocado includes taking a look and eventually release content in the following repositories:

• avocado

• avocado-vt

How to release?

All the necessary steps are in JSON “testplans” to be executed with the following commands:

$ scripts/avocado-run-testplan -t examples/testplans/release/pre.json
$ scripts/avocado-run-testplan -t examples/testplans/release/release.json

Just follow the steps and have a nice release!

How to refresh Fedora/EPEL modules

This is an outline of the steps to update the Fedora/EPEL avocado:latest module stream when there is a new
upstream release of avocado. This example is based on updating from 82.0 to 83.0.

Update downstream python-avocado package

1. Use pagure to create a personal fork of the downstream Fedora dist-git python-avocado package source
repository https://src.fedoraproject.org/rpms/python-avocado if you don’t already have one.

2. Clone your personal fork repository to your local workspace.

3. Checkout the latest branch–which is the stream branch used by the avocado:latest module definition.
Make sure your latest branch is in sync with the most recent commits from the official dist-git repo you
forked from.

4. Locate the official upstream commit hash and date corresponding to the upstream GitHub release tag. (eg.,
https://github.com/avocado-framework/avocado/releases/tag/75.1) Use those values to update the %global
commit and %global commit_date lines in the downstream python-avocado.spec file.

5. Update the Version: line with the new release tag.

6. Reset the Release: line to 1%{?gitrel}%{?dist}.

7. Add a new entry at the beginning of the %changelog section with a message similar to Sync with
upstream release 83.0..

8. See what changed in the upstream SPEC file since the last release. You can do this by comparing
branches on GitHub (eg., https://github.com/avocado-framework/avocado/compare/82.0..83.0) and searching
for python-avocado.spec. If there are changes beyond just the %global commit, %global
commit_date, and Version: lines, and the %changelog section, make any necessary corresponding
changes to the downstream SPEC file. Note: the commit hash in the upstream SPEC file will be different
that what gets put in the downstream SPEC file since the upstream hash was added to the file before the re-
leased commit was made. Add an additional note to your %changelog message if there were any noteworthy
changes.

9. Download the new upstream source tarball based on the updated SPEC by running:

spectool -g python-avocado.spec

9.4. Avocado Contributor’s Guide 143

https://src.fedoraproject.org/rpms/python-avocado
https://github.com/avocado-framework/avocado/releases/tag/75.1
https://github.com/avocado-framework/avocado/compare/82.0..83.0

avocado Documentation, Release 88.1

10. Add the new source tarball to the dist-git lookaside cache and update your local repo by running:

fedpkg new-sources avocado-83.0.tar.gz

11. Create a Fedora source RPM from the updated SPEC file and tarball by running:

fedpkg --release f33 srpm

It should write an SRPM file (eg., python-avocado-83.0-1.fc33.src.rpm) to the current directory.

12. Test build the revised package locally using mock. Run the build using the same Fedora release for which the
SRPM was created:

mock -r fedora-33-x86_64 python-avocado-83.0-1.fc33.src.rpm

13. If the package build fails, go back and fix the SPEC file, re-create the SRPM, and retry the mock build. It is
occasionally necessary to create a patch to disable specific tests or pull in some patches from upstream to get
the package to build correctly. See https://src.fedoraproject.org/rpms/python-avocado/tree/69lts as an example.

14. Repeat the SRPM generation and mock build for all other supported Fedora releases, Fedora Rawhide, and the
applicable EPEL (currently EPEL8).

15. When you have successful builds for all releases, git add, git commit, and git push your updates.

Update downstream avocado module

1. Use pagure to create a personal fork of the downstream Fedora dist-git avocado module source repository
https://src.fedoraproject.org/modules/avocado if you don’t already have one.

2. Clone your personal fork repository to your local workspace.

3. Checkout the latest branch–which the stream branch used for the avocado:latest module definition.
Make sure your latest branch is in sync with the latest commits to the official dist-git repo you forked from.

4. If there are any new or removed python-avocado sub-packages, adjust the avocado.yaml modulemd file
accordingly.

5. Test with a scratch module build for the latest supported Fedora release (f33), including the SRPM created
earlier:

fedpkg module-scratch-build --requires platform:f33 --buildrequires platform:f33 -
→˓-file avocado.yaml --srpm .../python-avocado/python-avocado-83.0-1.fc33.src.rpm

You can use https://release-engineering.github.io/mbs-ui/ to monitor the build progress.

6. If the module build fails, go back and fix the modulemd file and try again. Depending on the error, it may
necessary to go back and revise the package SPEC file.

7. Repeat the scratch module build for all other supported Fedora releases, Fedora Rawhide, and EPEL8
(platform:el8). If you’re feeling confident, you can skip this step.

8. When you have successful scratch module builds for all releases, git add, git commit, git push
your update. Note: if avocado.yaml didn’t need modifying, it is still necessary to make a new commit
since official module builds are tracked internally by their git commit hash. Recall that git commit has an
--allow-empty option.

144 Chapter 9. Build and Quality Status

https://src.fedoraproject.org/rpms/python-avocado/tree/69lts
https://src.fedoraproject.org/modules/avocado
https://release-engineering.github.io/mbs-ui/

avocado Documentation, Release 88.1

Release revised module

1. Create PRs to merge the python-avocado rpm and avocado module changes into the latest branches
of the master dist-git repositories. If you have commit privileges to the master repositories, you could also opt
to push directly.

2. After the python-avocado rpm and avocado module changes have been merged. . .

3. From the latest branch of your module repository in your local workspace, submit the module build using
fedpkg module-build. The MBS (Module Build Service) will use stream expansion to automatically
build the module for all current Fedora/EPEL releases. Again, you can use https://release-engineering.github.
io/mbs-ui/ to monitor the progress of the builds.

4. If you want to test the built modules at this point, use odcs (On Demand Compose Service) to create a tempo-
rary compose for your Fedora release:

odcs create module avocado:latest:3120200121201503:f636be4b

You can then use wget to download the repofile from the URL referenced in the output to /etc/yum.repos.
d/ and then you’ll be able to install your newly built avocado:latest module. Don’t forget to remove the
odcs repofile when you are done testing.

5. Use https://bodhi.fedoraproject.org/ to create new updates for avocado:latest (using options
type=enhancement, severity=low, default for everything else) for each Fedora release and EPEL8 – except
Rawhide which happens automatically.

6. Bodhi will push the updates to the testing repositories in a day or two. Following the push and after the Fe-
dora mirrors have had a chance to sync, you’ll be able to install the new module by including the dnf option
--enablerepo=updates-testing-modular (epel-testing-modular for EPEL).

7. After receiving enough bodhi karma votes (three by default) or after enough days have elapsed (seven for Fedora,
twelve for EPEL), bodhi will push the updated modules to the stable repositories. At that point, the updated
modules will be available by default without any extra arguments to dnf.

9.4.10 Avocado development tips

In tree utils

You can find handy utils in avocado.utils.debug:

measure_duration

Decorator can be used to print current duration of the executed function and accumulated duration of this decorated
function. It’s very handy when optimizing.

Usage:

from avocado.utils import debug
...
@debug.measure_duration
def your_function(...):

During the execution look for:

PERF: <function your_function at 0x29b17d0>: (0.1s, 11.3s)
PERF: <function your_function at 0x29b17d0>: (0.2s, 11.5s)

9.4. Avocado Contributor’s Guide 145

https://release-engineering.github.io/mbs-ui/
https://release-engineering.github.io/mbs-ui/
https://bodhi.fedoraproject.org/

avocado Documentation, Release 88.1

Note: If you are running a test with Avocado, and want to measure the duration of a method/function, make sure to
enable the debug logging stream. Example:

avocado --show avocado.app.debug run examples/tests/assets.py

Line-profiler

You can measure line-by-line performance by using line_profiler. You can install it using pip:

pip install line_profiler

and then simply mark the desired function with @profile (no need to import it from anywhere). Then you execute:

kernprof -l -v avocado run ...

and when the process finishes you’ll see the profiling information. (sometimes the binary is called kernprof.py)

Remote debug with Eclipse

Eclipse is a nice debugging frontend which allows remote debugging. It’s very simple. The only thing you need is
Eclipse with pydev plugin. The simplest way is to use pip install pydevd and then you set the breakpoint by:

import pydevd
pydevd.settrace(host="$IP_ADDR_OF_ECLIPSE_MACHINE", stdoutToServer=False,
→˓stderrToServer=False, port=5678, suspend=True, trace_only_current_thread=False,
→˓overwrite_prev_trace=False, patch_multiprocessing=False)

Before you run the code, you need to start the Eclipse’s debug server. Switch to Debug perspective (you might need
to open it first Window->Perspective->Open Perspective). Then start the server from Pydev->Start Debug Server.

Now whenever the pydev.settrace() code is executed, it contacts Eclipse debug server (port 8000 by default, don’t
forget to open it) and you can easily continue in execution. This works on every remote machine which has access to
your Eclipse’s port 8000 (you can override it).

9.4.11 Contact information

• Avocado-devel mailing list: https://www.redhat.com/mailman/listinfo/avocado-devel

• Avocado IRC channel: irc.oftc.net #avocado

• Avocado GitHub repository: https://github.com/avocado-framework/avocado/

9.5 Optional plugins

9.5.1 Avocado-ec2 Plugin

This plugin allows you to run tests on Amazon EC2 instances. Details available here

146 Chapter 9. Build and Quality Status

https://www.redhat.com/mailman/listinfo/avocado-devel
irc://irc.oftc.net/#avocado
https://github.com/avocado-framework/avocado/
https://github.com/avocado-framework/avocado-ec2

avocado Documentation, Release 88.1

9.5.2 Golang Plugin

This optional plugin enables Avocado to list and run tests written using the Go testing package.

To install the Golang plugin from pip, use:

$ sudo pip install avocado-framework-plugin-golang

After installed, you can list/run Golang tests providing the package name:

~$ avocado list golang.org/x/text/unicode/norm
GOLANG golang.org/x/text/unicode/norm:TestFlush
GOLANG golang.org/x/text/unicode/norm:TestInsert
GOLANG golang.org/x/text/unicode/norm:TestDecomposition
GOLANG golang.org/x/text/unicode/norm:TestComposition
GOLANG golang.org/x/text/unicode/norm:TestProperties
GOLANG golang.org/x/text/unicode/norm:TestIterNext
GOLANG golang.org/x/text/unicode/norm:TestIterSegmentation
GOLANG golang.org/x/text/unicode/norm:TestPlaceHolder
GOLANG golang.org/x/text/unicode/norm:TestDecomposeSegment
GOLANG golang.org/x/text/unicode/norm:TestFirstBoundary
GOLANG golang.org/x/text/unicode/norm:TestNextBoundary
GOLANG golang.org/x/text/unicode/norm:TestDecomposeToLastBoundary
GOLANG golang.org/x/text/unicode/norm:TestLastBoundary
GOLANG golang.org/x/text/unicode/norm:TestSpan
GOLANG golang.org/x/text/unicode/norm:TestIsNormal
GOLANG golang.org/x/text/unicode/norm:TestIsNormalString
GOLANG golang.org/x/text/unicode/norm:TestAppend
GOLANG golang.org/x/text/unicode/norm:TestAppendString
GOLANG golang.org/x/text/unicode/norm:TestBytes
GOLANG golang.org/x/text/unicode/norm:TestString
GOLANG golang.org/x/text/unicode/norm:TestLinking
GOLANG golang.org/x/text/unicode/norm:TestReader
GOLANG golang.org/x/text/unicode/norm:TestWriter
GOLANG golang.org/x/text/unicode/norm:TestTransform
GOLANG golang.org/x/text/unicode/norm:TestTransformNorm
GOLANG golang.org/x/text/unicode/norm:TestCharacterByCharacter
GOLANG golang.org/x/text/unicode/norm:TestStandardTests
GOLANG golang.org/x/text/unicode/norm:TestPerformance

And the Avocado test reference syntax to filter the tests you want to execute is also available in this plugin:

~$ avocado list golang.org/x/text/unicode/norm:TestTransform
GOLANG golang.org/x/text/unicode/norm:TestTransform
GOLANG golang.org/x/text/unicode/norm:TestTransformNorm

To run the tests, just switch from list to run:

~$ avocado run golang.org/x/text/unicode/norm:TestTransform
JOB ID : aa6e36547ba304fd724779eff741b6180ee78a54
JOB LOG : $HOME/avocado/job-results/job-2017-10-06T16.06-aa6e365/job.log
(1/2) golang.org/x/text/unicode/norm:TestTransform: PASS (1.89 s)
(2/2) golang.org/x/text/unicode/norm:TestTransformNorm: PASS (1.87 s)

RESULTS : PASS 2 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 4.61 s
JOB HTML : $HOME/avocado/job-results/job-2017-10-06T16.06-aa6e365/results.html

The content of the individual tests output is recorded in the default location:

9.5. Optional plugins 147

https://golang.org/pkg/testing/

avocado Documentation, Release 88.1

~$ head ~/avocado/job-results/latest/test-results/1-golang.org_x_text_unicode_norm_
→˓TestTransform/debug.log
16:06:53 INFO | Running '/usr/bin/go test -v golang.org/x/text/unicode/norm -run
→˓TestTransform'
16:06:55 DEBUG| [stdout] === RUN TestTransform
16:06:55 DEBUG| [stdout] --- PASS: TestTransform (0.00s)
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/fn
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFD
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFKC
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFKD
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/1

9.5.3 Result plugins

Optional plugins providing various types of job results.

HTML results Plugin

This optional plugin creates beautiful human readable results.

To install the HTML plugin from pip, use:

pip install avocado-framework-plugin-result-html

Once installed it produces the results in job results dir:

$ avocado run sleeptest.py failtest.py synctest.py
...
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/html/results.html
...

This can be disabled via –disable-html-job-result. One can also specify a custom location via –html . Last but not least
–open-browser can be used to start browser automatically once the job finishes.

Results Upload Plugin

This optional plugin is intended to upload the Avocado Job results to a dedicated sever.

To install the Result Upload plugin from pip, use:

pip install avocado-framework-plugin-result-upload

Usage:

avocado run passtest.py --result-upload-url www@avocadologs.example.com:/var/www/html

Avocado logs will be available at following URL:

• ssh

www@avocadologs.example.com:/var/www/html/job-2017-04-21T12.54-1cefe11

• html (If web server is enabled)

148 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

http://avocadologs.example.com/job-2017-04-21T12.54-1cefe11/

Such links may be refered by other plugins, such as the ResultsDB plugin

By default upload will be handled by following command

rsync -arz -e 'ssh -o LogLevel=error -o stricthostkeychecking=no -o
→˓userknownhostsfile=/dev/null -o batchmode=yes -o passwordauthentication=no'

Optionally, you can customize uploader command, for example following command upload logs to Google storage:

avocado run passtest.py --result-upload-url='gs://avocadolog' --result-upload-cmd=
→˓'gsutil -m cp -r'

You can also set the ResultUpload URL and command using a config file:

[plugins.result_upload]
url = www@avocadologs.example.com:/var/www/htmlavocado/job-results
command='rsync -arzq'

And then run the Avocado command without the explicit cmd options. Notice that the command line options will have
precedence over the configuration file.

ResultsDB Plugin

This optional plugin is intended to propagate the Avocado Job results to a given ResultsDB API URL.

To install the ResultsDB plugin from pip, use:

pip install avocado-framework-plugin-resultsdb

Usage:

avocado run passtest.py --resultsdb-api http://resultsdb.example.com/api/v2.0/

Optionally, you can provide the URL where the Avocado logs are published:

avocado run passtest.py --resultsdb-api http://resultsdb.example.com/api/v2.0/ --
→˓resultsdb-logs http://avocadologs.example.com/

The –resultsdb-logs is a convenience option that will create links to the logs in the ResultsDB records. The links will
then have the following formats:

• ResultDB group (Avocado Job):

http://avocadologs.example.com/job-2017-04-21T12.54-1cefe11/

• ResultDB result (Avocado Test):

http://avocadologs.example.com/job-2017-04-21T12.54-1cefe11/test-results/1-
→˓passtest.py:PassTest.test/

You can also set the ResultsDB API URL and logs URL using a config file:

[plugins.resultsdb]
api_url = http://resultsdb.example.com/api/v2.0/
logs_url = http://avocadologs.example.com/

9.5. Optional plugins 149

avocado Documentation, Release 88.1

And then run the Avocado command without the –resultsdb-api and –resultsdb-logs options. Notice that the command
line options will have precedence over the configuration file.

9.5.4 Robot Plugin

This optional plugin enables Avocado to work with tests originally written using the Robot Framework API.

To install the Robot plugin from pip, use:

$ sudo pip install avocado-framework-plugin-robot

After installed, you can list/run Robot tests the same way you do with other types of tests.

To list the tests, execute:

$ avocado list ~/path/to/robot/tests/test.robot

Directories are also accepted. To run the tests, execute:

$ avocado run ~/path/to/robot/tests/test.robot

9.5.5 CIT Varianter Plugin

This plugin is an implementation of a “Combinatorial Interaction Testing with Constraints” algorithm for the Avocado
varianter functionality. It generates an optimal number of variants, which in turn become different test scenarios.

Publications

The publication by Ahmed, Bestoun S., Kamal Z. Zamli, and Chee Peng Lim, entitled “Application of particle swarm
optimization to uniform and variable strength covering array construction”, Applied Soft Computing, 12(4), 2012, pp.
1330-1347, contains the basis for the algorithm and implementation of this feature.

Additionally, the publication by Bestoun S. Ahmed, Amador Pahim, Cleber R. Rosa Junior, D. Richard Kuhn and
Miroslav Bures, entitled “Towards an Automated Unified Framework to Run Applications for Combinatorial Interac-
tion Testing”, contain a practical use case of this software.

Examples

Please refer to examples/varianter_cit/params.cit for an example of a input file.

Input file format

The following is the general structure of a input file:

PARAMETERS
Parameter_1 [Value_1, Value_2, Value_3, Value_4]
Parameter_2 [Value_1, Value_2, Value_3, Value_4]
Parameter_3 [Value_1, Value_2, Value_3, Value_4]

CONSTRAINTS
Parameter_1 != Value_1 || Parameter_2 != Value_3
Parameter_3 != Value_2 || Parameter_2 != Value_4 || Parameter_1 != Value_4

150 Chapter 9. Build and Quality Status

http://robotframework.org/
https://www.sciencedirect.com/science/article/pii/S1568494611004716
https://www.sciencedirect.com/science/article/pii/S1568494611004716
https://arxiv.org/pdf/1903.05387.pdf
https://arxiv.org/pdf/1903.05387.pdf

avocado Documentation, Release 88.1

The input file has two parts, parameters and constraints.

Parameters

• Each line represent one parameter.

• Each parameter has a name, and a list of values inside brackets.

Constraints:

• Constraints have to be in Conjunctive normal form.

• Constraints use these tree operands: !=, OR, AND

• || represents operand OR and new line represents operand AND.

• In the example is this logic formula:: ((P_1 != V1 OR P_2 != V_3) AND (P_3 != V_2 OR P_2 != V_4 OR
P_1 != Value_4))

Usage

Note: the algorithm employed here can be CPU intensive. If you want more information on the progress
of the combinatorial calculation, add --debug to a command line, such as avocado variants --debug
--cit-parameter-file $PATH

Cit varianter plugin runs with two parameters:

• –cit-parameter-file with path to the input file

• –cit-order-of-combinations with strength of combination (default is 2)

To see the variants generated by this demo implementation, execute:

$ avocado variants --cit-parameter-file examples/varianter_cit/params.cit
CIT Variants (28):
Variant red-square-solid-plastic-anodic-6-4-4-2: /
Variant green-circle-gas-leather-cathodic-7-5-4-1: /
Variant green-triangle-liquid-leather-anodic-5-4-1-3: /
Variant green-square-liquid-plastic-anodic-3-1-4-5: /
Variant red-triangle-solid-leather-anodic-5-2-4-1: /
Variant black-triangle-gas-leather-anodic-7-1-1-2: /
Variant green-circle-solid-aluminum-cathodic-7-1-5-4: /
Variant red-square-gas-plastic-cathodic-6-3-5-3: /
Variant gold-triangle-solid-leather-anodic-6-5-1-4: /
Variant gold-triangle-gas-leather-anodic-3-2-5-2: /
Variant gold-square-gas-plastic-cathodic-5-1-1-1: /
Variant red-circle-gas-plastic-anodic-1-1-3-3: /
Variant red-circle-gas-aluminum-cathodic-3-3-1-5: /
Variant black-triangle-solid-plastic-cathodic-5-5-5-5: /
Variant gold-triangle-gas-leather-anodic-7-4-2-5: /
Variant black-triangle-gas-aluminum-cathodic-6-1-2-1: /
Variant gold-square-liquid-leather-cathodic-3-5-2-3: /
Variant black-square-solid-aluminum-cathodic-7-2-4-3: /
Variant black-circle-liquid-aluminum-anodic-1-4-5-1: /

(continues on next page)

9.5. Optional plugins 151

avocado Documentation, Release 88.1

(continued from previous page)

Variant black-triangle-gas-leather-cathodic-7-3-3-1: /
Variant green-square-solid-aluminum-cathodic-1-3-2-2: /
Variant gold-triangle-gas-aluminum-anodic-1-3-4-4: /
Variant red-square-liquid-plastic-anodic-7-2-2-4: /
Variant gold-circle-liquid-aluminum-anodic-5-5-3-2: /
Variant red-triangle-gas-leather-anodic-1-5-1-5: /
Variant gold-circle-liquid-aluminum-cathodic-5-3-2-4: /
Variant black-square-solid-plastic-cathodic-3-4-3-4: /
Variant green-circle-liquid-plastic-cathodic-6-2-3-5: /

Note: The exact variants generated are not guaranteed to be the same across executions.

You can enable more verbosity, making each variant to show its content:

$ avocado variants --cit-parameter-file examples/varianter_cit/params.cit -c
CIT Variants (28):

Variant red-circle-solid-plastic-cathodic-6-3-3-1: /
/:coating => cathodic
/:color => red
/:material => plastic
/:p10 => 1
/:p7 => 6
/:p8 => 3
/:p9 => 3
/:shape => circle
/:state => solid

Variant black-circle-liquid-aluminum-anodic-6-5-1-2: /
/:coating => anodic
/:color => black
/:material => aluminum
/:p10 => 2
/:p7 => 6
/:p8 => 5
/:p9 => 1
/:shape => circle
/:state => liquid

Variant black-triangle-liquid-plastic-anodic-3-1-4-2: /
/:coating => anodic
/:color => black
/:material => plastic
/:p10 => 2
/:p7 => 3
/:p8 => 1
/:p9 => 4
/:shape => triangle
/:state => liquid

Variant black-triangle-solid-plastic-cathodic-6-4-3-5: /
/:coating => cathodic
/:color => black
/:material => plastic
/:p10 => 5

(continues on next page)

152 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

/:p7 => 6
/:p8 => 4
/:p9 => 3
/:shape => triangle
/:state => solid

Variant green-circle-solid-leather-cathodic-3-5-3-3: /
/:coating => cathodic
/:color => green
/:material => leather
/:p10 => 3
/:p7 => 3
/:p8 => 5
/:p9 => 3
/:shape => circle
/:state => solid

Variant black-triangle-liquid-aluminum-cathodic-1-3-2-3: /
/:coating => cathodic
/:color => black
/:material => aluminum
/:p10 => 3
/:p7 => 1
/:p8 => 3
/:p9 => 2
/:shape => triangle
/:state => liquid

Variant gold-square-gas-plastic-anodic-6-4-5-3: /
/:coating => anodic
/:color => gold
/:material => plastic
/:p10 => 3
/:p7 => 6
/:p8 => 4
/:p9 => 5
/:shape => square
/:state => gas

Variant gold-triangle-solid-leather-cathodic-5-3-5-5: /
/:coating => cathodic
/:color => gold
/:material => leather
/:p10 => 5
/:p7 => 5
/:p8 => 3
/:p9 => 5
/:shape => triangle
/:state => solid

Variant green-square-gas-aluminum-cathodic-5-2-3-2: /
/:coating => cathodic
/:color => green
/:material => aluminum
/:p10 => 2
/:p7 => 5
/:p8 => 2

(continues on next page)

9.5. Optional plugins 153

avocado Documentation, Release 88.1

(continued from previous page)

/:p9 => 3
/:shape => square
/:state => gas

Variant green-triangle-liquid-aluminum-cathodic-7-3-1-4: /
/:coating => cathodic
/:color => green
/:material => aluminum
/:p10 => 4
/:p7 => 7
/:p8 => 3
/:p9 => 1
/:shape => triangle
/:state => liquid

Variant gold-square-solid-leather-anodic-5-5-2-4: /
/:coating => anodic
/:color => gold
/:material => leather
/:p10 => 4
/:p7 => 5
/:p8 => 5
/:p9 => 2
/:shape => square
/:state => solid

Variant red-square-gas-leather-anodic-3-3-1-5: /
/:coating => anodic
/:color => red
/:material => leather
/:p10 => 5
/:p7 => 3
/:p8 => 3
/:p9 => 1
/:shape => square
/:state => gas

Variant red-circle-liquid-aluminum-anodic-5-4-4-1: /
/:coating => anodic
/:color => red
/:material => aluminum
/:p10 => 1
/:p7 => 5
/:p8 => 4
/:p9 => 4
/:shape => circle
/:state => liquid

Variant gold-circle-liquid-aluminum-cathodic-7-1-5-5: /
/:coating => cathodic
/:color => gold
/:material => aluminum
/:p10 => 5
/:p7 => 7
/:p8 => 1
/:p9 => 5
/:shape => circle

(continues on next page)

154 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

/:state => liquid

Variant red-triangle-solid-plastic-anodic-1-5-5-2: /
/:coating => anodic
/:color => red
/:material => plastic
/:p10 => 2
/:p7 => 1
/:p8 => 5
/:p9 => 5
/:shape => triangle
/:state => solid

Variant green-triangle-gas-plastic-cathodic-3-4-5-4: /
/:coating => cathodic
/:color => green
/:material => plastic
/:p10 => 4
/:p7 => 3
/:p8 => 4
/:p9 => 5
/:shape => triangle
/:state => gas

Variant green-square-gas-leather-anodic-1-5-4-5: /
/:coating => anodic
/:color => green
/:material => leather
/:p10 => 5
/:p7 => 1
/:p8 => 5
/:p9 => 4
/:shape => square
/:state => gas

Variant red-circle-solid-leather-anodic-1-1-3-4: /
/:coating => anodic
/:color => red
/:material => leather
/:p10 => 4
/:p7 => 1
/:p8 => 1
/:p9 => 3
/:shape => circle
/:state => solid

Variant gold-circle-liquid-aluminum-anodic-3-2-2-5: /
/:coating => anodic
/:color => gold
/:material => aluminum
/:p10 => 5
/:p7 => 3
/:p8 => 2
/:p9 => 2
/:shape => circle
/:state => liquid

(continues on next page)

9.5. Optional plugins 155

avocado Documentation, Release 88.1

(continued from previous page)

Variant black-square-solid-plastic-cathodic-5-1-1-3: /
/:coating => cathodic
/:color => black
/:material => plastic
/:p10 => 3
/:p7 => 5
/:p8 => 1
/:p9 => 1
/:shape => square
/:state => solid

Variant green-circle-gas-leather-cathodic-6-1-2-1: /
/:coating => cathodic
/:color => green
/:material => leather
/:p10 => 1
/:p7 => 6
/:p8 => 1
/:p9 => 2
/:shape => circle
/:state => gas

Variant red-square-solid-aluminum-cathodic-7-2-4-3: /
/:coating => cathodic
/:color => red
/:material => aluminum
/:p10 => 3
/:p7 => 7
/:p8 => 2
/:p9 => 4
/:shape => square
/:state => solid

Variant red-circle-gas-plastic-anodic-7-4-2-2: /
/:coating => anodic
/:color => red
/:material => plastic
/:p10 => 2
/:p7 => 7
/:p8 => 4
/:p9 => 2
/:shape => circle
/:state => gas

Variant gold-square-liquid-leather-anodic-1-4-1-1: /
/:coating => anodic
/:color => gold
/:material => leather
/:p10 => 1
/:p7 => 1
/:p8 => 4
/:p9 => 1
/:shape => square
/:state => liquid

Variant gold-square-liquid-leather-cathodic-6-3-4-2: /
/:coating => cathodic

(continues on next page)

156 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

/:color => gold
/:material => leather
/:p10 => 2
/:p7 => 6
/:p8 => 3
/:p9 => 4
/:shape => square
/:state => liquid

Variant gold-square-liquid-leather-anodic-7-5-3-1: /
/:coating => anodic
/:color => gold
/:material => leather
/:p10 => 1
/:p7 => 7
/:p8 => 5
/:p9 => 3
/:shape => square
/:state => liquid

Variant black-triangle-liquid-plastic-anodic-7-2-5-1: /
/:coating => anodic
/:color => black
/:material => plastic
/:p10 => 1
/:p7 => 7
/:p8 => 2
/:p9 => 5
/:shape => triangle
/:state => liquid

Variant black-square-gas-leather-cathodic-6-2-4-4: /
/:coating => cathodic
/:color => black
/:material => leather
/:p10 => 4
/:p7 => 6
/:p8 => 2
/:p9 => 4
/:shape => square
/:state => gas

To execute tests with those combinations use:

$ avocado run passtest.py --cit-parameter-file examples/varianter_cit/params.cit
JOB ID : 6abd9e9f1ff9ed33a353ca8f3ef845cd4cc404a5
JOB LOG : $HOME/avocado/job-results/job-2018-07-23T08.46-6abd9e9/job.log
(01/25) passtest.py:PassTest.test;black-circle-gas-plastic-anodic-3-3-5-5: PASS (0.
→˓04 s)
(02/25) passtest.py:PassTest.test;gold-square-liquid-leather-anodic-3-2-1-4: PASS (0.
→˓03 s)
(03/25) passtest.py:PassTest.test;green-square-gas-plastic-cathodic-3-5-4-1: PASS (0.
→˓04 s)
(04/25) passtest.py:PassTest.test;gold-circle-solid-leather-anodic-6-4-4-2: PASS (0.
→˓04 s)
(05/25) passtest.py:PassTest.test;green-triangle-liquid-aluminum-cathodic-7-4-5-1:
→˓PASS (0.04 s)

(continues on next page)

9.5. Optional plugins 157

avocado Documentation, Release 88.1

(continued from previous page)

(06/25) passtest.py:PassTest.test;black-circle-gas-plastic-cathodic-1-4-3-4: PASS (0.
→˓04 s)
(07/25) passtest.py:PassTest.test;red-square-gas-leather-anodic-3-4-2-3: PASS (0.04
→˓s)
(08/25) passtest.py:PassTest.test;gold-triangle-solid-leather-anodic-1-3-2-1: PASS
→˓(0.04 s)
(09/25) passtest.py:PassTest.test;green-circle-gas-plastic-cathodic-7-1-2-4: PASS (0.
→˓04 s)
(10/25) passtest.py:PassTest.test;green-triangle-gas-aluminum-cathodic-6-2-2-5: PASS
→˓(0.04 s)
(11/25) passtest.py:PassTest.test;black-circle-liquid-plastic-cathodic-5-5-2-2: PASS
→˓(0.03 s)
(12/25) passtest.py:PassTest.test;red-square-solid-aluminum-anodic-5-2-3-1: PASS (0.
→˓04 s)
(13/25) passtest.py:PassTest.test;gold-square-solid-leather-anodic-7-5-3-5: PASS (0.
→˓04 s)
(14/25) passtest.py:PassTest.test;green-triangle-solid-leather-anodic-1-5-1-3: PASS
→˓(0.04 s)
(15/25) passtest.py:PassTest.test;black-circle-liquid-leather-cathodic-6-1-1-1: PASS
→˓(0.04 s)
(16/25) passtest.py:PassTest.test;red-triangle-liquid-plastic-anodic-6-3-3-3: PASS
→˓(0.04 s)
(17/25) passtest.py:PassTest.test;green-triangle-solid-plastic-cathodic-5-3-4-4:
→˓PASS (0.04 s)
(18/25) passtest.py:PassTest.test;red-square-liquid-aluminum-anodic-6-5-5-4: PASS (0.
→˓04 s)
(19/25) passtest.py:PassTest.test;red-square-gas-aluminum-cathodic-7-3-1-2: PASS (0.
→˓04 s)
(20/25) passtest.py:PassTest.test;red-square-liquid-aluminum-anodic-1-1-4-5: PASS (0.
→˓04 s)
(21/25) passtest.py:PassTest.test;gold-circle-gas-plastic-anodic-5-4-1-5: PASS (0.04
→˓s)
(22/25) passtest.py:PassTest.test;gold-circle-solid-leather-anodic-5-1-5-3: PASS (0.
→˓04 s)
(23/25) passtest.py:PassTest.test;red-circle-liquid-plastic-cathodic-1-2-5-2: PASS
→˓(0.04 s)
(24/25) passtest.py:PassTest.test;green-triangle-solid-aluminum-anodic-3-1-3-2: PASS
→˓(0.04 s)
(25/25) passtest.py:PassTest.test;black-circle-solid-aluminum-cathodic-7-2-4-3: PASS
→˓(0.03 s)
RESULTS : PASS 25 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 1.21 s
JOB HTML : $HOME/avocado/job-results/job-2018-07-23T08.46-6abd9e9/results.html

9.5.6 PICT Varianter plugin

avocado_varianter_pict

This plugin uses a third-party tool to provide variants created by “Pair-Wise” algorithms, also known as Combinatorial
Independent Testing.

Installing PICT

PICT is a free software (MIT licensed) tool that implements combinatorial testing. More information about it can be
found at https://github.com/Microsoft/pict/ .

158 Chapter 9. Build and Quality Status

https://github.com/Microsoft/pict/

avocado Documentation, Release 88.1

If you’re building from sources, make sure you have a C++ compiler such as GCC or clang, and make. The included
Makefile should work out of the box and give you a pict binary.

Then copy the pict binary to a location in your $PATH. Alternatively, you may use the plugin --pict-binary
command line option to provide a specific location of the pict binary, but that is not as convenient as having it on your
$PATH.

Using the PICT Varianter Plugin

The following listing is a sample (simple) PICT file:

arch: intel, amd
block_driver: scsi, ide, virtio
net_driver: rtl8139, e1000, virtio
guest: windows, linux
host: rhel6, rhel7, rhel8

To list the variants generated with the default combination order (2, that is, do a pairwise idenpendent combinatorial
testing):

$ avocado variants --pict-parameter-file=params.pict
Pict Variants (11):
Variant amd-scsi-rtl8139-windows-rhel6-acff: /run
...
Variant amd-ide-e1000-linux-rhel6-eb43: /run

To list the variants generated with a 3-way combination:

$ avocado variants --pict-parameter-file=examples/params.pict \
--pict-order-of-combinations=3

Pict Variants (28):
Variant intel-ide-virtio-windows-rhel7-aea5: /run
...
Variant intel-scsi-e1000-linux-rhel7-9f61: /run

To run tests, just replace the variants avocado command for run:

$ avocado run --pict-parameter-file=params.pict /bin/true

The tests given in the command line should then be executed with all variants produced by the combinatorial algorithm
implemented by PICT.

9.5.7 Multiplexer

avocado_varianter_yaml_to_mux.mux

Multiplexer or simply Mux is an abstract concept, which was the basic idea behind the tree-like params struc-
ture with the support to produce all possible variants. There is a core implementation of basic building blocks
that can be used when creating a custom plugin. There is a demonstration version of plugin using this concept in
avocado_varianter_yaml_to_mux which adds a parser and then uses this multiplexer concept to define an
Avocado plugin to produce variants from yaml (or json) files.

9.5. Optional plugins 159

avocado Documentation, Release 88.1

9.5.8 Multiplexer concept

As mentioned earlier, this is an in-core implementation of building blocks intended for writing Varianter plugins based
on a tree with Multiplex domains defined. The available blocks are:

• MuxTree - Object which represents a part of the tree and handles the multiplexation, which means producing all
possible variants from a tree-like object.

• MuxPlugin - Base class to build Varianter plugins

• MuxTreeNode - Inherits from TreeNode and adds the support for control flags (MuxTreeNode.ctrl) and
multiplex domains (MuxTreeNode.multiplex).

And some support classes and methods eg. for filtering and so on.

Multiplex domains

A default avocado-params tree with variables could look like this:

Multiplex tree representation:
paths

→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
→ debug: False

The multiplexer wants to produce similar structure, but also to be able to define not just one variant, but to define
all possible combinations and then report the slices as variants. We use the term Multiplex domains to define that
children of this node are not just different paths, but they are different values and we only want one at a time. In
the representation we use double-line to visibily distinguish between normal relation and multiplexed relation. Let’s
modify our example a bit:

Multiplex tree representation:
paths

→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
production

→ debug: False
debug

→ debug: True

The difference is that environ is now a multiplex node and it’s children will be yielded one at a time producing
two variants:

Variant 1:
paths

→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
production

→ debug: False
Variant 2:

paths
→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ

(continues on next page)

160 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

debug
→ debug: False

Note that the multiplex is only about direct children, therefore the number of leaves in variants might differ:

Multiplex tree representation:
paths

→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
production

→ debug: False
debug

system
→ debug: False

program
→ debug: True

Produces one variant with /paths and /environ/production and other variant with /paths, /environ/
debug/system and /environ/debug/program.

As mentioned earlier the power is not in producing one variant, but in defining huge scenarios with all possible variants.
By using tree-structure with multiplex domains you can avoid most of the ugly filters you might know from Jenkin’s
sparse matrix jobs. For comparison let’s have a look at the same example in Avocado:

Multiplex tree representation:
os

distro
redhat

fedora
version

20
21

flavor
workstation
cloud

rhel
5
6

arch
i386
x86_64

Which produces:

Variant 1: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
→˓workstation, /os/arch/i386
Variant 2: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
→˓workstation, /os/arch/x86_64
Variant 3: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
→˓cloud, /os/arch/i386
Variant 4: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
→˓cloud, /os/arch/x86_64
Variant 5: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
→˓workstation, /os/arch/i386
Variant 6: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
→˓workstation, /os/arch/x86_64

(continues on next page)

9.5. Optional plugins 161

avocado Documentation, Release 88.1

(continued from previous page)

Variant 7: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
→˓cloud, /os/arch/i386
Variant 8: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
→˓cloud, /os/arch/x86_64
Variant 9: /os/distro/redhat/rhel/5, /os/arch/i386
Variant 10: /os/distro/redhat/rhel/5, /os/arch/x86_64
Variant 11: /os/distro/redhat/rhel/6, /os/arch/i386
Variant 12: /os/distro/redhat/rhel/6, /os/arch/x86_64

Versus Jenkin’s sparse matrix:

os_version = fedora20 fedora21 rhel5 rhel6
os_flavor = none workstation cloud
arch = i386 x86_64

filter = ((os_version == "rhel5").implies(os_flavor == "none") &&
(os_version == "rhel6").implies(os_flavor == "none")) &&

!(os_version == "fedora20" && os_flavor == "none") &&
!(os_version == "fedora21" && os_flavor == "none")

Which is still relatively simple example, but it grows dramatically with inner-dependencies.

MuxPlugin

avocado_varianter_yaml_to_mux.mux.MuxPlugin

Defines the full interface required by avocado.core.plugin_interfaces.Varianter. The plugin writer
should inherit from this MuxPlugin, then from the Varianter and call the:

self.initialize_mux(root, paths, debug)

Where:

• root - is the root of your params tree (compound of TreeNode -like nodes)

• paths - is the Parameter Paths to be used in test with all variants

• debug - whether to use debug mode (requires the passed tree to be compound of TreeNodeDebug-like nodes
which stores the origin of the variant/value/environment as the value for listing purposes and is __NOT__ in-
tended for test execution.

This method must be called before the Varianter’s second stage. The MuxPlugin’s code will take care of the rest.

MuxTree

This is the core feature where the hard work happens. It walks the tree and remembers all leaf nodes or uses list of
MuxTrees when another multiplex domain is reached while searching for a leaf.

When it’s asked to report variants, it combines one variant of each remembered item (leaf node always stays the
same, but MuxTree circles through it’s values) which recursively produces all possible variants of different multiplex
domains.

9.5.9 Yaml_to_mux plugin

avocado_varianter_yaml_to_mux

162 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

This plugin utilizes the multiplexation mechanism to produce variants out of a yaml file. This section is
example-based, if you are interested in test parameters and/or multiplexation overview, please take a look at
test-parameters.

As mentioned earlier, it inherits from the avocado_varianter_yaml_to_mux.mux.MuxPlugin and the only
thing it implements is the argument parsing to get some input and a custom yaml parser (which is also capable of
parsing json).

The YAML file is perfect for this task as it’s easily read by both, humans and machines. Let’s start with an example
(line numbers at the first columns are for documentation purposes only, they are not part of the multiplex file format):

1 hw:
2 cpu: !mux
3 intel:
4 cpu_CFLAGS: '-march=core2'
5 amd:
6 cpu_CFLAGS: '-march=athlon64'
7 arm:
8 cpu_CFLAGS: '-mabi=apcs-gnu -march=armv8-a -mtune=arm8'
9 disk: !mux

10 scsi:
11 disk_type: 'scsi'
12 virtio:
13 disk_type: 'virtio'
14 distro: !mux
15 fedora:
16 init: 'systemd'
17 mint:
18 init: 'systemv'
19 env: !mux
20 debug:
21 opt_CFLAGS: '-O0 -g'
22 prod:
23 opt_CFLAGS: '-O2'

Warning: On some architectures misbehaving versions of CYaml Python library were reported and Av-
ocado always fails with unacceptable character #x0000: control characters are not
allowed. To workaround this issue you need to either update the PyYaml to the version which works prop-
erly, or you need to remove the python2.7/site-packages/yaml/cyaml.py or disable CYaml import
in Avocado sources. For details check out the Github issue

There are couple of key=>value pairs (lines 4,6,8,11,13,. . .) and there are named nodes which define scope (lines
1,2,3,5,7,9,. . .). There are also additional flags (lines 2, 9, 14, 19) which modifies the behavior.

Nodes

They define context of the key=>value pairs allowing us to easily identify for what this values might be used for and
also it makes possible to define multiple values of the same keys with different scope.

Due to their purpose the YAML automatic type conversion for nodes names is disabled, so the value of node name is
always as written in the YAML file (unlike values, where yes converts to True and such).

Nodes are organized in parent-child relationship and together they create a tree. To view this structure use avocado
variants --tree -m <file>:

9.5. Optional plugins 163

https://github.com/avocado-framework/avocado/issues/1190

avocado Documentation, Release 88.1

run
hw

cpu
intel
amd
arm

disk
scsi
virtio

distro
fedora
mint

env
debug
prod

You can see that hw has 2 children cpu and disk. All parameters defined in parent node are inherited to children
and extended/overwritten by their values up to the leaf nodes. The leaf nodes (intel, amd, arm, scsi, . . .) are the
most important as after multiplexation they form the parameters available in tests.

Keys and Values

Every value other than dict (4,6,8,11) is used as value of the antecedent node.

Each node can define key/value pairs (lines 4,6,8,11,. . .). Additionally each children node inherits values of it’s parent
and the result is called node environment.

Given the node structure bellow:

devtools:
compiler: 'cc'
flags:

- '-O2'
debug: '-g'
fedora:

compiler: 'gcc'
flags:

- '-Wall'
osx:

compiler: 'clang'
flags:

- '-arch i386'
- '-arch x86_64'

And the rules defined as:

• Scalar values (Booleans, Numbers and Strings) are overwritten by walking from the root until the final node.

• Lists are appended (to the tail) whenever we walk from the root to the final node.

The environment created for the nodes fedora and osx are:

• Node //devtools/fedora environment compiler: 'gcc', flags: ['-O2', '-Wall']

• Node //devtools/osx environment compiler: 'clang', flags: ['-O2', '-arch
i386', '-arch x86_64']

Note that due to different usage of key and values in environment we disabled the automatic value conversion for keys
while keeping it enabled for values. This means that the key is always a string and the value can be YAML value, eg.

164 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

bool, list, custom type, or string. Please be aware that due to limitation None type can be provided in yaml specifically
as string ‘null’.

Variants

In the end all leaves are gathered and turned into parameters, more specifically into AvocadoParams:

setup:
graphic:

user: "guest"
password: "pass"

text:
user: "root"
password: "123456"

produces [graphic, text]. In the test code you’ll be able to query only those leaves. Intermediary or root nodes
are available.

The example above generates a single test execution with parameters separated by path. But the most powerful
multiplexer feature is that it can generate multiple variants. To do that you need to tag a node whose children are ment
to be multiplexed. Effectively it returns only leaves of one child at the time.In order to generate all possible variants
multiplexer creates cartesian product of all of these variants:

cpu: !mux
intel:
amd:
arm:

fmt: !mux
qcow2:
raw:

Produces 6 variants:

/cpu/intel, /fmt/qcow2
/cpu/intel, /fmt/raw
...
/cpu/arm, /fmt/raw

The !mux evaluation is recursive so one variant can expand to multiple ones:

fmt: !mux
qcow: !mux

2:
2v3:

raw:

Results in:

/fmt/qcow2/2
/fmt/qcow2/2v3
/raw

Resolution order

You can see that only leaves are part of the test parameters. It might happen that some of these leaves contain different
values of the same key. Then you need to make sure your queries separate them by different paths. When the

9.5. Optional plugins 165

avocado Documentation, Release 88.1

path matches multiple results with different origin, an exception is raised as it’s impossible to guess which key was
originally intended.

To avoid these problems it’s recommended to use unique names in test parameters if possible, to avoid the mentioned
clashes. It also makes it easier to extend or mix multiple YAML files for a test.

For multiplex YAML files that are part of a framework, contain default configurations, or serve as plugin configurations
and other advanced setups it is possible and commonly desirable to use non-unique names. But always keep those
points in mind and provide sensible paths.

Multiplexer also supports default paths. By default it’s /run/* but it can be overridden by --mux-path, which
accepts multiple arguments. What it does it splits leaves by the provided paths. Each query goes one by one through
those sub-trees and first one to hit the match returns the result. It might not solve all problems, but it can help to
combine existing YAML files with your ones:

qa: # large and complex read-only file, content injected into /qa
tests:

timeout: 10
...

my_variants: !mux # your YAML file injected into /my_variants
short:

timeout: 1
long:

timeout: 1000

You want to use an existing test which uses params.get('timeout', '*'). Then you can use --mux-path
'/my_variants/*' '/qa/*' and it’ll first look in your variants. If no matches are found, then it would proceed
to /qa/*

Keep in mind that only slices defined in mux-path are taken into account for relative paths (the ones starting with *)

Injecting files

You can run any test with any YAML file by:

avocado run sleeptest.py --mux-yaml file.yaml

This puts the content of file.yaml into /run location, which as mentioned in previous section, is the default
mux-path path. For most simple cases this is the expected behavior as your files are available in the default path and
you can safely use params.get(key).

When you need to put a file into a different location, for example when you have two files and you don’t want the
content to be merged into a single place becoming effectively a single blob, you can do that by giving a name to your
YAML file:

avocado run sleeptest.py --mux-yaml duration:duration.yaml

The content of duration.yaml is injected into /run/duration. Still when keys from other files don’t clash,
you can use params.get(key) and retrieve from this location as it’s in the default path, only extended by the
duration intermediary node. Another benefit is you can merge or separate multiple files by using the same or
different name, or even a complex (relative) path.

Last but not least, advanced users can inject the file into whatever location they prefer by:

avocado run sleeptest.py --mux-yaml /my/variants/duration:duration.yaml

Simple params.get(key) won’t look in this location, which might be the intention of the test writer. There are
several ways to access the values:

166 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• absolute location params.get(key, '/my/variants/duration')

• absolute location with wildcards params.get(key, '/my/*) (or /*/duration/*. . .)

• set the mux-path avocado run ... --mux-path /my/* and use relative path

It’s recommended to use the simple injection for single YAML files, relative injection for multiple simple YAML files
and the last option is for very advanced setups when you either can’t modify the YAML files and you need to specify
custom resolution order or you are specifying non-test parameters, for example parameters for your plugin, which you
need to separate from the test parameters.

Special values

As you might have noticed, we are using mapping/dicts to define the structure of the params. To avoid surprises we
disallowed the smart typing of mapping keys so:

on: on

Won’t become True: True, but the key will be preserved as string on: True.

You might also want to use dict as values in your params. This is also supported but as we can’t easily distinguish
whether that value is a value or a node (structure), you have to either embed it into another object (list, ..) or you have
to clearly state the type (yaml tag !!python/dict). Even then the value won’t be a standard dictionary, but it’ll be
collections.OrderedDict and similarly to nodes structure all keys are preserved as strings and no smart type
detection is used. Apart from that it should behave similarly as dict, only you get the values ordered by the order they
appear in the file.

Multiple files

You can provide multiple files. In such scenario final tree is a combination of the provided files where later nodes with
the same name override values of the preceding corresponding node. New nodes are appended as new children:

file-1.yaml:
debug:

CFLAGS: '-O0 -g'
prod:

CFLAGS: '-O2'

file-2.yaml:
prod:

CFLAGS: '-Os'
fast:

CFLAGS: '-Ofast'

results in:

debug:
CFLAGS: '-O0 -g'

prod:
CFLAGS: '-Os' # overriden

fast:
CFLAGS: '-Ofast' # appended

It’s also possible to include existing file into another a given node in another file. This is done by the !include : $path
directive:

9.5. Optional plugins 167

avocado Documentation, Release 88.1

os:
fedora:

!include : fedora.yaml
gentoo:

!include : gentoo.yaml

Warning: Due to YAML nature, it’s mandatory to put space between !include and the colon (:) that must follow
it.

The file location can be either absolute path or relative path to the YAML file where the !include is called (even when
it’s nested).

Whole file is merged into the node where it’s defined.

Advanced YAML tags

There are additional features related to YAML files. Most of them require values separated by ":". Again, in all such
cases it’s mandatory to add a white space (" ") between the tag and the ":", otherwise ":" is part of the tag name
and the parsing fails.

!include

Includes other file and injects it into the node it’s specified in:

my_other_file:
!include : other.yaml

The content of /my_other_file would be parsed from the other.yaml. It’s the hardcoded equivalent of the -m
$using:$path.

Relative paths start from the original file’s directory.

!using

Prepends path to the node it’s defined in:

!using : /foo
bar:

!using : baz

bar is put into baz becoming /baz/bar and everything is put into /foo. So the final path of bar is /foo/baz/
bar.

!remove_node

Removes node if it existed during the merge. It can be used to extend incompatible YAML files:

168 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

os:
fedora:
windows:

3.11:
95:

os:
!remove_node : windows
windows:

win3.11:
win95:

Removes the windows node from structure. It’s different from filter-out as it really removes the node (and all children)
from the tree and it can be replaced by you new structure as shown in the example. It removes windows with all
children and then replaces this structure with slightly modified version.

As !remove_node is processed during merge, when you reverse the order, windows is not removed and you end-up
with /windows/{win3.11,win95,3.11,95} nodes.

!remove_value

It’s similar to !remove_node only with values.

!mux

Children of this node will be multiplexed. This means that in first variant it’ll return leaves of the first child, in second
the leaves of the second child, etc. Example is in section Variants

!filter-only

Defines internal filters. They are inherited by children and evaluated during multiplexation. It allows one to specify
the only compatible branch of the tree with the current variant, for example:

cpu:
arm:

!filter-only : /disk/virtio
disk:

virtio:
scsi:

will skip the [arm, scsi] variant and result only in [arm, virtio]

_Note: It’s possible to use !filter-only multiple times with the same parent and all allowed variants will be
included (unless they are filtered-out by !filter-out)_

_Note2: The evaluation order is 1. filter-out, 2. filter-only. This means when you booth filter-out and filter-only a
branch it won’t take part in the multiplexed variants._

!filter-out

Similarly to !filter-only only it skips the specified branches and leaves the remaining ones. (in the same example the
use of !filter-out : /disk/scsi results in the same behavior). The difference is when a new disk type is
introduced, !filter-only still allows just the specified variants, while !filter-out only removes the specified
ones.

9.5. Optional plugins 169

avocado Documentation, Release 88.1

As for the speed optimization, currently Avocado is strongly optimized towards fast !filter-out so it’s highly
recommended using them rather than !filter-only, which takes significantly longer to process.

Complete example

Let’s take a second look at the first example:

1 hw:
2 cpu: !mux
3 intel:
4 cpu_CFLAGS: '-march=core2'
5 amd:
6 cpu_CFLAGS: '-march=athlon64'
7 arm:
8 cpu_CFLAGS: '-mabi=apcs-gnu -march=armv8-a -mtune=arm8'
9 disk: !mux

10 scsi:
11 disk_type: 'scsi'
12 virtio:
13 disk_type: 'virtio'
14 distro: !mux
15 fedora:
16 init: 'systemd'
17 mint:
18 init: 'systemv'
19 env: !mux
20 debug:
21 opt_CFLAGS: '-O0 -g'
22 prod:
23 opt_CFLAGS: '-O2'

After filters are applied (simply removes non-matching variants), leaves are gathered and all variants are generated:

$ avocado variants -m selftests/.data/mux-environment.yaml
Variants generated:
Variant 1: /hw/cpu/intel, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 2: /hw/cpu/intel, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 3: /hw/cpu/intel, /hw/disk/scsi, /distro/mint, /env/debug
Variant 4: /hw/cpu/intel, /hw/disk/scsi, /distro/mint, /env/prod
Variant 5: /hw/cpu/intel, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 6: /hw/cpu/intel, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 7: /hw/cpu/intel, /hw/disk/virtio, /distro/mint, /env/debug
Variant 8: /hw/cpu/intel, /hw/disk/virtio, /distro/mint, /env/prod
Variant 9: /hw/cpu/amd, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 10: /hw/cpu/amd, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 11: /hw/cpu/amd, /hw/disk/scsi, /distro/mint, /env/debug
Variant 12: /hw/cpu/amd, /hw/disk/scsi, /distro/mint, /env/prod
Variant 13: /hw/cpu/amd, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 14: /hw/cpu/amd, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 15: /hw/cpu/amd, /hw/disk/virtio, /distro/mint, /env/debug
Variant 16: /hw/cpu/amd, /hw/disk/virtio, /distro/mint, /env/prod
Variant 17: /hw/cpu/arm, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 18: /hw/cpu/arm, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 19: /hw/cpu/arm, /hw/disk/scsi, /distro/mint, /env/debug
Variant 20: /hw/cpu/arm, /hw/disk/scsi, /distro/mint, /env/prod
Variant 21: /hw/cpu/arm, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 22: /hw/cpu/arm, /hw/disk/virtio, /distro/fedora, /env/prod

(continues on next page)

170 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

(continued from previous page)

Variant 23: /hw/cpu/arm, /hw/disk/virtio, /distro/mint, /env/debug
Variant 24: /hw/cpu/arm, /hw/disk/virtio, /distro/mint, /env/prod

Where the first variant contains:

/hw/cpu/intel/ => cpu_CFLAGS: -march=core2
/hw/disk/ => disk_type: scsi
/distro/fedora/ => init: systemd
/env/debug/ => opt_CFLAGS: -O0 -g

The second one:

/hw/cpu/intel/ => cpu_CFLAGS: -march=core2
/hw/disk/ => disk_type: scsi
/distro/fedora/ => init: systemd
/env/prod/ => opt_CFLAGS: -O2

From this example you can see that querying for /env/debug works only in the first variant, but returns nothing in
the second variant. Keep this in mind and when you use the !mux flag always query for the pre-mux path, /env/*
in this example.

Injecting values

Beyond the values injected by YAML files specified it’s also possible inject values directly from command line
to the final multiplex tree. It’s done by the argument --mux-inject. The format of expected value is
[path:]key:node_value.

Warning: When no path is specified to --mux-inject the parameter is added under tree root /. For example:
running avocado passing --mux-inject my_key:my_value the parameter can be accessed calling self.
params.get('my_key'). If the test writer wants to put the injected value in any other path location, like
extending the /run path, it needs to be informed on avocado run call. For example: --mux-inject /run/
:my_key:my_valuemakes possible to access the parameters calling self.params.get('my_key', '/
run')

A test that gets parameters without a defined path, such as examples/tests/multiplextest.py:

os_type = self.params.get('os_type', default='linux')

Running it:

$ avocado --show=test run -- examples/tests/multiplextest.py | grep os_type
PARAMS (key=os_type, path=*, default=linux) => 'linux'

Now, injecting a value, by default will put it in /, which is not in the default list of paths searched for:

$ avocado --show=test run --mux-inject os_type:myos -- examples/tests/multiplextest.
→˓py | grep os_type
PARAMS (key=os_type, path=*, default=linux) => 'linux'

A path that is searched for by default is /run. To set the value to that path use:

9.5. Optional plugins 171

avocado Documentation, Release 88.1

$ avocado --show=test run --mux-inject /run:os_type:myos -- examples/tests/
→˓multiplextest.py | grep os_type
PARAMS (key=os_type, path=*, default=linux) => 'myos'

Or, add the / to the list of paths searched for by default:

$ avocado --show=test run --mux-inject os_type:myos --mux-path / -- examples/tests/
→˓multiplextest.py | grep os_type
PARAMS (key=os_type, path=*, default=linux) => 'myos'

Warning: By default, the values are parsed for the respective data types. When not possible, it falls back to
string. If you want to maintain some value as string, enclose within quotes, properly escaped, and eclose that again
in quotes. For example: a value of 1 is treated as integer, a value of 1,2 is treated as list, a value of abc is treated
as string, a value of 1,2,5-10 is treated as list of integers as 1,2,-5. If you want to maintain this as string,
provide the value as "\"1,2,5-10\""

9.6 Avocado Releases

9.6.1 How we release Avocado

The regular releases are released after each sprint, which usually takes 3 weeks. Regular releases are supported only
until the next version is released.

We also understand that there are multiple projects currently depending on the stability of Avocado and we don’t want
their work to be disrupted by incompatibilities nor instabilities in new releases.

Because of that, we have LTS releases, that are regular releases considering the release cycle, but a new branch is
created and bugfixes are backported on demand for a period of about 18 months after the release. Every year (or so) a
new LTS version is released. Two subsequent LTS versions are guaranteed to have 6 months of supportability overlap.

9.6.2 Long Term Stability Releases

82.0 LTS

The Avocado team is proud to present another LTS (Long Term Stability) release: Avocado 82.0, AKA “Avengers:
Endgame”, is now available!

LTS Release

For more information on what a LTS release means, please read RFC: Long Term Stability.

Upgrading from 69.x to 82.0

Upgrading Installations

Avocado is available on a number of different repositories and installation methods. You can find the complete details
in Installing Avocado. After looking at your installation options, please consider the following when planning an
in-place upgrade or a deployment version bump:

172 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• Avocado previously also supported Python 2, but it now supports Python 3 only. If your previous installation was
based on Python 2, please consider that the upgrade path includes moving to Python 3. Dependency libraries,
syntax changes, and maybe even the availability of a Python 3 interpreter are examples of things to consider.

• No issues were observed when doing an in-place upgrade from Python 2 based Avocado 69.x LTS to Python 3
based Avocado 82.0 LTS.

• When using Python’s own package management, that is, pip, simply switch to a Python 3 based pip (python3
-m pip is an option) and install the avocado-framework<83.0 package to get the latest release of the
current LTS version.

• When using RPM packages, please notice that there’s no package python-avocado anymore.
Please use python3-avocado instead. The same is true for plugins packages, they all have the
python3-avocado-plugins prefix.

Porting Tests (Test API compatibility)

If you’re migrating from the previous LTS version, these are the changes on the Test API that most likely will affect
your test:

• The avocado.main function isn’t available anymore. If you were importing it but not really executing the
test script, simply remove it. If you need to execute Avocado tests as scripts, you need to resort to the Job API
instead. See examples/jobs/passjob_with_test.py for an example.

Porting Tests (Utility API compatibility)

The changes in the utility APIs (those that live under the avocado.utils namespace are too many to present
porting suggestion. Please refer to the Utility APIs section for a comprehensive list of changes, including new features
your test may be able to leverage.

Changes from previous LTS

Note: This is not a collection of all changes encompassing all releases from 69.0 to 82.0. This list contains changes
that are relevant to users of 69.0, when evaluating an upgrade to 82.0.

When compared to the last LTS (version 69.3), the main changes introduced by this versions are:

Users

• Avocado can now run on systems with nothing but Python 3 (and “quasi-standard-library” module
setuptools). This means that it won’t require extra packages, and should be easier to deploy on containers,
embedded systems, etc. Optional plugins may have additional requirements.

• Improved safeloader support for Python unit tests, including support for finding test classes that use multiple
inheritances. As an example, Avocado’s safeloader is now able to properly find all of its own tests (almost
1000 of them).

• Removal of old and redundant command-line options, such as --silent and --show-job-log in favor of
--show=none and --show=test, respectively.

• Job result categorization support, by means of the --job-category option to the run command, allows a
user to create an easy to find directory, within the job results directory, for a given type of executed jobs.

9.6. Avocado Releases 173

avocado Documentation, Release 88.1

• The glib plugin got a configuration option for safe/unsafe operation, that is, whether it will execute binaries in
an attempt to find the whole list of tests. Look for the glib.conf shipped with the plugin to enable the unsafe
mode.

• The HTML report got upgrades as pop-up whiteboard, filtering support and resizable columns.

• When using the output check record features, duplicate files created by different tests/variants will be consoli-
dated into unique files.

• The new vmimage command allows a user to list the virtual machine images downloaded by means of
avocado.utils.vmimage or download new images via the avocado vmimage get command.

• The avocado assets fetch command now accepts a --ignore-errors option that returns exit code 0
even when some of the assets could not be fetched.

• The avocado sysinfo feature file will now work out of the box on pip based installations.

• The sysinfo collection now logs a much clearer message when a command is not found and thus can not have
its output collected.

• Users can now select which runner plugin will be used to run tests. To select a runner on the command line, use
the --test-runner option. Please refer to avocado plugins to see the runner plugins available.

• A new runner, called nrunner, has been introduced and has distinguishing features such as parallel test exe-
cution support either in processes or in Podman based containers.

• A massive documentation overhaul, now designed around guides to different target audiences. The “User’s
Guide”, “Test Writer’s Guide” and “Contributor’s Guide” can be easily found as first level sections containing
curated content for those audiences.

• It’s now possible to enforce colored or non-colored output, no matter if the output is a terminal or not. The
configuration item color was introduced in the runner.output section, and recognizes the values auto,
always, or never.

• The jsonresult plugin added warn and interrupt fields containing counters for the tests that ended with
WARN and INTERRUPTED status, respectively.

• Avocado’s avocado.utils.software_manager functionality is now also made available as the
avocado-software-manager command-line tool.

• Avocado now supports “hint files” that can tweak how the Avocado resolver will recognize tests. This is use-
ful for projects making use of Avocado as a test runner, and it can allow complete integration with a simple
configuration file in a project repository. For more information check out the documentation.

• The --ignore-missing-references option now takes no parameter. The feature it controls is not en-
abled unless you supply the command line option (but no on or off is required).

• A brand new command, jobs, enables users to, among other things, list information about previously executed
jobs. A command such as avocado jobs show will show the latest job information.

• The remote, vm, and docker runner plugins were removed.

• The multiplex command, an alias to variants, has been removed.

• A new settings API that is tightly linked to the Job API. You can see all the existing configurations at runtime
by running avocado config reference. To integrate Avocado to an existing project or a CI environment, a custom
job with a few configurations will give you a lot of flexibility with very little need to write Python code. Some
examples are available at examples/jobs.

174 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Test Writers

• Python 2 support has been removed. Support for Python versions include 3.5, 3.6, 3.7 and 3.8. If you require
Python 2 support, the 69.X LTS version should be used.

• A fully usable Job API, making most of Avocado’s functionalities programmable and highly customizable.

• Support for multiple test suites in a Job, so that each test suite can be configured differently and independently
from each other. Fulfill your use case easily (or let your imagination go wild) and define different runners, dif-
ferent parameters to different test suites, or run some test suites locally, while others run isolated on containers.
Anything that is configurable with the new settings API should be transparently configurable in the context of a
test suite (provided the test suite deals with that feature).

• A completely new implementation of the CIT Varianter plugin, now with support for constraints. Refer to CIT
Varianter Plugin for more information.

• The new avocado.cancel_on() decorator has been added to the Test APIs, allowing you to define the
conditions for a test to be considered canceled. See one example here.

• Avocado can now use tags inside Python Unittests, and not only on its own Instrumented tests.

• The tags feature (see Categorizing tests) now supports an extended character set, adding . and - to the allowed
characters. A tag such as :avocado: tags=machine:s390-ccw-virtio is now valid.

• INSTRUMENTED tests using the avocado.Test.fetch_asset() can take advantage of plugins that
will attempt to download (and cache) assets before the test execution. This should make the overall test execution
more reliable, and give better test execution times as the download time will be excluded. Users can also
manually execute the avocado assets command to manually fetch assets from tests.

• The avocado.Test.fetch_asset() method now has two new parameters: find_only and
cancel_on_missing. These can be combined to cancel tests if the asset is missing after a download attempt
(find_only=False) or only if it’s present in the local system without a download having been attempted
during the test (find_only=True). This can bring better determinism for tests that would download sizable
assets, and/or allow test jobs to be executable in offline environments.

• A new test type, TAP has been introduced along with a new loader and resolver. With a TAP test, it’s possible
to execute a binary or script, similar to a SIMPLE test, and parse its Test Anything Protocol output to determine
the test status.

• The decorators avocado.skip(), avocado.skipIf(), and avocado.skipUnless() can now be
used to decorate entire classes, resulting in all its tests getting skipped if/when the given condition is satisfied.

• The “log level” of Avocado is now defined using the standard Python level names. If you have a custom
configuration for this setting, you may need to adjust it.

• The yaml_to_mux varianter plugin now attempts to respect the type of the value given to --mux-inject. For
example, 1 is treated as an integer, a value of 1,2 is treated as a list, a value of abc is treated as a string, and a
value of 1,2,5-10 is treated as a list of integers as 1,2,-5 (as it is evaluated by ast.literal_eval()).

• For users of the Job API, a “dictionary-based” varianter was introduced, that allows you to describe the variations
of tests in a test suite directly via a Python dictionary.

• The avocado.utils.runtime module has been removed.

• The test runner feature that would allow binaries to be run transparently inside GDB was removed. The reason
for dropping such a feature has to do with how it limits the test runner to run one test at a time, and the use of
the avocado.utils.runtime mechanism, also removed.

• The “standalone job” feature was removed. The alternative is to use an Avocado Job (using the Job API), with a
test defined on the same file, as can be seen on the example file examples/jobs/passjob_with_test.
py in the source tree.

9.6. Avocado Releases 175

https://docs.python.org/3/library/ast.html#ast.literal_eval

avocado Documentation, Release 88.1

Utility APIs

• Two simple utility APIs, avocado.utils.genio.append_file() and avocado.utils.genio.
append_one_line() have been added.

• The new avocado.utils.datadrainer provides an easy way to read from and write to various in-
put/output sources without blocking a test (by spawning a thread for that).

• The new avocado.utils.diff_validator can help test writers to make sure that given changes have
been applied to files.

• avocado.utils.partition now allows mkfs and mount flags to be set.

• Users of the avocado.utils.partition.mount() function can now skip checking if the de-
vices/mountpoints are mounted, which is useful for bind mounts.

• avocado.utils.cpu.get_cpu_vendor_name() now returns the CPU vendor name for POWER9.

• The avocado.utils.cpu changed how it identifies CPU vendors, architectures, and families, making those
more consistent across the board.

• The names of the avocado.utils.cpu functions changed, from what’s listed on left hand side (now depre-
cated) the ones on the right hand side:

• avocado.utils.cpu.total_cpus_count() => avocado.utils.cpu.total_count()

• avocado.utils.cpu._get_cpu_info() => avocado.utils.cpu._get_info()

• avocado.utils.cpu._get_cpu_status() => avocado.utils.cpu._get_status()

• avocado.utils.cpu.get_cpu_vendor_name() => avocado.utils.cpu.get_vendor()

• avocado.utils.cpu.get_cpu_arch() => avocado.utils.cpu.get_arch()

• avocado.utils.cpu.cpu_online_list() => avocado.utils.cpu.online_list()

• avocado.utils.cpu.online_cpus_count() => avocado.utils.cpu.online_count()

• avocado.utils.cpu.get_cpuidle_state() => avocado.utils.cpu.get_idle_state()

• avocado.utils.cpu.set_cpuidle_state() => avocado.utils.cpu.set_idle_state()

• avocado.utils.cpu.set_cpufreq_governor() => avocado.utils.cpu.
set_freq_governor()

• avocado.utils.cpu.get_cpufreq_governor() => avocado.utils.cpu.
get_freq_governor()

• Additionally, avocado.utils.cpu.get_arch() implementation for powerpc has been corrected to re-
turn powerpc instead of cpu family values like power8, power9.

• New avocado.utils.cpu.get_family() is added to get the cpu family values like power8, power9.

• The avocado.utils.cpu.online() and avocado.utils.cpu.offline() will now check the
status of the CPU before attempting to apply a possibly (unnecessary) action.

• The avocado.utils.asset module now allows a given location, as well as a list, to be given, simplifying
the most common use case.

• avocado.utils.process.SubProcess.stop() now supports setting a timeout.

• avocado.utils.memory now properly handles huge pages for the POWER platform.

• avocado.utils.ssh now allows password-based authentication, in addition to public key-based authenti-
cation.

176 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• The new avocado.utils.ssh.Session.get_raw_ssh_command() method allows access to the
generated (local) commands, which could be used for advanced use cases, such as running multiple (remote)
commands in a test. See the examples/apis/utils/ssh.py for an example.

• The avocado.utils.ssh.Session.cmd() method now allows users to ignore the exit status of the
command with the ignore_status parameter.

• avocado.utils.path.usable_ro_dir() will no longer create a directory, but will just check for its
existence and the right level of access.

• avocado.utils.archive.compress() and avocado.utils.archive.uncompress() and
now supports LZMA compressed files transparently.

• The avocado.utils.vmimage module now has providers for the CirrOS cloud images.

• The avocado.utils.vmimage library now allows a user to define the qemu-img binary that will be used
for creating snapshot images via the avocado.utils.vmimage.QEMU_IMG variable.

• The avocado.utils.vmimage module will not try to create snapshot images when it’s not needed, acting
lazily in that regard. It now provides a different method for download-only operations, avocado.utils.
vmimage.Image.download() that returns the base image location. The behavior of the avocado.
utils.vmimage.Image.get() method is unchanged in the sense that it returns the path of a snapshot
image.

• The avocado.utils.configure_network module introduced a number of utilities, including MTU
configuration support, a method for validating network among peers, IPv6 support, etc.

• The avocado.utils.configure_network.set_ip() function now supports different interface types
through a interface_type parameter, while still defaulting to Ethernet.

• avocado.utils.configure_network.is_interface_link_up() is a new utility function that
returns, quite obviously, whether an interface link is up.

• The avocado.utils.network module received a complete overhaul and provides features for getting,
checking, and setting network information from local and even remote hosts.

• The avocado.utils.network.interfaces module now supports different types of output produced
by iproute.

• avocado.utils.kernel received a number of fixes and cleanups, and also new features. It’s now possi-
ble to configure the kernel for multiple targets, and also set kernel configurations at configuration time with-
out manually touching the kernel configuration files. It also introduced the avocado.utils.kernel.
KernelBuild.vmlinux property, allowing users to access that image if it was built.

• New functions such as avocado.utils.multipath.add_path(), avocado.utils.multipath.
remove_path(), avocado.utils.multipath.get_mpath_status() and avocado.utils.
multipath.suspend_mpath() have been introduced to the avocado.utils.multipath module.

• The new avocado.utils.pmem module provides an interface to manage persistent memory. It allows for
creating, deleting, enabling, disabling, and re-configuring both namespaces and regions depending on supported
hardware. It wraps the features present on the ndctl and daxctl binaries.

• All of the avocado.utils.gdb APIs are now back to a working state, with many fixes related to bytes and
strings, as well as buffered I/O caching fixes.

Contributors

• The Avocado configuration that is logged during a job execution is now the dictionary that is produced by
the new avocado.core.settings module, instead of the configuration file(s) content. This is relevant
because this configuration contains the result of everything that affects a job, such as defaults registered by

9.6. Avocado Releases 177

avocado Documentation, Release 88.1

plugins, command-line options, all in addition to the configuration file. The goal is to have more consistent
behavior and increased job “replayability”.

Complete list of changes

For a complete list of changes between the last LTS release (69.3) and this release, please check out the Avocado
commit changelog.

69.0 LTS

The Avocado team is proud to present another LTS (Long Term Stability) release: Avocado 69.0, AKA “The King’s
Choice”, is now available!

LTS Release

For more information on what a LTS release means, please read RFC: Long Term Stability.

Upgrading from 52.x to 69.0

Upgrading Installations

Avocado is available on a number of different repositories and installation methods. You can find the complete details
in Installing Avocado. After looking at your installation options, please consider the following highlights about the
changes in the Avocado installation:

• Avocado fully supports both Python 2 and 3, and both can even be installed simultaneously. When using RPM
packages, if you ask to have python-avocado installed, it will be provided by the Python 2 based package.
If you want a Python 3 based version you must use the python3-avocado package. The same is true for
plugins, which have a python2-avocado-plugins or python3-avocado-plugins prefix.

• Avocado can now be properly installed without super user privileges. Previously one would see an error such as
could not create '/etc/avocado': Permission denied when trying to do a source or PIP
based installation.

• When installing Avocado on Python “venvs”, the user’s base data directory is now within the venv. If you had
content outside the venv, such as results or tests directories, please make sure that you either configure your data
directories on the [datadir.paths] section of your configuration file, or move the data over.

Porting Tests (Test API compatibility)

If you’re migration from the previous LTS version, these are the changes on the Test API that most likely will affect
your test.

Note: Between non-LTS releases, the Avocado Test APIs receive a lot of effort to be kept as stable as possible. When
that’s not possible, a deprecation strategy is applied and breakage can occur. For guaranteed stability across longer
periods of time, LTS releases such as this one should be used.

• Support for default test parameters, given via the class level default_params dictionary has been removed.
If your test contains a snippet similar to:

178 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/69.3...82.0
https://github.com/avocado-framework/avocado/compare/69.3...82.0

avocado Documentation, Release 88.1

default_params = {'param1': 'value1',
'param2': 'value2'}

def test(self):
value1 = self.params.get('param1')
value2 = self.params.get('param2')

It should be rewritten to look like this:

def test(self):
value1 = self.params.get('param1', default='value1')
value2 = self.params.get('param2', default='value2')

• Support for getting parameters using the self.params.key syntax has been removed. If your test contains
a snippet similar to:

def test(self):
value1 = self.params.key1

It should be rewritten to look like this:

def test(self):
value1 = self.params.get('key1')

• Support for the datadir test class attribute has been removed in favor of the get_data() method. If your
test contains a snippet similar to:

def test(self):
data = os.path.join(self.datadir, 'data')

It should be rewritten to look like this:

def test(self):
data = self.get_data('data')

• Support for for srcdir test class attribute has been removed in favor of the workdir attribute. If your test
contains a snippet similar to:

def test(self):
compiled = os.path.join(self.srcdir, 'binary')

It should be rewritten to look like this:

def test(self):
compiled = os.path.join(self.workdir, 'binary')

• The :avocado: enable and :avocado: recursive tags may not be necessary anymore, given that
“recursive” is now the default loader behavior. If you test contains:

def test(self):
"""
:avocado: enable
"""

Or:

9.6. Avocado Releases 179

avocado Documentation, Release 88.1

def test(self):
"""
:avocado: recursive
"""

Consider removing the tags completely, and check if the default loader behavior is sufficient with:

$ avocado list your-test-file.py

• Support for the skip method has been removed from the avocado.Test class. If your test contains a snippet
similar to:

def test(self):
if not condition():

self.skip("condition not suitable to keep test running")

It should be rewritten to look like this:

def test(self):
if not condition():

self.cancel("condition not suitable to keep test running")

Porting Tests (Utility API compatibility)

The changes in the utility APIs (those that live under the avocado.utils namespace are too many to present
porting suggestion. Please refer to the Utility APIs section for a comprehensive list of changes, including new features
your test may be able to leverage.

Changes from previous LTS

Note: This is not a collection of all changes encompassing all releases from 52.0 to 69.0. This list contains changes
that are relevant to users of 52.0, when evaluating an upgrade to 69.0.

When compared to the last LTS (version 52.1), the main changes introduced by this versions are:

Test Writers

Test APIs

• Test writers will get better protection against mistakes when trying to overwrite avocado.core.test.Test
“properties”. Some of those were previously implemented using avocado.utils.data_structures.
LazyProperty() which did not prevent test writers from overwriting them.

• The avocado.Test.default_parameters mechanism for setting default parameters on tests has been
removed. This was introduced quite early in the Avocado development, and allowed users to set a dictionary
at the class level with keys/values that would serve as default parameter values. The recommended approach
now, is to just provide default values when calling the self.params.get within a test method, such as
self.params.get("key", default="default_value_for_key").

180 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• The __getattr__ interface for self.params has been removed. It used to allow users to use a syntax
such as self.params.key when attempting to access the value for key key. The supported syntax is
self.params.get("key") to achieve the same thing.

• The support for test data files has been improved to support more specific sources of data. For instance, when
a test file used to contain more than one test, all of them shared the same datadir property value, thus the
same directory which contained data files. Now, tests should use the newly introduced get_data() API,
which will attempt to locate data files specific to the variant (if used), test name, and finally file name. For more
information, please refer to the section Accessing test data files.

• The avocado.Test.srcdir attribute has been removed, and with it, the AVOCADO_TEST_SRCDIR en-
vironment variable set by Avocado. Tests should have been modified by now to make use of the avocado.
Test.workdir instead.

• The avocado.Test.datadir attribute has been removed, and with it, the AVOCADO_TEST_DATADIR
environment variable set by Avocado. Tests should now to make use of the avocado.Test.get_data()
instead.

• Switched the FileLoader discovery to :avocado: recursive by default. All tags enable, disable and recursive are
still available and might help fine-tuning the class visibility.

• The deprecated skip method, previously part of the avocado.Test API, has been removed. To skip a test,
you can still use the avocado.skip(), avocado.skipIf() and avocado.skipUnless() decora-
tors.

• The Avocado Test class now exposes the tags to the test. The test may use that information, for
instance, to decide on default behavior.

• The Avocado test loader, which does not load or execute Python source code that may contain tests for security
reasons, now operates in a way much more similar to the standard Python object inheritance model. Before,
classes containing tests that would not directly inherit from avocado.Test would require a docstring state-
ment (either :avocado: enable or :avocado: recursive). This is not necessary for most users
anymore, as the recursive detection is now the default behavior.

Utility APIs

• The avocado.utils.archive module now supports the handling of gzip files that are not compressed
tarballs.

• avocado.utils.astring.ENCODING is a new addition, and holds the encoding used on many other
Avocado utilities. If your test needs to convert between binary data and text, we recommend you use it as the
default encoding (unless your test knows better).

• avocado.utils.astring.to_text() now supports setting the error handler. This means that when a
perfect decoding is not possible, users can choose how to handle it, like, for example, ignoring the offending
characters.

• The avocado.utils.astring.tabular_output() will now properly strip trailing whitespace from
lines that don’t contain data for all “columns”. This is also reflected in the (tabular) output of commands such
as avocado list -v.

• Simple bytes and “unicode strings” utility functions have been added to avocado.utils.astring, and
can be used by extension and test writers that need consistent results across Python major versions.

• The avocado.utils.cpu.set_cpuidle_state() function now takes a boolean value for its
disable parameter (while still allowing the previous integer (0/1) values to be used). The goal is to have
a more Pythonic interface, and to drop support legacy integer (0/1) use in the upcoming releases.

9.6. Avocado Releases 181

avocado Documentation, Release 88.1

• The avocado.utils.cpu functions, such as avocado.utils.cpu.cpu_oneline_list() now
support the S390X architecture.

• The avocado.utils.distro module has dropped the probe that depended on the Python standard library
platform.dist(). The reason is the platform.dist() has been deprecated since Python 2.6, and has
been removed on the upcoming Python 3.8.

• The avocado.utils.distro module introduced a probe for the Ubuntu distros.

• The avocado.core.utils.vmimage library now allows users to expand the builtin list of image
providers. If you have a local cache of public images, or your own images, you can quickly and easily reg-
ister your own providers and thus use your images on your tests.

• The avocado.utils.vmimage library now contains support for Avocado’s own JeOS (“Just Enough Op-
erating System”) image. A nice addition given the fact that it’s the default image used in Avocado-VT and the
latest version is available in the following architectures: x86_64, aarch64, ppc64, ppc64le and s390x.

• The avocado.utils.vmimage library got a provider implementation for OpenSUSE. The limitation is that
it tracks the general releases, and not the rolling releases (called Tumbleweed).

• The avocado.utils.vmimage.get() function now provides a directory in which to put the snapshot file,
which is usually discarded. Previously, the snapshot file would always be kept in the cache directory, resulting
in its pollution.

• The exception raised by the utility functions in avocado.utils.memory has been renamed from
MemoryError and became avocado.utils.memory.MemError. The reason is that MemoryError is
a Python standard exception, that is intended to be used on different situations.

• When running a process by means of the avocado.utils.process module utilities, the output of such
a process is captured and can be logged in a stdout/stderr (or combined output) file. The logging is
now more resilient to decode errors, and will use the replace error handler by default. Please note that the
downside is that this may produce different content in those files, from what was actually output by the processes
if decoding error conditions happen.

• The avocado.utils.process has seen a number of changes related to how it handles data from the ex-
ecuted processes. In a nutshell, process output (on both stdout and stderr) is now considered binary
data. Users that need to deal with text instead, should use the newly added avocado.utils.process.
CmdResult.stdout_text and avocado.utils.process.CmdResult.stderr_text, which
are convenience properties that will attempt to decode the stdout or stderr data into a string-like type
using the encoding set, and if none is set, falling back to the Python default encoding. This change of behavior
was needed to accommodate Python’s 2 and Python’s 3 differences in bytes and string-like types and handling.

• The avocado.utils.process library now contains helper functions similar to the Python 2 commands.
getstatusoutput() and commands.getoutput() which can be of help to people porting code from
Python 2 to Python 3.

• New avocado.utils.process.get_parent_pid() and avocado.utils.process.
get_owner_id() process related functions

• The avocado.utils.kernel library now supports setting the URL that will be used to fetch the Linux
kernel from, and can also build installable packages on supported distributions (such as .deb packages on
Ubuntu).

• The avocado.utils.iso9660 module gained a pycdlib based backend, which is very capable, and pure
Python ISO9660 library. This allows us to have a working avocado.utils.iso9660 backend on environ-
ments in which other backends may not be easily installable.

• The avocado.utils.iso9660.iso9660() function gained a capabilities mechanism, in which users
may request a backend that implement a given set of features.

182 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• The avocado.utils.iso9660 module, gained “create” and “write” capabilities, currently implemented
on the pycdlib based backend. This allows users of the avocado.utils.iso9660 module to create ISO
images programatically - a task that was previously done by running mkisofs and similar tools.

• The avocado.utils.download module, and the various utility functions that use it, will have extended
logging, including the file size, time stamp information, etc.

• A brand new module, avocado.utils.cloudinit, that aides in the creation of ISO files containing con-
figuration for the virtual machines compatible with cloudinit. Besides authentication credentials, it’s also possi-
ble to define a “phone home” address, which is complemented by a simple phone home server implementation.
On top of that, a very easy to use function to wait on the phone home is available as avocado.utils.
cloudinit.wait_for_phone_home().

• A new utility library, avocado.utils.ssh, has been introduced. It’s a simple wrapper around the OpenSSH
client utilities (your regular /usr/bin/ssh) and allows a connection/session to be easily established, and
commands to be executed on the remote endpoint using that previously established connection.

• The avocado.utils.cloudinit module now adds support for instances to be configured to allow root
logins and authentication configuration via SSH keys.

• New avocado.utils.disk.get_disk_blocksize() and avocado.utils.disk.
get_disks() disk related utilities.

• A new network related utility function, avocado.utils.network.PortTracker was ported from
Avocado-Virt, given the perceived general value in a variety of tests.

• A new memory utility utility, avocado.utils.memory.MemInfo, and its ready to use instance
avocado.utils.memory.meminfo, allows easy access to most memory related information on Linux
systems.

• A number of improvements to the avocado.utils.lv_utils module now allows users to choose if they
want or not to use ramdisks, and allows for a more concise experience when creating Thin Provisioning LVs.

• New utility function in the avocado.utils.genio that allows for easy matching of patterns in files. See
avocado.utils.is_pattern_in_file() for more information.

• New utility functions are available to deal with filesystems, such as avocado.utils.disk.
get_available_filesystems() and avocado.utils.disk.get_filesystem_type().

• The avocado.utils.process.kill_process_tree() now supports waiting a given timeout, and
returns the PIDs of all process that had signals delivered to.

• The avocado.utils.network.is_port_free() utility function now supports IPv6 in addition to
IPv4, as well as UDP in addition to TCP.

• A new avocado.utils.cpu.get_pid_cpus() utility function allows one to get all the CPUs being
used by a given process and its threads.

• The avocado.utils.process module now exposes the timeout parameter to users of the avocado.
utils.process.SubProcess class. It allows users to define a timeout, and the type of signal that will be
used to attempt to kill the process after the timeout is reached.

Users

• Passing parameters to tests is now possible directly on the Avocado command line, without the use of any
varianter plugin. In fact, when using variants, these parameters are (currently) ignored. To pass one parameter
to a test, use -p NAME=VAL, and repeat it for other parameters.

• The test filtering mechanism using tags now support “key:val” assignments for further categorization. See
Python unittest Compatibility Limitations And Caveats for more details.

9.6. Avocado Releases 183

avocado Documentation, Release 88.1

• The output generated by tests on stdout and stderr are now properly prefixed with [stdout] and
[stderr] in the job.log. The prefix is not applied in the case of $test_result/stdout and
$test_result/stderr files, as one would expect.

• The installation of Avocado from sources has improved and moved towards a more “Pythonic” approach. In-
stallation of files in “non-Pythonic locations” such as /etc are no longer attempted by the Python setup.py
code. Configuration files, for instance, are now considered package data files of the avocado package. The
end result is that installation from source works fine outside virtual environments (in addition to installations
inside virtual environments). For instance, the locations of /etc (config) and /usr/libexec (libexec) files
changed to live within the pkg_data (eg. /usr/lib/python2.7/site-packages/avocado/etc) by
default in order to not to modify files outside the package dir, which allows user installation and also the dis-
tribution of wheel packages. GNU/Linux distributions might still modify this to better follow their conventions
(eg. for RPM the original locations are used). Please refer to the output of the avocado config command
to see the configuration files that are actively being used on your installation.

• SIMPLE tests were limited to returning PASS, FAIL and WARN statuses. Now SIMPLE tests can now also
return SKIP status. At the same time, SIMPLE tests were previously limited in how they would flag a WARN
or SKIP from the underlying executable. This is now configurable by means of regular expressions.

• Sysinfo collection can now be enabled on a test level basis.

• Avocado can record the output generated from a test, which can then be used to determine if the test passed
or failed. This feature is commonly known as “output check”. Traditionally, users would choose to record
the output from STDOUT and/or STDERR into separate streams, which would be saved into different files.
Some tests suites actually put all content of STDOUT and STDERR together, and unless we record them to-
gether, it’d be impossible to record them in the right order. This version introduces the combined option to
--output-check-record option, which does exactly that: it records both STDOUT and STDERR into a
single stream and into a single file (named output in the test results, and output.expected in the test data
directory).

• The complete output of tests, that is the combination of STDOUT and STDERR is now also recorded in the test
result directory as a file named output.

• When the output check feature finds a mismatch between expected and actual output, will now produce a unified
diff of those, instead of printing out their full content. This makes it a lot easier to read the logs and quickly spot
the differences and possibly the failure cause(s).

• The output check feature will now use the to the most specific data source location available, which is a conse-
quence of the switch to the use of the get_data() API discussed previously. This means that two tests in a
single file can generate different output, generate different stdout.expected or stderr.expected.

• SIMPLE <test_type_simple> tests can also finish with SKIP OR WARN status, depending on the output pro-
duced, and the Avocado test runner configuration. It now supports patterns that span across multiple lines. For
more information, refer to SIMPLE Tests Status.

• A better handling of interruption related signals, such as SIGINT and SIGTERM. Avocado will now try harder
to not leave test processes that don’t respond to those signals, and will itself behave better when it receives them.
For a complete description refer to signal_handlers.

• Improvements in the serialization of TestIDs allow test result directories to be properly stored and accessed on
Windows based filesystems.

• The deprecated jobdata/urls link to jobdata/test_references has been removed.

• The avocado command line argument parser is now invoked before plugins are initialized, which allows the
use of --config with configuration file that influence plugin behavior.

• The test log now contains a number of metadata about the test, under the heading Test metadata:. You’ll
find information such as the test file name (if one exists), its workdir and its teststmpdir if one is set.

184 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• The test runner wil now log the test initialization (look for INIT in your test logs) in addition to the already
existing start of test execution (logged as START).

• The test profilers, which are defined by default in /etc/avocado/sysinfo/profilers, are now exe-
cuted without a backing shell. While Avocado doesn’t ship with examples of shell commands as profilers, or
suggests users to do so, it may be that some users could be using that functionality. If that’s the case, it will now
be necessary to write a script that wraps you previous shell command. The reason for doing so, was to fix a bug
that could leave profiler processes after the test had already finished.

• The Human UI plugin, will now show the “reason” behind test failures, cancellations and others right along the
test result status. This hopefully will give more information to users without requiring them to resort to logs
every single time.

• When installing and using Avocado in a Python virtual environment, the ubiquitous “venvs”, the base data
directory now respects the virtual environment. If you have are using the default data directory outside of a
venv, please be aware that the updated

• Avocado packages are now available in binary “wheel” format on PyPI. This brings faster, more convenient and
reliable installs via pip. Previously, the source-only tarballs would require the source to be built on the target
system, but the wheel package install is mostly an unpack of the already compiled files.

• The legacy options --filter-only, --filter-out and --multiplex have now been removed.
Please adjust your usage, replacing those options with --mux-filter-only, --mux-filter-out and
--mux-yaml respectively.

• The location of the Avocado configuration files can now be influenced by third parties by means of a new plugin.

• The configuration files that have been effectively parsed are now displayed as part of avocado config
command output.

Output Plugins

• Including test logs in TAP plugin is disabled by default and can be enabled using --tap-include-logs.

• The TAP result format plugin received improvements, including support for reporting Avocado tests with CAN-
CEL status as SKIP (which is the closest status available in the TAP specification), and providing more visible
warning information in the form of comments when Avocado tests finish with WARN status (while maintaining
the test as a PASS, since TAP doesn’t define a WARN status).

• A new (optional) plugin is available, the “result uploader”. It allows job results to be copied over to a centralized
results server at the end of job execution. Please refer to Results Upload Plugin for more information.

• Added possibility to limit the amount of characters embedded as “system-out” in the xunit output plugin
(--xunit-max-test-log-chars XX).

• The xunit result plugin can now limit the amount of output generated by individual tests that will make into
the XML based output file. This is intended for situations where tests can generate prohibitive amounts of output
that can render the file too large to be reused elsewhere (such as imported by Jenkins).

• The xunit output now names the job after the Avocado job results directory. This should make the correlation of
results displayed in UIs such as Jenkins and the complete Avocado results much easier.

• The xUnit plugin now should produce output that is more compatible with other implementations, specifically
newer Jenkin’s as well as Ant and Maven. The specific change was to format the time field with 3 decimal
places.

• Redundant (and deprecated) fields in the test sections of the JSON result output were removed. Now, instead of
url, test and id carrying the same information, only id remains.

9.6. Avocado Releases 185

avocado Documentation, Release 88.1

Test Loader Plugins

• A new loader implementation, that reuses (and resembles) the YAML input used for the varianter yaml_to_mux
plugin. It allows the definition of test suite based on a YAML file, including different variants for different tests.
For more information refer to yaml_loader.

• Users of the YAML test loader have now access to a few special keys that can tweak test attributes, including
adding prefixes to test names. This allows users to easily differentiate among execution of the same test, but
executed different configurations. For more information, look for “special keys” in the YAML Loader plugin
documentation.

• A new plugin enables users to list and execute tests based on the GLib test framework. This plugin allows
individual tests inside a single binary to be listed and executed.

• Avocado can now run list and run standard Python unittests, that is, tests written in Python that use the
unittest library alone.

• Support for listing and running golang tests has been introduced. Avocado can now discover tests written in Go,
and if Go is properly installed, Avocado can run them.

Varianter Plugins

• A new varianter plugin has been introduced, based on PICT. PICT is a “Pair Wise” combinatorial tool, that
can generate optimal combination of parameters to tests, so that (by default) at least a unique pair of parameter
values will be tested at once.

• A new varianter plugin, the CIT Varianter Plugin. This plugin implements a “Pair-Wise”, also known as “Com-
binatorial Independent Testing” algorithm, in pure Python. This exciting new functionality is provided thanks
to a collaboration with the Czech Technical University in Prague.

• Users can now dump variants to a (JSON) file, and also reuse a previously created file in their future jobs
execution. This allows users to avoid recomputing the variants on every job, which might bring significant
speed ups in job execution or simply better control of the variants used during a job. Also notice that even when
users do not manually dump a variants file to a specific location, Avocado will automatically save a suitable file
at jobdata/variants.json as part of a Job results directory structure. The feature has been isolated into
a varianter implementation called json_variants, that you can see with avocado plugins.

Test Runner Plugins

• The command line options --filter-by-tags and --filter-by-tags-include-empty are now
white listed for the remote runner plugin.

• The remote runner plugin will now respect ~/.ssh/config configuration.

Complete list of changes

For a complete list of changes between the last LTS release (52.1) and this release, please check out the Avocado
commit changelog.

52.0 LTS

The Avocado team is proud to present another release: Avocado version 52.0, the second Avocado LTS version.

186 Chapter 9. Build and Quality Status

https://developer.gnome.org/glib/stable/glib-Testing.html
https://docs.python.org/3/library/unittest.html#module-unittest
https://github.com/avocado-framework/avocado/compare/52.1...69.0
https://github.com/avocado-framework/avocado/compare/52.1...69.0

avocado Documentation, Release 88.1

What’s new?

When compared to the last LTS (v36), the main changes introduced by this versions are:

• Support for TAP[2] version 12 results, which are generated by default in test results directory (results.tap
file).

• The download of assets in tests now allow for an expiration time.

• Environment variables can be propagated into tests running on remote systems.

• The plugin interfaces have been moved into the avocado.core.plugin_interfaces module.

• Support for running tests in a Docker container.

• Introduction of the “Fail Fast” feature (--failfast on option) to the run command, which interrupts the
Job on a first test failure.

• Special keyword latest for replaying previous jobs.

• Support to replay a Job by path (in addition to the Job ID method and the latest keyword).

• Diff-like categorized report of jobs (avocado diff <JOB_1> <JOB_2>).

• The introduction of a rr based wrapper.

• The automatic VM IP detection that kicks in when one uses --vm-domain without a matching
--vm-hostname, now uses a more reliable method (libvirt/qemu-gust-agent query).

• Set LC_ALL=C by default on sysinfo collection to simplify avocado diff comparison between different ma-
chines.

• Result plugins system is now pluggable and the results plugins (JSON, XUnit, HTML) were turned into steve-
dore plugins. They are now listed in the avocado plugins command.

• Multiplexer was replaced with Varianter plugging system with defined API to register plugins that generate test
variants.

• Old --multiplex argument, which used to turn yaml files into variants, is now handled by an optional plugin
called yaml_to_mux and the --multiplex option is being deprecated in favour of the --mux-yaml
option, which behaves the same way.

• It’s now possible to disable plugins by using the configuration file.

• Better error handling of the virtual machine plugin (--vm-domain and related options).

• When discovering tests on a directory, the result now is a properly alphabetically ordered list of tests.

• Plugins can now be setup in Avocado configuration file to run at a specific order.

• Support for filtering tests by user supplied “tags”.

• Users can now see the test tags when listing tests with the -V (verbose) option.

• Users can now choose to keep the complete set of files, including temporary ones, created during an Avocado
job run by using the --keep-tmp option (e.g. to keep those files for rr).

• Tests running with the external runner (--external-runner) feature will now have access to the extended
behavior for SIMPLE tests, such as being able to exit a test with the WARNING status.

• Encoding support was improved and now Avocado should safely treat localized test-names.

• Test writers now have access to a test temporary directory that will last not only for the duration of the
test, but for the duration of the whole job execution to allow sharing state/exchanging data between tests.
The path for that directory is available via Test API (self.teststmpdir) and via environment variable
(AVOCADO_TESTS_COMMON_TMPDIR).

9.6. Avocado Releases 187

avocado Documentation, Release 88.1

• Avocado is now available on Fedora standard repository. The package name is python2-avocado. The
optional plugins and examples packages are also available. Run dnf search avocado to list them all.

• Optional plugins and examples packages are also available on PyPI under avocado-framework name.

• Avocado test writers can now use a family of decorators, namely avocado.skip(), avocado.skipIf()
and avocado.skipUnless() to skip the execution of tests.

• Sysinfo collection based on command execution now allows a timeout to be set in the Avocado configuration
file.

• The non-local runner plugins, the html plugin and the yaml_to_mux plugin are now distributed in separate
packages.

• The Avocado main process will now try to kill all test processes before terminating itself when it receives a
SIGTERM.

• Support for new type of test status, CANCEL, and of course the mechanisms to set a test with this status (e.g. via
self.cancel()).

• avocado.TestFail, avocado.TestError and avocado.TestCancel are now public Avocado Test
APIs, available in the main avocado namespace.

• Introduction of the robot plugin, which allows Robot Framework tests to be listed and executed natively within
Avocado.

• A brand new ResultsDB optional plugin.

• Listing of supported loaders (--loaders \?) was refined.

• Variant-IDs generated by yaml_to_mux plugin now include leaf node names to make them more meaningful,
making easier to skim through the results.

• yaml_to_mux now supports internal filters defined inside the YAML file expanding the filtering capabilities even
further.

• Avocado now supports resuming jobs that were interrupted.

• The HTML report now presents the test ID and variant ID in separate columns, allowing users to also sort and
filter results based on those specific fields.

• The HTML report will now show the test parameters used in a test when the user hovers the cursor over the test
name.

• Avocado now reports the total job execution time on the UI, instead of just the tests execution time.

• New avocado variants has been added which supersedes the avocado multiplex.

• Loaders were tweaked to provide more info on avocado list -V especially when they don’t recognize the
reference.

• Users can use --ignore-missing-references on to run a job with undiscovered test references

• Users can now choose in which order the job will execute tests (from its suite) and vari-
ants. The two available options are --execution-order=variants-per-test (default) or
--execution-order=tests-per-variant.

• Test methods can be recursively discovered from parent classes by upon the :avocado: recursive doc-
string directive.

Besides the list above, we had several improvements in our utils libraries that are important for test writers, some
of them are listed below:

• time_to_seconds, geometric_mean and compare_matrices were added in avocado.utils.
data_structures.

188 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• avocado.utils.distro was refined.

• Many avocado.utils new modules were introduced, like filelock, lv_utils, multipath,
partition and pci.

• avocado.utils.memory contains several new methods.

• New avocado.utils.process.SubProcess.get_pid() method.

• sudo support in avocado.utils.process was improved

• The avocado.utils.process library makes it possible to ignore spawned background processes.

• New avocado.utils.linux_modules.check_kernel_config().

• Users of the avocado.utils.processmodule will now be able to access the process ID in the avocado.
utils.process.CmdResult.

• Improved avocado.utils.iso9660 with a more complete standard API across all back-end implementa-
tions.

• Improved avocado.utils.build.make(), which will now return the make process exit status code.

• The avocado.Test class now better exports (and protects) the core class attributes members (such as
params and runner_queue).

• avocado.utils.linux_modules functions now returns module name, size, submodules if present, file-
name, version, number of modules using it, list of modules it is dependent on and finally a list of params.

It is also worth mentioning:

• Improved documentation, with new sections to Release Notes and Optional Plugins, very improved Contribution
and Community Guide. New content and new examples everywhere.

• The avocado-framework-tests GitHub organization was founded to encourage companies to share Avocado tests.

• Bugs were always handled as high priority and every single version was delivered with all the reported bugs
properly fixed.

When compared to the last LTS, we had:

• 1187 commits (and counting).

• 15 new versions.

• 4811 more lines of Python code (+27,42%).

• 1800 more lines of code comment (+24,67%).

• 31 more Python files (+16,48%).

• 69 closed GitHub issues.

• 34 contributors from at least 12 different companies, 26 of them contributing for the fist time to the project.

Switching from 36.4 to 52.0

You already know what new features you might expect, but let’s emphasize the main changes required to your work-
flows/tests when switching from 36.4 to 52.0

9.6. Avocado Releases 189

avocado Documentation, Release 88.1

Installation

All the previously supported ways to install Avocado are still valid and few new ones were added, but beware that
Avocado was split into several optional plugins so you might want to adjust your scripts/workflows.

• Multiplexer (the YAML parser which used to generate variants) was turned into an optional plugin
yaml_to_mux also known as avocado_framework_plugin_varianter_yaml_to_mux. Without
it Avocado does not require PyYAML, but you need it to support the parsing of YAML files to variants (unless
you use a different plugin with similar functionality, which is now also possible).

• The HTML result plugin is now also an optional plugin so one has to install it separately.

• The remote execution features (--remote-hostname, --vm-domain, --docker) were also turned into
optional plugins so if you need those you need to install them separately.

• Support for virtual environment (venv) was greatly improved and we do encourage people who want to use
pip to do that via this method.

As for the available ways:

• Fedora/RHEL can use our custom repositories, either LTS-only or all releases. Note that latest versions (non-lts)
are also available directly in Fedora and also in EPEL.

• OpenSUSE - Ships the 36 LTS versions, hopefully they’ll start shipping the 52 ones as well (but we are not in
charge of that process)

• Debian - The contrib/packages/debian script is still available, although un-maintained for a long time

• PyPI/pip - Avocado as well as all optional plugins are available in PyPI and can be installed via pip install
avocado-framework*, or selectively one by one.

• From source - Makefile target install is still available but it does not install the optional plugins. You have to
install them one by one by going to their directory (eg. cd optional_plugins/html and running sudo
python setup.py install)

As before you can find the details in Installing Avocado.

Usage

Note: As mentioned in previous section some previously core features were turned into optional plugins. Do check
your install script if some command described here are missing on your system.

Most workflows should work the same, although there are few little changes and a few obsoleted constructs which are
still valid, but you should start using the new ones.

The hard changes which does not provide backward compatibility:

• Human result was tweaked a bit:

– The TESTS entry (displaying number of tests) was removed as one can easily get this information
from RESULTS.

– Instead of tests time (sum of test times) you get job time (duration of the job execution) in the human
result

• Json results also contain some changes:

– They are pretty-printed

– As cancel status was introduced, json result contain an entry of number of canceled tests (cancel)

190 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

– url was renamed to id (url entry is to be removed in 53.0 so this is actually a soft change with a
backward compatibility support)

• The avocado multilex|variants does not expect multiplex YAML files as positional arguments, one
has to use -m|--mux-yaml followed by one or more paths.

• Test variants are not serialized numbers anymore in the default yaml_to_mux (multiplexer), but ordered
list of leaf-node names of the variant followed by hash of the variant content (paths+environment). Therefor
instead of my_test:1 you can get something like my_test:arm64-virtio_scsi-RHEL7-4a3c.

• results.tap is now generated by default in job results along the results.json and results.xml
(unless disabled)

• The avocado run --replay and avocado diff are unable to parse results generated by 36.4 to this
date. We should be able to introduce such feature with not insignificant effort, but no one was interested yet.

And the still working but to be removed in 53.0 constructs:

• The long version of the -m|--multiplex argument available in avocado
run|multiplex|variants was renamed to -m|--mux-yaml which corresponds better to the
rest of --mux-* arguments.

• The avocado multiplex was renamed to avocado variants

• The avocado multiplex|variants arguments were reworked to better suite the possible multiple vari-
anter plugins:

– Instead of picking between tree representation of list of variants one can use --summary,
resp --variants followed by verbosity, which supersedes -c|contents, -t|--tree,
-i|--inherit

– Instead of --filter-only|--filter-out the --mux-filter-only|--mux-filter-out
are available

– The --mux-path is now also available in avocado multiplex|variants

Test API

Main features stayed the same, there are few new ones so do check our documentation for details. Anyway while
porting tests you should pay attention to following changes:

• If you were overriding avocado.Test attributes (eg. name, params, runner_queue, . . .) you’ll get an
AttributeError: can't set attribute error as most of them were turned into properties to avoid
accidental override of the important attributes.

• The tearDown method is now executed almost always (always when the setUp is entered), including when
the test is interrupted while running setUp. This might require some changes to your setUp and tearDown
methods but generally it should make them simpler. (See Setup and cleanup methods and following chapters for
details)

• Test exceptions are publicly available directly in avocado (TestError, TestFail, TestCancel) and
when raised inside test they behave the same way as self.error, self.fail or self.cancel. (See
avocado)

• New status is available called CANCEL. It means the test (or even just setUp) started but the test does not
match prerequisites. It’s similar to SKIP in other frameworks, but the SKIP result is reserved for tests that were
not executed (nor the setUp was entered). The CANCEL status can be signaled by self.cancel or by rais-
ing avocado.TestCancel exception and the SKIP should be set only by avocado.skip, avocado.
skipIf or avocado.skipUnless decorators. The self.skip method is still supported but will be re-

9.6. Avocado Releases 191

avocado Documentation, Release 88.1

moved after in 53.0 so you should replace it by self.cancel which has similar meaning but it additionally
executes the tearDown. (See Test statuses

• The tag argument of avocado.Test was removed as it is part of name, which can only be avocado.
core.test.TestName instance. (See avocado.core.test.Test())

• The self.job.logdir which used to be abused to share state/data between tests inside one job can now be
dropped towards the self.teststmpdir, which is a shared temporary directory which sustains throughout
job execution and even between job executions if set via AVOCADO_TESTS_COMMON_TMPDIR environmental
value. (See avocado.core.test.Test.teststmpdir())

• Those who write inherited test classes will be pleasantly surprised as it is now possible to mark a class as
avocado test including all test* methods coming from all parent classes (similarly to how dynamic discovery
works inside Python unittest, see docstring-directive-recursive for details)

• The self.text_output is not published after the test execution. If you were using it simply open the
self.logfile and read the content yourself.

Utils API

Focusing only on the changes you might need to adjust the usage of:

• avocado.utils.build.make calls as it now reports only exit_status. To get the full result object
you need to execute avocado.utils.build.run_make.

• avocado.utils.distro reports Red Hat Enterprise Linux/rhel instead of Red
Hat/redhat.

• avocado.process where the check for availability of sudo was improved, which might actually start exe-
cuting some code which used to fail in 36.4.

Also check out the avocado.utils for complete list of available utils as there were many additions between 36.4
and 52.0.

Complete list of changes

For a complete list of changes between the last LTS release (36.4) and this release, please check out the Avocado
commit changelog.

The Next LTS

The Long Term Stability releases of Avocado are the result of the accumulated changes on regular (non-LTS) releases.

This section tracks the changes introduced on each regular (non-LTS) Avocado release, and gives a sneak preview of
what will make into the next LTS release.

What’s new?

When compared to the last LTS (82.x), the main changes to be introduced by the next LTS version are:

192 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/36.4...52.0
https://github.com/avocado-framework/avocado/compare/36.4...52.0

avocado Documentation, Release 88.1

Test Writers

Test APIs

Utility APIs

Users

Output Plugins

Test Loader Plugins

Varianter Plugins

Test Runner Plugins

Complete list of changes

For a complete list of changes between the last LTS release (82.0) and this release, please check out the Avocado
commit changelog.

9.6.3 Regular Releases

88.1 The Serpent

This is a hotfix release for 88.0, with only one change to accommodate a documentation build error on readthedocs.org
caused by a new version of an external package requirement.

For the other (more relevant) changes in the 88.x release, please refer to the 88.0 Release Notes.

88.0 The Serpent

The Avocado team is proud to present another release: Avocado 88.0, AKA “The Serpent”, is now available!

Release documentation: Avocado 88.0

Users/Test Writers

• The Requirements Resolver feature has been introduced, and it’s available for general use. It allows users to
describe requirements tests may have, and will attempt to fulfill those before the test is executed. This initial
version has support for “package” requirements, meaning operating system level packages such as RPM, DEB,
etc.

Long story short, if you’re writing a functional test that manipulates Logical Volumes, you may want to declare
that the lvm2 is a package requirement of your test.

This can greatly simplify the setup of the environments the tests will run on, and at the same time, not cause test
errors because of the missing requirements (which will cause the test to be skipped).

For more information please refer to the Managing Requirements section.

9.6. Avocado Releases 193

https://github.com/avocado-framework/avocado/compare/82.0...master
https://github.com/avocado-framework/avocado/compare/82.0...master
http://avocado-framework.readthedocs.io/en/88.0/

avocado Documentation, Release 88.1

• avocado list got a --json option, which will output the list of tests in a machine readable format.

• The minimal Python version requirement now is 3.6. Python 3.5 and earlier are not tested nor supported starting
with this release.

• Because of the characteristics of the nrunner architecture, it has been decided that log content generated by
tests will not be copied to the job.log file, but will only be available on the respective test logs on the
test-results directory. Still, will often need to know if tests have been started or have finished while
looking at the job.log file. This feature has been implemented by means of the testlogs plugin.

• Avocado will log a warning, making it clear that it can not check the integrity of a requested asset when
no hash is given. This is related to users of the avocado.utils.asset module or avocado.Test.
fetch_asset() utility method.

• Avocado’s cache directory defined in the configuration will now have the ultimate saying, instead of the dynamic
probe for “sensible” cache directories that could end up not respecting user’s configurations.

Bug Fixes

• Avocado will now give an error message and exit cleanly, instead of crashing, when the resulting test suite to
be executed contains no tests. That can happen, for instance, when invalid references are given along with the
--ignore-missing-references command line option.

• A crash when running avocado distro --distro-def-create has been fixed.

Internal Changes

• All Python files tracked by version control are now checked by linters.

• An nrunner Task class now has a category . Only if a task has its category set to test (the default) it
will be accounted for in the test results.

• avocado.utils.process now uses time.monotonic() to handle timeouts, which is better suited for
the task and will survive clock updates.

• The core.show configuration item (also available as the --show command line option) is now a set of
logging streams.

• A Task's identifier now gets converted to a avocado.core.test_id.TestID before being handed over
to result plugins.

• The avocado-runner-avocado-instrumented runner now better handles its own errors (in addition
to the exceptions possibly raised by tests).

For more information, please check out the complete Avocado changelog.

87.0 Braveheart

The Avocado team is proud to present another release: Avocado 87.0, AKA “Braveheart”, is now available!

Release documentation: Avocado 87.0

Users/Test Writers

• The avocado assets command has been expanded and now can purge the cache based on its over-
all size. To keep 4 GiB of the most recently accessed files, you can run avocado assets purge

194 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/time.html#time.monotonic
https://github.com/avocado-framework/avocado/compare/87.0...88.0
http://avocado-framework.readthedocs.io/en/87.0/

avocado Documentation, Release 88.1

--by-overall-limit=4g. For more information, please refer to the documentation: Removing by overall
cache limit.

• avocado.skipIf() and avocado.skipUnless() now allow the condition to be a callable, to be eval-
uate much later, and also gives them access to the test class. For more information, please refer to the documen-
tation: Advanced Conditionals.

• The presentation of SIMPLE tests have been improved in the sense that they’re are now much more configurable.
One can now set the simpletests.status.failure_fields to configure how the status line shown
just after a failed test will look like, and job.output.testlogs.logfiles to determine the files that
will be shown at the end of the job for failed tests.

Bug Fixes

• The avocaod.core.safeloader now supports relative imports with names, meaning that syntax such as
from ..upper import foo is not properly parsed.

• The nrunner TAP runner now supports/parses large amounts of data, where it would previously crash when
buffers were overrun.

• The assets plugin (avocado assets command) now returns meaningful exit code on some failures and
success situations.

Utility APIs

• The avocado.utils.partition utility module now properly keeps track of loop devices and multiple
mounts per device.

Internal Changes

• The nrunner message handling code was mostly rewritten, with specific handlers for specific message types.
Also, the expected (mandatory and optional) is now documented.

• The avocado.core.nrunner.Task identifier is now automatically assigned if one is not explicitly pro-
vided.

• The selftests/check.py Job API-based script now prints a list of the failed tests at the end of the job.

• The nrunner standalone runners are now on their own directory on the source code tree (avocado/core/
runners).

• The nrunner base class runner is now an abtract base class.

• The Job’s Test suite for the nrunner architecture now contains Runnables instead of Tasks, which are a better fit
at that stage. Tasks will be created closer to the execution of the Job. This solves the dilemma of changing a
Task identifier, which should be avoided if possible.

• The CI jobs on Cirrus have been expanded to run the selftests in a Fedora based container environment, and a
simple smokecheck on Windows.

• A GitHub actions based job was added to the overall CI systems, initially doing the static style/lint checks.

• The selftests have been reorganized into directories for utility modules and plugins. This should, besides making
it easier to find the test file for a particular featured based on its type, also facilitate the repo split.

• A number of test status which are not being used were removed, and the current definitions now better match
the general style and are documented.

9.6. Avocado Releases 195

avocado Documentation, Release 88.1

• COPR RPM package check not attempts to install a specific package NVR (name-version-release).

• Many Python code lint improvements, with new checks added.

Misc Changes

• Updated Debian packaging, now based on Pybuild build system

For more information, please check out the complete Avocado changelog.

86.0 The Dig

The Avocado team is proud to present another release: Avocado 86.0, AKA “The Dig”, is now available!

Release documentation: Avocado 86.0

Users/Test Writers

• The avocado assets command now introduces two new different subcommands: list and purge. Both
allow listing and purging of assets based on their sizes or the number of days since they have been last accessed.
For more information please refer to Managing Assets.

Bug Fixes

• The avocado replay command was calling pre/post plugins twice after a change delegated that responsi-
bility to avocado.core.job.Job.run().

• The testlog plugin wasn’t able to show the log location for tests executed via the
avocado-runner-avocado-instrumented runner (for the nrunner architecture‘) and this is
now fixed.

• The avocado-runner-avocado-instrumented was producing duplicate log entries because of Avo-
cado’s log handler for the avocado.core.test.Test was previously configured to propagate the logged
messages.

Utility APIs

• The avocado.utils.cpu now makes available a mapping of vendor names to the data that matches in
/proc/cpuinfo on that vendor’s CPUs (avocado.utils.cpu.VENDORS_MAP). This allows users to
have visibility about the logic used to determine the vendor’s name, and overwrite it if needed.

• Various documentation improvements for the avocado.core.multipath module.

Internal Changes

• The avocado.core.test.Test class no longers require to be given an avocado.core.job.Job as
an argument. This breaks (in a good way) the circular relationship between those, and opens up the possiblity
for deprecation of legacy code.

• A number of lint checks were added.

• Remove unnecessary compatibility code for Python 3.4 and earlier.

196 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/86.0...87.0
http://avocado-framework.readthedocs.io/en/86.0/

avocado Documentation, Release 88.1

Misc Changes

For more information, please check out the complete Avocado changelog.

85.0 Bacurau

The Avocado team is proud to present another release: Avocado 85.0, AKA “Bacurau”, is now available!

Release documentation: Avocado 85.0

Users/Test Writers

• It’s now possible to set a timeout (via the task.timeout.running configuration option) for nrunner tasks.
Effectively this works as an execution timeout for tests run with --test-runner=nrunner.

• Users of the asset feature can now register their own assets with a avocado assets register com-
mand. Then, the registered asset can be used transparently with the avocado.core.test.Test.
fetch_asset() by its name. This feature helps with tests that need to use assets that can not be downloaded
by Avocado itself.

Utility APIs

• The avocado.utils.cloudinit module will give a better error message when the system is not capable
of creating ISO images, with a solution for resolution.

• The avocado.utils.vmimage can now access both current and non-current Fedora versions (which are
hosted at different locations).

• The avocado.utils.network.interfaces now supports setting configuration for SuSE based sys-
tems.

Internal Changes

• The make link, useful for developing Avocado with external plugins (say Avocado-VT), became make
develop-external, and it requires the AVOCADO_EXTERNAL_PLUGINS_PATH variable to now be set.

• Various cleanups to the Makefile and consolidation into the setup.py file.

• A large number additional lint and style checks and fixes were added.

• The “SoB” check (selftests/signedoff-check.sh) is now case insensitive.

Misc Changes

For more information, please check out the complete Avocado changelog.

84.0 The Intouchables

The Avocado team is proud to present another release: Avocado 84.0, AKA “The Intouchables”, is now available!

Release documentation: Avocado 84.0

9.6. Avocado Releases 197

https://github.com/avocado-framework/avocado/compare/85.0...86.0
http://avocado-framework.readthedocs.io/en/85.0/
https://github.com/avocado-framework/avocado/compare/84.0...85.0
http://avocado-framework.readthedocs.io/en/84.0/

avocado Documentation, Release 88.1

Users/Test Writers

• Yaml To Mux plugin now properly supports None values.

• Command line options related to results, such as --json-job-result, --tap-job-result,
--xunit-job-result and --html-job-result are now “proper boolean” options (such as
--disable-json-job-result, --disable-xunit-job-result, etc).

• Pre and Post (job) plugins are now respected in when used with the Job API.

• Support for avocado list “extra information” has been restored. This is used in Avocado-VT loaders. They
will be removed (again) for good after its usage is deprecated and removed in Avocado-VT.

Bug Fixes

• The run.dict_variants setting is now properly registered in an Init plugin.

• The nrunner implementation for exec and exec-test suffered from a limitation to the amount of output it
could collect. It was related the size of the PIPE used internally by the Python subprocess module. This
limitation has been now lifted.

• The nrunner status server can be configured with the maximum buffer size that it uses.

• The avocado-instrumented nrunner runner now covers all valid test status.

• The nrunner status server socket is now properly closed, which allows multiple test suites in a job to not conflict.

• The nrunner status server now properly handles the asyncio API under Python 3.6.

Utility APIs

• avocado.utils.pci now accomodates newer slot names.

• avocado.utils.memory now properly handles the 16GB hugepages with both the HASH and Radix MMU
(by removing the check in case Radix is used).

• avocado.utils.ssh.Session now contains a avocado.utils.ssh.Session.
cleanup_master() method and a :property:‘avocado.utils.ssh.Session.control_master‘ property.

Internal Changes

• Yaml To Mux documentation updates regarding the data types and null values.

• Release documentation now include the Fedora/EPEL refresh steps.

• BP000 is included and approved.

• The Makefile now works on systems such as Fedora 33 because a bad substitution was fixed.

• Only enough nrunner workers to deal with the number of tasks in a suite are created and started.

• All nrunner based runners are now checked with a basic interface test.

• The same check script (selftests/check.py) is now used run under RPM builds.

198 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/subprocess.html#module-subprocess

avocado Documentation, Release 88.1

Misc Changes

• The contrib scripts to run the KVM unit tests was updated and supports the nrunner and skip exit codes.

For more information, please check out the complete Avocado changelog.

83.0 Crime and Punishment

The Avocado team is proud to present another release: Avocado 83.0, AKA “Crime and Punishment”, is now available!

Release documentation: Avocado 83.0

Users/Test Writers

• All configuration whose namespace start with the runner. prefix will be forwarded to runners. This allows
centrally managed configuration to be sent to runners executed by different types of spawners.

• The exec-test runner now accepts a configuration (runner.exectest.exitcodes.skip) that will
determine valid exit codes to be treated as SKIP test results.

• The Loader based on the YAML Multiplexer has been removed. Users are advised to use Job API and multiple
test suites to fulfill similar use cases.

• The GLib plugin has been removed. Users are advised to use TAP test types instead, given that GLib’s GTest
framework now defaults to producing TAP output.

• A runner for GO, aka golang, tests, compatible with the nrunner, has been introduced.

• The paginator feature is now a boolean style option. To enable it, use --enable-paginator.

• The nrunner status server now has two different options regarding its URI. The first one,
--nrunner-status-server-listen determines the URI in which a status server will listen to.
The second one, --nrunner-status-server-uri determines where the results will be sent to. This
allows status server to be on a different network location than the tasks reporting to it.

• The avocado-software-manager command line application now properly returns exit status for failures.

• The Podman spawner now exposes command line options to set the container image
(--spawner-podman-image) and the Podman binary (--spawner-podman-bin) used on an
avocado invocation.

• Command line options related to results, such as --json-job-result, --tap-job-result,
--xunit-job-result and --html-job-result currently take a on or off parameter. That is now
deprecated and a warning has been added. Those options will soon become “proper boolean” options (such as
--enable-$type-job-result and/or --disable-$type-job-result).

Bug Fixes

• avocado.utils.network.interfaces.NetworkInterface.is_admin_link_up() and
avocado.utils.network.interfaces.NetworkInterface.is_operational_link_up()
now behave properly on interfaces based on bonding.

• The selection of an nrunner based runner, from its Python module name/path has been fixed.

• avocado.utils.process utilities that use sudo would check for executable permissions on the binary.
Many systems will have sudo with the executable bit set, but not the readable bit. This is now accounted for.

9.6. Avocado Releases 199

https://github.com/avocado-framework/avocado/compare/83.0...84.0
http://avocado-framework.readthedocs.io/en/83.0/

avocado Documentation, Release 88.1

• The “external runner” feature now works properly when used outside of a avocado command line invocation,
that is, when used in a script based on the Job APIs.

Utility APIs

• A new module avocado.utils.dmesg with utilities for interacting with the kernel ring buffer messages.

• A new utility avocado.utils.linux.is_selinux_enforcing() allows quick check of SELinux
enforcing status.

• The avocado.utils.network.interfaces now support configuration files compatible with SuSE dis-
tros.

• avocado.utils.network.interfaces.NetworkInterface.remove_link() is a new utility
method that allows one to delete a virtual interface link.

• avocado.utils.network.hosts.Host.get_default_route_interface() is a new utility
method that allows one to get a list of default routes interfaces.

• The avocado.utils.cpu library now properly handles s390x z13 family of CPUs.

• The avocado.utils.pmem library introduced a number of new utility methods, adding support for daxctl
operations such as offline-memory, online-memory and reconfigure-device.

Internal Changes

• The safeloader has been migrated from using imp (deprecated) to the more modern importlib.

• Instead of using hardcoded .. to refer to the parent directory, portability was improved by switching to os.
path.pardir().

• Runners based on the avocado.core.nrunner module, when called on the command line, can now omit
the --kind parameter, if information can be gathered from the executable name.

• Avocado’s make check is now based on a Job API script, found at selftests/check.py. It combines
previously separate set of tests described by multiple command line executions.

• CI “smoke checks” for OS X and Windows have been introduced. This does not mean, however, that Avocado
is supported on those platforms.

For more information, please check out the complete Avocado changelog.

82.0 Avengers: Endgame

The Avocado team is proud to present another release: Avocado 82.0, AKA “Avengers: Endgame”, is now available!

This release is also an LTS Release, with a different Release Notes that covers the changes since 69.x LTS.

Release documentation: Avocado 82.0

Bug Fixes

• Avocado can now find tests on classes that are imported using relative import statements with multiple classes.
Previously only the first class imported in such a statement was properly processed.

200 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/imp.html#module-imp
https://docs.python.org/3/library/importlib.html#module-importlib
https://github.com/avocado-framework/avocado/compare/82.0...83.0
http://avocado-framework.readthedocs.io/en/82.0/

avocado Documentation, Release 88.1

• avocado run will now create test suites without an automatic (and usually very verbose) name, but instead
without a name, given that there will be only one suite on such jobs. This restores the avocado run behavior
users expected and are used to.

• Hint files are now being respected again, this time within the context of test suite creation.

• Filtering by tags is now working properly when using the resolver, that is, when using avocado list
--resolver -t $tag -- $reference.

• Test suites now properly respect the configuration given to them, as opposed to using a configuration composed
by the default registered option values.

• Fixed the “elapsed time” produced by the avocado-instrumented nrunner runner (that is,
avocado-runner-avocado-instrumented).

• avocado --verbose list --resolver -- $reference has reinstated the presentation of failed
resolution information, which is useful for understanding why a test reference was not resolved into a test.

• The “legacy replay plugin”, that is, avocado run --replay, can now replay a subset of tests based on
their status.

• The avocado diff command won’t crash anymore if given sysinfo files with binary content. It will log
the issue, and not attempt to present binary differences.

• The HTML report generated by avocado diff now runs properly and won’t crash.

• The asset fetcher plugin won’t crash anymore due to differences in the AST based node attributes.

• avocado.utils.process.FDDrainer now properly respects the presence and absence of newlines pro-
duced when running new processes via avocado.utils.process.run() and friends. This also fixes tests
that relied on the “output check” feature because of missing newlines.

• The nrunner plugin will now always display test status in the most natural order, that is, STARTED before
PASS or FAIL.

• The nrunner plugin will now properly set the job status in case of test failures, resulting in the job (and
avocado run) exit status to properly signal failures.

• A vast documentation review was performed, with many fixes and improvements.

For more information, please check out the complete Avocado changelog.

81.0 Avengers: Infinity War

The Avocado team is proud to present another release: Avocado 81.0, AKA “Avengers: Infinity War”, is now available!

This release introduces many exciting new features. We can’t even wait to get to the more specific sections bellow to
talk about some of the highlights:

• A new test runner architecture, previously known as the “N(ext) Runner”, now available as the “nrunner” plugin.
It currently allows tests to be run in parallel in either processes or into Podman based containers. In the near
future, it should include LXC, Kata Containers, QEMU/KVM based virtual machines, etc. It also includes the
foundation of a requirement resolution mechanism, in which tests can declare what they need to run (specific
Operating System versions, architectures, packages, etc). Expect the Avocado feature set to evolve around this
new architecture.

• A fully usable Job API, making most of Avocado’s functionalities programmable and highly customizable.
Expect the Job API to be declared public soon, that is, to be available as avocado.Job (instead of the current
avocado.core.job.Job) just like the Avocado Test API is available at avocado.Test.

• A new settings API that is tightly linked to the Job API. You can see all the existing configurations at runtime by
running avocado config reference. To integrate Avocado to an existing project or a CI environment, a

9.6. Avocado Releases 201

https://github.com/avocado-framework/avocado/compare/81.0...82.0

avocado Documentation, Release 88.1

custom job with a few configurations will give you a lot of flexibility with very little need to write Python code.
Some examples are available at examples/jobs.

• Support for multiple test suites in a Job, so that each test suite can be configured differently and independently of
each other. Fulfill your use case easily (or let your imagination go wild) and define different runners for different
test suites, different parameters to different test suites, or run some test suites locally, while others isolated on
containers. Anything that is configurable with the new settings API should be transparently configurable in the
context of a test suite (provided the test suite deals with that feature).

This release is also a “pre-LTS release”. Development sprint #82 will focus on stabilization, culminating in the 82.0
LTS release.

Release documentation: Avocado 81.0

Users/Test Writers

• The remote, vm and docker runners (which would run jobs on remote, vm and docker containers) were
removed, after having being deprecated on version 78.0.

• The “standalone job” feature, in which a test could be run as a standalone job was removed after having being
deprecated on version 80.0. The alternative is to use an Avocado Job (using the Job API), with a test defined
on the same file, as can be seen on the example file examples/jobs/passjob_with_test.py in the
source tree.

• The yaml_to_mux varianter plugin now attempts to respect the type of the value given to --mux-inject.
For example, 1 is treated as integer, a value of 1,2 is treated as list a value of abc is treated as string, and a
value of 1,2,5-10 is treated as list of integers as 1,2,-5 (as it is evaluated by ast.literal_eval()).

• Python unittests names are now similar to Avocado’s own instrumented tests names, that is, they list the file
name as a path, followed by the class and method name. The positive aspect of this change is that that they can
be reused again as a test reference (which means you can copy and paste the name, and re-run it).

• The avocado-runner-* standalone runners can now look for a suitable Python class to handle a given test
kind by using setuptools entrypoints.

• For users of the Job API, a “dictionary based” varianter was introduced, that allows you to describe the variations
of tests in a test suite directly via a Python dictionary.

• The output produced on the human UI for failed SIMPLE tests is now much more straightforward and contains
more relevant data.

• Users attempting to use both the --loader and the --external-runner features will be warned against
it, because of its inherent incompatibility with each other.

• A new avocado replay command supersedes the avocado run --replay command/option.

• The previous experimental command nlist has been removed, and its functionality can now be activated
by using avocado list --resolver. This is part of promotion of the N(ext) Runner architecture from
experimental to being integrated into Avocado.

Bug Fixes

• Filtering using tags while listing the tests (but not while running them) was broken on the previous release, and
has now been fixed.

• Result event plugins were misbehaving because they were instantiated too early. Now they’re loaded later and
lazily.

202 Chapter 9. Build and Quality Status

http://avocado-framework.readthedocs.io/en/81.0/
https://docs.python.org/3/library/ast.html#ast.literal_eval

avocado Documentation, Release 88.1

• Failure to load and run the Python unittest with the nrunner’s avocado.core.nrunner.
PythonUnittestRunner depending on the directory it was called from is now fixed.

Utility APIs

• The avocado.utils.vmimage now contains an auxiliary documentation (Supported images) that lists the
exact Operating System names, versions and architectures that have been tested with an Avocado release.

• The avocado.utils.pmem library can now check if a given command is supported by the underlying
ndctl binary.

Internal Changes

• Improvements to the selftests, including a collection of jobs that are run as tests, and a job that tests a good
number of Job API features using variants.

• The avocado.core.settings is a completely redesigned module, and central to Avocado’s future set
and Job API. It was present as avocado.core.future.settings on previous versions. All module and
plugins have been migrated to the new API.

• The avocado.utils.software_manager module has been split into a finer grained directory and mod-
ule structure.

• Various documentation content improvements, and various build warnings were addressed.

• The avocado_variants attribute is no longer kept in the job configuration as an instance of a avocado.
core.varianter.Varianter, instead, the configuration for the various variants are kept in the configu-
ration and it’s instantiated when needed.

• avocado.utils.wait now uses time.monotonic(), which makes it more reliable and less susceptible
to errors when the system clock changes while this utility function is running.

• Refactors resulting in more code being shared among Avocado Instrumented and Python unittest handling on
the avocado.core.safeloader module.

• The avocado.core.safeloader module now supports relative imports when attempting to follow imports
to find valid classes with tests.

• A new avocado.core.suite was introduced, which is the basis of the multiple test suite support in a Job.

• Codeclimate.com is now being used for code coverage services.

• Codeclimate.com now has the bandit plugin enabled, which means that security related alerts are also caught
and shown on the analysis.

For more information, please check out the complete Avocado changelog.

80.0 Parasite

The Avocado team is proud to present another release: Avocado 80.0, AKA “Parasite”, is now available!

This release (and the previous one) contains mainly internal changes in preparation for the N(ext) Runner architecture
to replace the current one, and for the Job API to become a fully supported feature.

It’s expected that release 81.0 will be the last release containing major changes before a “pre-LTS release”. This way,
development sprint #82 will focus on stabilization, culminating in an 82.0 LTS release.

Release documentation: Avocado 80.0

9.6. Avocado Releases 203

https://docs.python.org/3/library/time.html#time.monotonic
https://github.com/avocado-framework/avocado/compare/80.0...81.0
http://avocado-framework.readthedocs.io/en/80.0/

avocado Documentation, Release 88.1

Users/Test Writers

• The Avocado configuration that is logged during a job execution is now the dictionary that is produced by the
avocado.core.future.settings module, instead of the configuration file(s) content. This is relevant
because this configuration contains the result of everything that affects a job, such as defaults registered by
plugins, command line options, all in addition to the configuration file. The goal is to have more consistent
behavior and increased job “replayability”.

• As explained in the previous point, an Avocado Job is now configured by the configuration set by the avocado.
core.future.settings code. Because of the way this module works, options need to be registered, before
the content on the config files can be considered valid values for a given option. This has been done for a large
number of Avocado features, but be advised that some configuration may not yet be seen by the job, because of
the lack of option registration. We’re working to identify and enable complete feature configuration on the next
release.

• The “log level” of an Avocado is now defined using the standard Python level names. If you have a custom
configuration for this setting, you may need to adjust it (usually only a matter of lowercase to uppercase).

• The runner that will be used in a job can now be defined in the command line (in addition to being previously
supported by a configuration entry). If you want to try out the experimental N(ext) Runner, for instance, you
should be able to use a command such as avocado run --test-runner=nrunner /path/to/my/
tests.

• The N(ext) Runner received support for job timeouts, and won’t run further tests if the timeout expires.

• The N(ext) Runner now users the same Test ID that the current test runner uses, both in the to-be-removed
avocado nrun and in the avocado run --test-runner=nrunner scenario.

• A brand new command, jobs enables users to, among other things to list information about previously executed
jobs. A command such as avocado jobs show will show the latest job information.

• The “standalone jobs” feature has been deprecated. This feature allows users to write a test, that contains a
builtin job executor for such a test that allows the test file to be executable. This will be replaced by the Job API,
which transparently supports the specification of the same file as a source of tests.

• The avocado run --loaders ? command to list available loaders has been removed. This command line
usage pattern is not consistent across Avocado (or follows the POSIX guidelines), and with the N(ext) Runner
architecture depending on the avocado.core.resolver feature set, one will be able to see the resolvers
with the avocado plugins command.

• The lower level avocado.core.job.Job, instead of the avocado run command, is now responsible for
generating result files, such as the JSON (results.json), xUnit (results.xml), etc. This allows users
of the Job API, as well as users of the avocado run command to have results generated as intended.

• The lower level avocado.core.job.Job, instead of the avocado run command, is now also responsi-
ble for collecting the job-level system information (AKA sysinfo). This allows users of the Job API, as well
as users of the avocado run command to have this feature available.

Bug Fixes

• The avocado sysinfo command reverts to the pre-regression behavior, and now creates a directory follow-
ing the sysinfo-$TIMESTAMP pattern and uses that for the content of the sysinfo output, instead of using
the current directory by default.

• An incorrect configuration key name of the result_upload command, as part of the “results_upload” plugin,
was fixed.

• avocado.utils.disk.get_disks() now supports all block devices, like multipaths, LVs, etc. Previ-
ously it used to return only /dev/sdX devices.

204 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Utility APIs

• All of the avocado.utils.gdb APIs are now back to a working state, with many fixes related to bytes and
strings, as well as buffered I/O caching fixes.

• avocado.utils.pmem now supports the all namespace behavior for newer versions of the ndctl utility.

• avocado.utils.software_manager support for the Zypper package manager was improved to support
the installation of package build dependencies.

Internal Changes

• Refactors for the avocado.core.nrunner.BaseRunnerApp that made the list of commands available
as a class attribute avoiding multiple resolutions and string manipulation when a command needs to be resolved.

• The N(ext) Runner received some foundation work for the persistence and retrieval of test generated artifacts.
The work takes into consideration that tests may be run disconnected of the the overall test job, and the job can
retrieve those at a later time.

• The N(ext) Runner spawner selection is on the avocado nrun command is now done by means of the
--spawner= option that takes a spawner name, instead of the previous --podman-spawner option. This
logic should be kept on the avocado run implementation and allow for new spawners to be used transpar-
ently.

• Internal reliability improvements to the N(ext) Runner status server implementation.

• The avocado nrun command now respects the --verbose command line option, producing less output if
it’s not given.

• The core sysinfo implementation received cleanups and now makes now distinction between collection at job or
test time, and works on both or at any other moment.

• The avocado.core.future.settings now allows command line parsers to be added to previously reg-
istered options. This allows features that don’t require a command line to register options, and plugins that want
to control such options with a command line to do so in a decoupled and extensive way.

• A new plugin interface, avocado.core.plugin_interfaces.Init, was introduced to allow plugins
that need to initialize themselves very early (and automatically) on Avocado. Such plugins have no knowledge
of the current configuration, but may use that interface to register new options (among other things).

• An Avocado Job is now run as part of the selftests suite, and more can be added. This is intended to avoid
breakage of the Job API as it gets closer to become a supported feature.

For more information, please check out the complete Avocado changelog.

79.0 La vita è bella

The Avocado team is proud to present another release: Avocado 79.0, AKA “La vita è bella”, is now available!

This releases contains mainly internal changes in preparation for the N(ext)Runner architecture to replace the current
one. It’s expected that an LTS release will be done within the next two or three releases, before the switch the current
runner architecture is deprecated and removed.

Release documentation: Avocado 79.0

9.6. Avocado Releases 205

https://github.com/avocado-framework/avocado/compare/79.0...80.0
http://avocado-framework.readthedocs.io/en/79.0/

avocado Documentation, Release 88.1

Users/Test Writers

• The Remote, VM and Docker runner plugins have been deprecated. The current implementation would re-
quire a major rewrite to be compatible with the new Fabric API (currently uses the Fabric3 API). Also, the
N(ext)Runner architecture requires that individual tests be executed in isolated environments (be them local or
remote) and the current implementation actually runs a complete Avocado Job so it’s not suitable to be reused
in the N(ext)Runner.

• The Avocado docstring directives (the ones that go into docstrings and are prefixed with :avocado:) now
support requirement entries. Those will be used as part of the “Requirements Resolver” features, as per
BP002.

• The --ignore-missing-references option, which used to take a on or off parameter, now takes no
parameter. Now, the feature it controls is not enabled unless you supply the command line option (but no on or
off is required).

Bug Fixes

• When using the Job API (with the conventional runner or the N(ext)Runner) the job.log ended up being
empty empty, but now it produces just like when using the Avocado command line tool. This fix is part of the
stabilization effort to declare the Job API as supported soon.

• Fixed an issue with the avocado.core.safeloader that would return duplicate tests when both a parent
and child class implemented methods with the same name.

• Fixed an issue in the avocado.core.utils.cpu.cpu_has_flags() that could cause a crash because
of a mixed used of bytes coming from reading /proc/cpuinfo and a string based regex.

Utility APIs

• The avocado.utils.gdb.GDBRemote implementation of the GDB Remote Protocol now deals with bytes
(instead of possibly multibyte strings), more in line with the original protocol specification.

• Users of the avocado.utils.partition.mount() can now skip checking if the devices/mountpoints
are mounted, which is useful for bind mounts.

• The avocado.utils.cpu.online() and avocado.utils.cpu.offline() will now check the
status of the CPU before attempting to apply a possibly (unnecessary) action.

• The avocado.utils.software_manager.DnfBackend now properly implements a build_dep
functionality, which differs from its parent avocado.utils.software_manager.YUMBackend.

Internal Changes

• Optional plugins (shipped by Avocado) will now require a matching Avocado version. This should prevent users
from having installation and usage problems with versions mismatch.

• A number of selftests were ported from unittest.TestCase to avocado.Test, making use of Avo-
cado’s features and following a “eat your own dog food” approach.

• A new code style lint check is now enforced, W601, which drops the use of has_key() in favor for the key
in idiom.

• The N(ext)Runner main module, avocado.core.nrunner, now has two explicit registries
for the two different types of supported runners. The first one, avocado.core.nrunner.
RUNNERS_REGISTRY_STANDALONE_EXECUTABLE is populated at run time with standalone executable

206 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/unittest.html#unittest.TestCase

avocado Documentation, Release 88.1

runners available on the system (those named avocado-runner-$kind). The second one, avocado.
core.nrunner.RUNNERS_REGISTRY_PYTHON_CLASS contains Python based runner implementations,
which are currently set manually following a class implementation definition (but may be converted to dynamic
lookups, such as setuptools’ entrypoints in the future).

• The N(ext)Runner example job is one way of checking the progress of its integration into the overall Avocado
framework. It’s been broken, but it’s now back to operation status and being used by the release process in the
jobs/timesensitive.py job, which has replaced the make check-full rule.

• The N(ext)Runner standard runner implementations, say, avocado-runner-exec-text, will
now create an “output directory” on behalf of the test, and communicate its location via the
AVOCADO_TEST_OUTPUT_DIR environment variable. Further work will implement the retrieval and stor-
age of individual tests’ output into an organized Avocado Job result structure.

• The nrun command, a temporary entrypoint into the N(ext)Runner, will now show a list of tasks that failed
with fail or error results, which can be helpful while debugging Avocado’s own selftests failures (or for
those brave enough to be running nrun already).

• A number of optional plugins, including resultsdb, results_upload, varianter_cit and
varianter_pict have been migrated to the “future” settings API, which delivers a consistent configura-
tion between command line, configuration files and Job API usage.

• Documentation improvements on the Fetching asset files section, and on the explanation of the current and The
“nrunner” and “runner” test runner architecture.

• Because the minimum supported Python version was lifted from 3.4 to 3.5 back in Avocado version 74.0, it
was possible, but not done before, to upgrade the asyncio syntax from the asyncio.coroutine() and
yield from to the more modern async def and await syntax.

• Python 3.8 is now formally supported, being enabled in the Python package manifest, and being actively tested
on our CI.

For more information, please check out the complete Avocado changelog.

78.0 Outbreak

The Avocado team is proud to present another release: Avocado 78.0, AKA “Outbreak”, is now available!

Release documentation: Avocado 78.0

Users/Test Writers

• The HTML plugin now produces reports with resizeable columns and standardized tooltips (besides some inter-
nal cleanups).

• The avocado assets fetch command now accepts a --ignore-errors option that returns exit code
0 even when some of the assets could not be fetched. This is useful in some unattended executions such as CI
environments, in which the avocado assets fetch is used in conjuntion with the canceling of tests that
depend on assets not found. Without this option, an entire CI job can be stopped at the initial failure.

• Avocado now supports “hint files” that can tweak how the Avocado resolver will recognize tests. This is use-
ful for projects making use of Avocado as a test runner, and it can allow complete integration with a simple
configuration file in a project repository. For more information check out the documentation about The hint
files.

• The experimental N(ext) Runner now allows users to set the number of parallel tasks with the
--parallel-tasks command line option (or by setting the parallel_tasks configuration under the
nrun section). The default value is still the same (twice the number of CPUs, minus one).

9.6. Avocado Releases 207

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-task.html#asyncio.coroutine
https://github.com/avocado-framework/avocado/compare/78.0...79.0
http://avocado-framework.readthedocs.io/en/78.0/

avocado Documentation, Release 88.1

• The experimental N(ext) Runner now checks the status of tasks right after spawning them. This can serve as an
indication if a task crashes too soon. Users will now see a “<task> spawned and alive” on most cases.

• The experimental N(ext) Runner now provides a container based execution of tasks with command line option
--podman-spawner. While this is not yet intended for general use, it serves as an early technology preview
of the multiple test isolation strategies that will be fully supported by the N(ext) Runner.

• The avocado vmimage get command now returns a proper error exit code when it fails to retrieve the
requested image.

Bug Fixes

• The avocado.utils.asset used to produce an empty string when the asset name parameter was not a full
URL, resulting in a broken hash value.

• The avocado.utils.asset could fail trying to remove a temporary file that may not ever have been cre-
ated.

Utility APIs

• The CentOS provider of the avocado.utils.vmimage module now supports the location and image file
names for version 8.

• The OpenSUSE provider of the avocado.utils.vmimage module now returns the pure version numbers,
instead of the ones containing the Leap_ prefixes.

• The Debian provider of the the avocado.utils.vmimage module now properly matches the version num-
bers.

• The Ubuntu provider of the the avocado.utils.vmimage module now doesn’t attempt to convert versions
into numbers, which could result in lost digits (10.40 would become 10.4).

• The avocado.utils.network.interfaces module now supports different types output produced by
iproute.

• The avocado.utils.ssh.Session.cmd() method now allows users to ignore the exit status of the
command with the ignore_status parameter.

• The avocado.utils.cpu changed how it identifies CPU vendors, architectures and families, making those
more consistent across the board.

Internal Changes

• The experimental N(ext) Runner now produces less ambiguious state messages, with a dedicated result field
on the final state message, instead of reusing the status field.

• A “release job” was introduced to be run in addition to the other selftests before a release is cut. It currently
includes a complete coverage of all the :mod:‘avocado.utils.vmimage providers, amounting to almost 200 test
variations.

• The loader_yaml and html plugins were migrated to the new (future) settings API.

For more information, please check out the complete Avocado changelog.

208 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/77.0...78.0

avocado Documentation, Release 88.1

77.0 The Hangover

The Avocado team is proud to present another release: Avocado 77.0, AKA “The Hangover”, is now available!

Release documentation: Avocado 77.0

Users/Test Writers

• The avocado.Test.fetch_asset method now has two new parameters: find_only and
cancel_on_missing. These can be combined to cancel tests if the asset is missing after a download attempt
(find_only=False) or only if it’s present in the local system without a download having been attempted
during the test (find_only=True). This can bring better determinism for tests that would download sizable
assets, and/or allow test jobs to be executable in offline environments.

• The avocado-software-manager script, a frontend to the avocado.utils.software_manager
module, now produces output as expected from a script.

• The multiplex command, an alias to variants, has been deprecated for a long time, and has now finally
been removed.

Bug Fixes

• When a dry-run is executed, by passing the --dry-run command line option, the proper file name of the test
will be shown, instead of the file implementing the “fake” avocado.core.test.DryRun class.

• Users of avocado.utils.ssh.Session as a context manager, would have all the exceptions captured and
suppressed because of a buggy __exit__ implementation.

Utility APIs

• The new avocado.utils.pmem module provides an interface for manage persistent memory. It allows for
creating, deleting, enabling, disabling and re-configuring both namespaces and regions depending on supported
hardware. It wraps the features present on the ndctl and daxctl binaries.

• The new avocado.utils.ssh.Session.get_raw_ssh_commands() allows access to the generated
(local) commands, which could be used for advanced use cases, such as running multiple (remote) commands
in a test. See the examples/apis/utils/ssh.py for an example.

• The avocado.utils.network module received a complete overhaul, and provides features for getting,
checking and setting network information from local and even remote hosts.

• Better documentation for the avocado.utils.ssh, avocado.utils.cloudinit, avocado.
utils.service and other modules.

Internal Changes

• The foundation of the BP001 has been implemented, in the form of the avocado.core.future.
settings and by adjusting pretty much all of Avocado’s code to make use of it. In the near future, this
is going to replace avocado.core.settings.

• It’s now easier to write a runner script that extends the types of runnables supported by the N(ext) Runner. For
an example, please refer to examples/nrunner/runners/avocado-runner-foo.

• Many more refactors on the avocado.utils.asset module.

9.6. Avocado Releases 209

http://avocado-framework.readthedocs.io/en/77.0/

avocado Documentation, Release 88.1

For more information, please check out the complete Avocado changelog.

76.0 Hotel Mumbai

The Avocado team is proud to present another release: Avocado 76.0, AKA “Hotel Mumbai”, is now available!

Release documentation: Avocado 76.0

Users/Test Writers

• The decorators avocado.skip(), avocado.skipIf() and avocado.skipUnless() can now be
used to decorate entire classes, resulting in all its tests getting skipped if/when the condition given is satisfied.

• A TAP capable test runner for the N(ext) Runner has been introduced and is available as
avocado-runner-tap. Paired with the resolver implementation introduced in the previous release, this
allows the avocado nrun command to find and execute tests that produce TAP compatible output.

• Avocado’s avocado.utils.software_manager functionality is now also made available as the
avocado-software-manager command line tool.

• The sysinfo collection now logs a much clearer message when a command is not found and thus can not have
its output collected.

• Documentation improvements and fixes in guide sections and utility libraries.

• A second blueprint, BP002, was approved (and committed) to Avocado. It’s about a proposal about a “Require-
ments resolver”, that should give tests automatic resolution of various types of requirements they may need to
run.

Bug Fixes

• The N(ext) Runner will now properly escape Runnable arguments that start with a dash when generating a
command to execute a runner, avoiding the runner itself to try to parse it as an option to itself.

• The Journal plugin will now only perform its test status journaling tasks if the --journal option is given, as
it was originally intended.

• The HTML plugin has been pinned to the jinja2 package version compatible with Python 3.5 and later.

Utility APIs

• The avocado.utils.kernel.KernelBuild.build() now allows the definition of the number of
jobs, using semantics very similar to the one used by GNU make itself. That means one should be careful
when using None, as it means no limit to the number of parallel jobs.

Internal Changes

• Workarounds on Travis CI for caching failures on s390x and aarch64.

• Many refactors on the avocado.utils.asset module

• Multiple refactors on the N(ext) Runner code

For more information, please check out the complete Avocado changelog.

210 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/76.0...77.0
http://avocado-framework.readthedocs.io/en/76.0/
https://github.com/avocado-framework/avocado/compare/75.0...76.0

avocado Documentation, Release 88.1

Changes expected for the next release (77.0)

We are working hard to use a good name convention related to configuration options (either via command-line or via
configuration file). Because of that, to keep consistency, some options are going to be changed.

Beginning with this release (76.0), users will notice a few warnings (i.e FutureWarning) messages on the
STDERR. Those are early warnings of changes that will be introduced soon, because of the work mentioned before.
On the next release (77.0), it’s expected that compatibility will be affected.

In the end, we will have an improved configuration module, that will handle both command line and configuration
options. This intends to deliver a better way to register and to retrieve configuration options. Also, soon we will
provide better documentation and a complete template config file, covering all options supported.

For more information, please visit the BP001.

75.1 Voyage to the Prehistoric Planet (minor release)

The Avocado team is proud to present another release: Avocado 75.1, AKA “Voyage to the Prehistoric Planet”, is now
available!

Release documentation: Avocado 75.1

Changes from 75.0 to 75.1

• The file used as the project description, README.rst was slightly changed to only contain reStructuredText
content, and be accepted into the PyPI repository.

• The missing 75.0 release notes document was added.

• A missing slash from the readthedocs.org badge URL was added.

75.0 Release Changes

The following are the original changes part of the 75.0 release.

Users/Test Writers

• The very first blueprint was approved (and committed) to Avocado. It’s about a “Configuration by convention”
proposal, which will positively impact users deploying and using Avocado, and will end up making the Job API
have a much better usability.

• Warnings for the deprecation of some options, as determined by the design decisions on the “Configuration by
convention” blueprint have been added to the command line tool. Users should pay attention to not rely on the
content on STDERR, as it may contain those warnings.

• The jsonresult plugin, that generated a JSON representation of the job results, added warn and
interrupt fields containing counters for the tests that ended with WARN and INTERRUPTED status, re-
spectively.

• The still experimental “N(ext) Runner” has introduced an initial integration with the Avocado Job. Users running
avocado plugins will see a new entry under “Plugins that run test suites on a job (runners)”. The only way
to activate this runner right now is to run a custom job such as the one in examples/job/nrunner.py.

9.6. Avocado Releases 211

http://avocado-framework.readthedocs.io/en/75.1/

avocado Documentation, Release 88.1

Bug Fixes

• The YAML Loader did not behave correctly when a None reference was given to it. It would previously try to
open a file named None.

Utility APIs

• A previously deprecated function called thin_lv_created was removed from the avocado.utils.
lv_utils module.

• avocado.utils.configure_network.is_interface_link_up() is a new utility function that
returns, quite obviously, whether an interface link is up.

Internal Changes

• Inspektor was replaced with a PyLint for the lint checks due to parallel execution errors that were plaguing CI,
mostly on non-x86 architectures.

• The avocado.utils.asset received a number of refactors, in preparation for some major changes ex-
pected for the next releases.

• The avocado.utils.cloudinit selftest now queries the allocated port from the created socket itself,
which removes a race condition that existed previously and caused intermittent test failures.

• A test for the sysinfo content on the HTML report was added, removing the need for the manual test on the
release test plan.

• The deployment selftests have been reorganized, and now are based on Ansible roles (and other best practices).

• The handling of a “Job results directory” resolution, based either on its ID (partial or complete) or path has
been improved, and has internally been moved from the avocado.core.jobdata to avocado.core.
data_dir.

For more information, please check out the complete Avocado changelog.

75.0 Voyage to the Prehistoric Planet

The Avocado team is proud to present another release: Avocado 75.0, AKA “Voyage to the Prehistoric Planet”, is now
available!

Release documentation: Avocado 75.0

Users/Test Writers

• The very first blueprint was approved (and committed) to Avocado. It’s about a “Configuration by convention”
proposal, which will positively impact users deploying and using Avocado, and will end up making the Job API
have a much better usability.

• Warnings for the deprecation of some options, as determined by the design decisions on the “Configuration by
convention” blueprint have been added to the command line tool. Users should pay attention to not rely on the
content on STDERR, as it may contain those warnings.

• The jsonresult plugin, that generated a JSON representation of the job results, added warn and
interrupt fields containing counters for the tests that ended with WARN and INTERRUPTED status, re-
spectively.

212 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/74.0...75.0
http://avocado-framework.readthedocs.io/en/75.0/

avocado Documentation, Release 88.1

• The still experimental “N(ext) Runner” has introduced an initial integration with the Avocado Job. Users running
avocado plugins will see a new entry under “Plugins that run test suites on a job (runners)”. The only way
to activate this runner right now is to run a custom job such as the one in examples/job/nrunner.py.

Bug Fixes

• The YAML Loader did not behave correctly when a None reference was given to it. It would previously try to
open a file named None.

Utility APIs

• A previously deprecated function called thin_lv_created was removed from the avocado.utils.
lv_utils module.

• avocado.utils.configure_network.is_interface_link_up() is a new utility function that
returns, quite obviously, whether an interface link is up.

Internal Changes

• Inspektor was replaced with a PyLint for the lint checks due to parallel execution errors that were plaguing CI,
mostly on non-x86 architectures.

• The avocado.utils.asset received a number of refactors, in preparation for some major changes ex-
pected for the next releases.

• The avocado.utils.cloudinit selftest now queries the allocated port from the created socket itself,
which removes a race condition that existed previously and caused intermittent test failures.

• A test for the sysinfo content on the HTML report was added, removing the need for the manual test on the
release test plan.

• The deployment selftests have been reorganized, and now are based on Ansible roles (and other best practices).

• The handling of a “Job results directory” resolution, based either on its ID (partial or complete) or path has
been improved, and has internally been moved from the avocado.core.jobdata to avocado.core.
data_dir.

For more information, please check out the complete Avocado changelog.

74.0 Home Alone

The Avocado team is proud to present another release: Avocado 74.0, AKA “Home Alone”, is now available!

Release documentation: Avocado 74.0

Users/Test Writers

• A new test type, TAP has been introduced along with a new loader and resolver. With a TAP test, it’s possible
to execute a binary or script, similar to a SIMPLE test, and part its Test Anything Protocol output to determine
the test status.

• It’s now possible to enforce colored or non-colored output, no matter if the output is a terminal or not. The
configuration item color was introduced in the runner.output section, and recognize the values auto,
always or never.

9.6. Avocado Releases 213

https://github.com/avocado-framework/avocado/compare/74.0...75.0
http://avocado-framework.readthedocs.io/en/74.0/
https://testanything.org

avocado Documentation, Release 88.1

Bug Fixes

• The safeloader mechanism that discovers both Avocado’s Python based INSTRUMENTED tests, and
Python’s native unittests, would fail to find any tests if any of the classes on a given file contained references to
a module that was not on a parent location. Now, the safeloader code will continue the discovery process,
ignoring the modules that were not found at parent locations.

Utility APIs

• avocado.utils.kernel received a number of fixes and cleanups, and also new features. It’s now possi-
ble to configure the kernel for multiple targets, and also set kernel configurations at configuration time with-
out manually touching the kernel configuration files. It also introduced the avocado.utils.kernel.
KernelBuild.vmlinux() property, allowing users to access that image if it was built.

• avocado.utils.network utilities avocado.utils.network.ping_check() and avocado.
utils.network.set_mtu_host() now are plain functions, instead of methods of a class that shared
nothing between them.

• New functions such as avocado.utils.multipath.add_path(), :func:avocado.utils.
multipath.remove_path() avocado.utils.multipath.get_mpath_status() and
avocado.utils.multipath.suspend_mpath() have been introduced :func:to the avocado.
utils.multipath module.

• The avocado.utils.vmimage module will not try to create snapshot images when it’s not needed, acting
lazily in that regard. It now provides a different method for download-only operations, avocado.utils.
vmimage.Image.download() that returns the base image location. The behavior of the avocado.
utils.vmimage.Image.get() method is unchanged in the sense that it returns the path of a snapshot
image.

Internal Changes

• A PyLint configuration file was added to the tree, facilitating the use of the standard Python linter when devel-
oping Avocado in IDEs that support this feature.

For more information, please check out the complete Avocado changelog.

73.0 Pulp Fiction

The Avocado team is proud to present another release: Avocado 73.0, AKA “Pulp Fiction”, is now available!

Release documentation: Avocado 73.0

Users/Test Writers

• INSTRUMENTED tests using the avocado.core.test.Test.fetch_asset() can take advantage of
plugins that will attempt to download (and cache) assets before the test execution. This should make the overall
test execution more reliable, and give better test execution times as the download time will be excluded. Users
can also manually execute the avocado assets command to manually fetch assets from tests.

• The still experimental “N(ext) Runner” support for Avocado Instrumented tests is more complete and supports
tag filtering and passing tags to the tests.

214 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/73.0...74.0
http://avocado-framework.readthedocs.io/en/73.0/

avocado Documentation, Release 88.1

• A new architecture for “finding” tests has been introduced as an alternative to the avocado.core.loader
code. It’s based around the avocado.core.resolver, and it’s currently used in the still experi-
mental “N(ext) Runner”. It currently supports tests of the following types: avocado-instrumented,
exec-test, glib, golang, python-unittest and robot. You can experiment it by running
avocado nlist, similarly to how avocado list is used.

• Avocado sysinfo feature file will now work out of the box on pip based installations. Previously, it would
require configuration files tweaks to adjust installation paths.

• A massive documentation overhaul, now designed around guides to different target audiences. The “User’s
Guide”, “Test Writer’s Guide” and “Contributor’s Guide” can be easily found as first lever sections contain
curated content for those audiences.

Bug Fixes

• Content supposed to be UI only could leak into TAP files, making them invalid.

• Avocado’s sysinfo feature will now run commands without a shell, resulting in more proper captured output,
without shell related content.

• avocado.utils.process.SubProcess.send_signal() will now send a signal to itself correctly
even when using sudo mode.

Utility APIs

• The avocado.utils.vmimage library now allows a user to define the qemu-img binary that will be used
for creating snapshot images via the avocado.utils.vmimage.QEMU_IMG variable.

• The avocado.utils.configure_network module introduced a number of utilities, including MTU
configuration support, a method for validating network among peers, IPv6 support, etc.

• The avocado.utils.configure_network.set_ip() function now supports different interface types
through a interface_type parameter, while still defaulting to Ethernet.

Internal Changes

• Package support for Enterprise Linux 8.

• Increased CI coverage, having tests now run on four different hardware architectures: amd64 (x86_64), arm64
(aarch64), ppc64le and s390x.

• Packit support adding extended CI coverage, with RPM packages being built for Pull Requests and results shown
on GitHub.

• Pylint checks for w0703 were enabled.

• Runners, such as the remote runner, vm runner, docker runner, and the default local runner now conform to a
“runner” interface and can be seen as proper plugins with avocado plugins.

• Avocado’s configuration parser will now treat values with relative paths as a special value, and evaluate their
content in relation to the Python’s distribution directory where Avocado is installed.

For more information, please check out the complete Avocado changelog.

9.6. Avocado Releases 215

https://github.com/avocado-framework/avocado/compare/72.0...73.0

avocado Documentation, Release 88.1

72.0 Once upon a time in Holywood

The Avocado team is proud to present another release: Avocado 70.0, AKA “Once upon a time in Holywood”, is now
available!

Release documentation: Avocado 72.0

Users/Test Writers

• The new vmimage command allows a user to list the virtual machine images downloaded by means of
avocado.utils.vmimage or download new images via the avocado vmimage get command.

• The tags feature (see Categorizing tests) now supports an extended character set, adding . and - to the allowed
characters. A tag such as :avocado: tags=machine:s390-ccw-virtio is now valid.

• The still experimental “N(ext) Runner”, introduced on version 71.0, can now run most Avocado Instrumented
tests, and possibly any test who implements a matching avocado-runner-$(TEST_TYPE) script that
conforms to the expected interface.

Bug Fixes

• A bug introduced in version 71.0 rendered avocado.utils.archive incapable of handling LZMA (also
known as xz) archives was fixed.

• A Python 3 (bytes versus text) related issue with avocado.utils.cpu.get_cpu_vendor_name() has
been fixed.

Utility APIs

• avocado.utils.ssh now allows password based authentication, in addition to public key based authenti-
cation.

• avocado.utils.path.usable_ro_dir() will no longer create a directory, but will just check for its
existence and the right level of access.

• avocado.utils.archive.compress() and avocado.utils.archive.uncompress() and
now supports LZMA compressed files transparently.

• The avocado.utils.vmimage now has providers for the CirrOS cloud images.

Internal Changes

• Package build fixes for Fedora 31 and Fedora 32.

• Increased test coverage of mux-suite and the yaml-loader features.

• A number of pylint checks were added, including w0201, w1505, w1509, w0402 and w1113.

For more information, please check out the complete Avocado changelog.

71.0 Downton Abbey

The Avocado team is proud to present another release: Avocado 70.0, AKA “Downton Abbey”, is now available!

Release documentation: Avocado 71.0

216 Chapter 9. Build and Quality Status

http://avocado-framework.readthedocs.io/en/72.0/
https://github.com/avocado-framework/avocado/compare/71.0...72.0
http://avocado-framework.readthedocs.io/en/71.0/

avocado Documentation, Release 88.1

Users/Test Writers

• Avocado can now run on systems with nothing but Python 3 (and “quasi-standard-library” module
setuptools). This means that it won’t require extra packages, and should be easier to deploy on containers,
embedded systems, etc. Optional plugins may have additional requirements.

• A new and still experimental test runner implementation, known as “N(ext) Runner” has been introduced. It
brings a number of different concepts, increasing the decoupling between a test (and its runner) and the job. For
more information, please refer to the early documentation <nrunner>.

• The new avocado.cancel_on() decorator has been added to the Test APIs, allowing you to define the
conditions for a test to be considered canceled. See one example here.

• The glib plugin got a configuration option its safe/unsafe operation, that is, whether it will execute binaries in
an attempt to find the whole list of tests. Look for the glib.conf shipped with the plugin to enable the unsafe
mode.

• Avocado can now use tags inside Python Unittests, and not only on its own Instrumented tests. It’s expected that
other forms or providing tags for other types of tests will also be introduced in the near future.

• The HTML report will now show, as a handy pop-up, the contents of the test whiteboard. If you set, say,
performance metrics there, you’ll able to see straight from the report.

• The HTML report now has filtering support by test status, and can show all records in the table.

• The avocado.utils.runtime module, a badly designed mechanism for sharing Avocado runtime settings
with the utility libraries, has been removed.

• The test runner feature that would allow binaries to be run transparently inside GDB was removed. The reason
for dropping such a feature have to do with how it limits the test runner to run one test at a time, and the use of
the avocado.utils.runtime mechanism, also removed.

• Initial examples for writing custom jobs, using the so called Job API, have been added to examples/jobs.
These APIs are still non-public (under core), but they’re supposed to become public and supported soon.

• By means of a new plugin (merge_files, of type job.prepost), when using the output check record
features, duplicate files created by different tests/variants will be consolidated into unique files.

Bug Fixes

• The HTML plugin now correctly shows the date for tests that were never executed because of interrupted jobs.

• A temporarily workaround for a stack overflow problem in Python 3.7 has been addressed.

• The pict plugin (a varianter implementaion) now properly yields the variants paths as a list.

• A Python 3 related fix to mod:avocado.utils.software_manager, that was using Python 2 next on
get_source.

• A Python 3 related fix to the docker plugin, that wasn’t caught earlier.

Utility APIs

• avocado.utils.partition now allows mkfs and mount flags to be set.

• avocado.utils.cpu.get_cpu_vendor_name() now returns the CPU vendor name for POWER9.

• avocado.utils.asset now allows a given location, as well as a list, to be given, simplifying the most
common use case.

9.6. Avocado Releases 217

avocado Documentation, Release 88.1

• avocado.utils.process.SubProcess.stop() now supports setting a timeout. Please refer to the
documentation for the important details on its behavior.

• avocado.utils.memory now properly handles hugepages for POWER platform.

Internal Changes

• Removal of the stevedore library dependency (previously used for the dispatcher/plugins infrastructure).

• make check now runs selftests using the experimental N(ext) Runner.

• Formal support for Python 3.7, which is now on our CI checks, documentation and module information.

• The Yaml to Mux plugin now uses a safe version of the Yaml loader, so that the execution of arbitrary Python
code from Yaml input is now no longer possible.

• Codecov coverage reports for have been enabled for Avocado, and can be seen on every pull request.

• New tests have been added to many of the optional plugins.

• Various pylint compliance improvements, including w0231, w0235, w0706, w0715 and w0221.

• Avocado’s selftests now use tempfile.TemporaryDirectory instead of mkdtemp and shutil.rmtree.

• avocado.core.job.Job instantiation now takes a config dictionary parameter, instead of a
argparse.Namespace instance, and keeps it in a config attribute.

• avocado.core.job.Job instances don’t have a references attribute anymore. That information is
available in the config attribute, that is, myjob.config['references'].

• Basic checks for Fedora and RHEL 8 using Cirrus CI have been added, and will be shown on every pull request.

For more information, please check out the complete Avocado changelog.

70.0 The Man with the Golden Gun

The Avocado team is proud to present another release: Avocado 70.0, AKA “The Man with the Golden Gun”, is now
available!

Release documentation: Avocado 70.0

Users/Test Writers

• A completely new implementation of the CIT Varianter plugin implementation, now with support for constraints.
Refer to CIT Varianter Plugin for more information.

• Python 2 support has been removed. Support Python versions include 3.4, 3.5, 3.6 and 3.7. An effort to support
Python 3.8 is also underway. If you require Python 2 support, the 69.0 LTS series (currently at version 69.1)
should be used. For more information on what a LTS release means, please read RFC: Long Term Stability.

• Improved safeloader support for Python unittests, including support for finding test classes that use multiple
inheritance. As an example, Avocado’s safeloader is now able to properly find all of its own tests (around 700
of them).

• Removal of old and redundant command line options, such as --silent and --show-job-log in favor of
--show=none and --show=test, respectively.

• Job result categorization support, by means of the --job-category option to the run command, allows a
user to create an easy to find directory, within the job results directory, for a given type of executed jobs.

218 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/70.0...71.0
http://avocado-framework.readthedocs.io/en/70.0/

avocado Documentation, Release 88.1

Bug Fixes

• Log files could have been saved as “hidden” files files (.INFO, .DEBUG, .WARN, .ERROR) because the root
logger’s name is an empty string. Now, those are saved with a log prefix if one is not given.

• The second time Avocado crashes, a “crash” directory is created to hold the backtrace. On a subsequent crash, if
the directory already exists, an exception would be raised for the failed attempted to create an existing directory,
confusing users on the nature of the crash. Now a proper handling for the possibly existing directory is in place.

• The CIT Varianter plugin was returning variants in an invalid form to the runner. This caused the plugin to fail
when actually used to run tests. A functional test has also been aded to avoid a regression here.

• The avocado.utils.distro module now properly detects RHEL 8 systems.

• The safeloader would fail to identify Python module names when a relative import was used. This means that the
experience with $ avocado list and $ avocado run would suffer when trying to list and run tests that
either directly or indirectly imported modules containing a relative import such as from . import foo.

• The avocado.utils.vmimage can now find Fedora images for s390x.

• The avocado.utils.vmimage now properly makes use of the build option.

• avocado list will now show the contents of the “key:val” tags.

• The Avocado test loader will correctly apply filters with multiple “key:val” tags.

Utility APIs

• Two simple utility APIs, avocado.utils.genio.append_file() and avocado.utils.
genio.append_one_line() have been added to the benefit of some avocado-mist-tests
<https://github.com/avocado-framework-tests/avocado-misc-tests>.

• The new avocado.utils.datadrainer provide an easy way to read from and write to various in-
put/output sources without blocking a test (by spawning a thread for that).

• The new avocado.utils.diff_validator can help test writers to make sure that given changes have
been applied to files.

Internal Changes

• Removal of the six library dependency (previously used for simultaneous Python 2 and 3 support).

• Removal of the sphinx module and local “build doc” test, in favor of increased reliance on readthedocs.org.

• Removal of the pillow module used when running very simple example tests as a selftests, which in reality
added very little value.

• All selftests are now either Python unittests or standalone executables scripts that can be run with Avocado itself
natively. This was done (also) because of the N(ext) Runner proposal.

• Build improvements and fixes, supporting packaging for Fedora 30 and beyond.

For more information, please check out the complete Avocado changelog.

69.0 The King’s Choice

The Avocado team is proud to present another LTS (Long Term Stability) release: Avocado 69.0, AKA “The King’s
Choice”, is now available!

9.6. Avocado Releases 219

https://github.com/avocado-framework/avocado/compare/69.0...70.0

avocado Documentation, Release 88.1

Release documentation: Avocado 69.0

LTS Release

For more information on what a LTS release means, please read RFC: Long Term Stability.

For a complete list of changes from the last LTS release to this one, please refer to 69.0 LTS.

The major changes introduced on this version (when compared to 68.0) are listed below, roughly categorized into
major topics and intended audience:

Bug Fixes

• INSTRUMENTED tests would not send content to the test’s individual log files when the logger name was not
avocado.test. Now tests can declare and use their own logger (with their own names) and the content will
be directed to the test’s own log files.

• The JSON result plugin would store empty failure data as a string representation of Python’s None, instead of
JSON’s own null. Because the JSON file is used internally between the local and remote runners, the Human
UI would show a "None" “failure” reason when tests succeeded.

Internal Changes

• Document the Copr repo, including the repository build status for our packages on our README and Getting
Started pages.

• Documentation improvements with a more accurate list of available plugins.

• Deployment checks for a setup of Avocado and Avocado-VT installed via PIP from the latest sources were
added.

• Deployment checks for a setup of Avocado and Avocado-VT installed via the Copr repository packages were
added.

• Reliability improvements for the unittest selftests.test_utils.ProcessTest.
test_process_start.

• Skip the unittest selftests.test_utils_network when the Python netifaces library is not available.

For more information, please check out the complete Avocado changelog.

68.0 The Marvelous Mrs. Maisel

The Avocado team is proud to present another release: Avocado version 68.0, AKA “The Marvelous Mrs. Maisel”, is
now available!

Release documentation: Avocado 68.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

220 Chapter 9. Build and Quality Status

http://avocado-framework.readthedocs.io/en/69.0/
https://github.com/avocado-framework/avocado/compare/68.0...69.0
http://avocado-framework.readthedocs.io/en/68.0/

avocado Documentation, Release 88.1

Users/Test Writers

• The Avocado test loader, which does not load or execute Python source code that may contain tests for security
reasons, now operates in a way much more similar to the standard Python object inheritance model. Before,
classes containing tests that would not directly inherit from avocado.Test would require a docstring state-
ment (either :avocado: enable or :avocado: recursive). This is not necessary for most users
anymore, as the recursive detection is now the default behavior.

• The xUnit plugin now should produce output that is more compatible with other implementations, specifically
newer Jenkin’s as well as Ant and Maven. The specific change was to format the time field with 3 decimal
places.

• A new avocado.utils.cpu.get_pid_cpus() utility function allows one to get all the CPUs being
used by a given process and its threads.

• The avocado.utils.process module now exposes the timeout parameter to users of the avocado.
utils.process.SubProcess class. It allows users to define a timeout, and the type of signal that will be
used to attempt to kill the process after the timeout is reached.

• The location of the Avocado configuration files can now be influenced by third parties by means of a new plugin.

• The configuration files that have been effectively parsed are now displayed as part of avocado config
command output.

Bug Fixes

• A bug that would crash Avocado while listing simple or “broken” tests has been fixed.

• A bug on the asset fetcher cache system would prevent files with the same name, but from different locations, to
be kept in the cache at the same, causing overwrites and new download attempts.

• The robot framework plugin would print errors and warnings to the console, confusing Avocado users as to the
origin and reason for those messages. The plugin will now disable all robot framework logging operations on
the console.

• Test directories won’t be silently created on system wide locations any longer, as this is a packaging and/or
installation step, and not an Avocado test runner runtime step.

• The avocado.utils.ssh module would not properly establish master sessions due to the lack of a
ControlPath option.

• A possible infinite hang of the test runner, due to a miscalculation of the timeout, was fixed.

• The avocado.utils.archive.extract_lzma() now properly opens files in binary mode.

Internal Changes

• An optimization and robustness improvement on the func:avocado.utils.memory.read_from_meminfo was
added.

• The required version of the PyYAML library has been updated to 4.2b2 because of CVE-2017-18342. Even
though Avocado doesn’t use the exact piece of code that was subject to the vulnerability, it’s better to be on the
safe side.

• Rules to allow a SRPM (and consequently RPM) packages to be built on the COPR build service have been
added.

• The documentation on the --mux-inject feature and command line option has been improved, showing the
behavior of the path component when inserting content and fetching parameters later on.

9.6. Avocado Releases 221

avocado Documentation, Release 88.1

• A new test was added to cover the behavior of unittest’s assertRaises when used in an Avocado test was added.

• A fix was added to selftests/unit/test_utils_vmimage.py to not depend or assume a given host architecture.

• The avocado.utils.ssh.Session will now perform a more extensive check for an usable master con-
nection, instead of relying on just the SSH process status code.

• The upstream and Fedora versions of the SPEC files are now virtually in sync.

• Building the the docs as part of the selftests now works on Python 3.

• The Avocado test loader, when returning Python unittest results, will now return a proper ordered dictionary that
matches the order in which they were found on the source code files.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

67.0 A Beautiful Mind

The Avocado team is proud to present another release: Avocado version 67.0, AKA “A Beautiful Mind”, is now
available!

Release documentation: Avocado 67.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.utils.archive module now supports the handling of gzip files that are not compressed
tarballs.

• The xunit output now names the job after the Avocado job results directory. This should make the correlation of
results displayed in UIs such as Jenkins and the complete Avocado results much easier.

• A number of improvements to the avocado.utils.lv_utils module now allows users to choose if they
want or not to use ramdisks, and allows for a more concise experience when creating Thin Provisioning LVs.

• New utility function in the avocado.utils.genio that allows for easy matching of patterns in files. See
avocado.utils.is_pattern_in_file() for more information.

• New utility functions are available to deal with filesystems, such as avocado.utils.disk.
get_available_filesystems() and avocado.utils.disk.get_filesystem_type().

• The test filtering mechanism using tags now support “key:val” assignments for further categorization. See
Python unittest Compatibility Limitations And Caveats for more details.

• The Avocado Test class now exposes the tags to the test. The test may use that information, for
instance, to decide on default behavior.

• The avocado.utils.process.kill_process_tree() now supports waiting a given timeout, and
returns the PIDs of all process that had signals delivered to.

222 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/67.0...68.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=LD6dPc2ptd0
http://avocado-framework.readthedocs.io/en/67.0/

avocado Documentation, Release 88.1

• The avocado.utils.network.is_port_free() utility function now supports IPv6 in addition to
IPv4, as well as UDP in addition to TCP.

Bug Fixes

• Fixed the lack of initialization of the logging system that would, on some unittests, cause an infinity recursion.

Internal Changes

• The template engine that powers the HTML report has been replaced, and now jinja2 is being used and pystache
has been dropped. The reason is the lack of activity in the pystache project, and lack of Python 3.7 support.

• A number of refactors and improvements on the selftests have increased the number of test to the 650 mark.

• The mechanism used to list selftests to be run is now the same when running tests in serial or in parallel mode,
and is exposed in the selftests/list script.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

66.0 Les Misérables

The Avocado team is proud to present another release: Avocado version 66.0, AKA “Les Misérables”, is now available!

Release documentation: Avocado 66.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.utils.vmimage library got a provider implementation for OpenSUSE. The limitation is that
it tracks the general releases, and not the rolling releases (called Tumbleweed).

• Users of the avocado.utils.kernelmodule can now properly specify the base URL from which to down-
load the kernel sources.

Bug Fixes

• The YAML to Mux plugins now properly deals with text encoding and work as intended on Python 3. These
were the last existing tests that were being skipped in the Python 3 environment, so now all existing tests run
equally on all Python versions.

9.6. Avocado Releases 223

https://github.com/avocado-framework/avocado/compare/66.0...67.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=5ayCKc79U_g
http://avocado-framework.readthedocs.io/en/66.0/

avocado Documentation, Release 88.1

Internal Changes

• Development environments now default to Python 3, that is, if you download the Avocado source code, and run
make develop or related targets, Python 3 will be favored if available on your system. You can force the
Python interpreter version with make PYTHON=/path/to/python develop.

• The avocado.utils.partition implementation for the /etc/mtab lock is now based on the
avocado.utils.filelock module.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/RbIV6bDp/1442-sprint-theme

65.0 Back to the Future

The Avocado team is proud to present another release: Avocado version 65.0, AKA “Back to the Future”, is now
available!

Release documentation: Avocado 65.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A new utility library, avocado.utils.ssh, has been introduced. It’s a simple wrapper around the OpenSSH
client utilities (your regular /usr/bin/ssh) and allows a connection/session to be easily established, and
commands to be executed on the remote endpoint using that previously established connection.

• Passing parameters to tests is now possible directly on the Avocado command line, without the use of any
varianter plugin. In fact, when using variants, these parameters are (currently) ignored. To pass one parameter
to a test, use -p NAME=VAL, and repeat it for other parameters.

• The timeout feature on the various avocado.utils.process functions is now respected for processes
started with sudo=True. Sending general signals to processes that have also been started in privileged mode
(and killing them) is now possible and is the basis of this improvement.

• The avocado.utils.cloudinit module now adds support for instances to be configured to allow root
logins and authentication configuration via SSH keys.

• The avocado.utils.distro module introduced a probe for the Ubuntu distros.

• New avocado.utils.disk.get_disk_blocksize() and avocado.utils.disk.
get_disks() disk related utilities.

• New avocado.utils.process.get_parent_pid() and avocado.utils.process.
get_owner_id() process related functions

224 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/65.0...66.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=-5uGGSm9egc
https://trello.com/c/RbIV6bDp/1442-sprint-theme
http://avocado-framework.readthedocs.io/en/65.0/

avocado Documentation, Release 88.1

Bug Fixes

• The avocado.utils.vmimage had an issue when dealing with bytes and strings on Python 3. Now the
expected encoding on the parsed web pages is explicitly given and used.

• The avocado.utils.linux_modules.get_submodules() function now returns unique modules
names, instead of possibly having duplicate modules names.

• The system information collection, known in Avocado as “sysinfo”, now properly collects information after
failed and errored tests finish.

• The INSTRUMENTED test loader now properly finds all tests when, within the same module, either the Avo-
cado library or the avocado.Test class is imported more than once, and with different names.

• The INSTRUMENTED test loader now won’t crash when specific multi inheritance happens on test classes.

• The external test runner feature now supports relative paths given on the command line when used in conjunction
with --external-runner-chdir=runner.

Internal Changes

• A number of utility libraries, including avocado.utils.process and avocado.utils.
linux_modules have been modified to use system files (such as the ones from /proc/) instead of
depending and executing command line utilities whenever possible. This type of change is expected to continue
happening on Avocado.

• Tests depending on the presence of the HTML and remote plugin have been moved to the plugin themselves.

• A number of refactors and general improvements, usually accompanied by new tests, have increased the number
of self tests from 549 to the 590 mark.

• Continuing from the past release, another large number of warnings checks have been enabled in the “lint”
check, making the Avocado source code better now, and avoiding best practices regressions.

• Fixes to self tests that require privileged execution (tests covering the mount support in avocado.utils.
vmimage and general operation of the avocado.utils.lv_utils module).

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/lhw9hO0L/1416-sprint-theme-back-to-the-future-1985

64.0 The man who would be king

The Avocado team is proud to present another release: Avocado version 64.0, AKA “The man who would be king”, is
now available!

Release documentation: Avocado 64.0

9.6. Avocado Releases 225

https://github.com/avocado-framework/avocado/compare/64.0...65.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=TA3RTixd5Yg
https://trello.com/c/lhw9hO0L/1416-sprint-theme-back-to-the-future-1985
http://avocado-framework.readthedocs.io/en/64.0/

avocado Documentation, Release 88.1

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A new varianter plugin, the CIT Varianter Plugin. This plugin implements a “Pair-Wise”, also known as “Com-
binatorial Independent Testing” algorithm, in pure Python. This exciting new functionality is provided thanks
to a collaboration with the Czech Technical University in Prague.

• The avocado.utils.distro module has dropped the probe that depended on the Python standard library
platform.dist(). The reason is the platform.dist() has been deprecated since Python 2.6, and has
been removed on the upcoming Python 3.8.

• All optional plugins available on Python 2 RPM packages are now also available on Python 3 based RPM
packages.

• The avocado.utils.iso9660 module gained a pycdlib based backend, which is very capable, and pure
Python ISO9660 library. This allows us to have a working avocado.utils.iso9660 backend on environ-
ments in which other backends may not be easily installable.

• The avocado.utils.iso9660.iso9660() function gained a capabilities mechanism, in which users
may request a backend that implement a given set of features.

• The avocado.utils.iso9660 module, gained “create” and “write” capabilities, currently implemented
on the pycdlib based backend. This allows users of the avocado.utils.iso9660 module to create ISO
images programatically - a task that was previously done by running mkisofs and similar tools.

• The avocado.utils.vmimage.get() function now provides a directory in which to put the snapshot file,
which is usually discarded. Previously, the snapshot file would always be kept in the cache directory, resulting
in its pollution.

• The avocado.utils.download module, and the various utility functions that use it, will have extended
logging, including the file size, time stamp information, etc.

• A brand new module, avocado.utils.cloudinit, that aides in the creation of ISO files containing con-
figuration for the virtual machines compatible with cloudinit. Besides authentication credentials, it’s also possi-
ble to define a “phone home” address, which is complemented by a simple phone home server implementation.
On top of that, a very easy to use function to wait on the phone home is available as avocado.utils.
cloudinit.wait_for_phone_home().

• The Human UI plugin, will now show the “reason” behind test failures, cancellations and others right along the
test result status. This hopefully will give more information to users without requiring them to resort to logs
every single time.

Bug Fixes

• The avocado.utils.partition now behaves better when the system is missing the lsof utility.

Internal Changes

• Fixes generators on Python 3.7, according to PEP479.

• Other enablements for Python 3.7 environments were added, including RPM build fixes for Fedora 29.

• A large number of warnings checks have been enabled in the “lint” check, making the Avocado source code
better now, and avoiding best practices regressions.

226 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/dTc5HtrX/1382-sprint-theme-the-man-who-would-be-king-1975

63.0 Greed in the Sun

The Avocado team is proud to present another release: Avocado version 63.0, AKA “Greed in the Sun”, is now
available!

Release documentation: Avocado 63.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Including test logs in TAP plugin is disabled by default and can be enabled using --tap-include-logs.

• Performance is improved for the TAP plugin by only using fsync() after writes of important content, instead
of doing it for all content, including the logs from tests.

• The command line options --filter-by-tags and --filter-by-tags-include-empty are now
white listed for the remote runner plugin.

• The remote runner plugin will now respect ~/.ssh/config configuration.

• The asset fetcher, available to a test via avocado.core.Test.fetch_asset(), will prevent clashes from
downloaded files with the same name (when no hash is given), by using a directory named after the hash of the
location.

• The identification of PCI bridge devices in avocado.utils.pci is now more precise by using its class.

• A smarter wait, instead of a sleep, is now used on avocado.utils.multipath.

Bug Fixes

• The recording of output, used by the output check functionality, is done as text, via a RawFileHandler
logger. Now, instead of failing to encode data (depending on its content) and crashing, data is escaped using the
xmlcharrefreplace handling.

• Avocado won’t crash on systems without the less binary to be used as the paginator.

9.6. Avocado Releases 227

https://github.com/avocado-framework/avocado/compare/63.0...64.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=Gn9y2FHVmiw
https://trello.com/c/dTc5HtrX/1382-sprint-theme-the-man-who-would-be-king-1975
http://avocado-framework.readthedocs.io/en/63.0/

avocado Documentation, Release 88.1

Internal Changes

• Self tests load failures are now caught on Python 3.4 environments (a workaround was needed due to Python
3.4 specific behavior, not necessary for 3.5+).

• Various build fixes related to the new Fabric packages and naming conventions.

• The avocado.core.loader module now makes use of better named symbolic values (based on enums),
such as avocado.core.loader.DiscoverMode.DEFAULT.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/EqauNWfL/1349-sprint-theme-greed-in-the-sun-1964

62.0 Farewell

The Avocado team is proud to present another release: Avocado version 62.0, AKA “Farewell”, is now available!

Release documentation: Avocado 62.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.Test.srcdir attribute has been removed, and with it, the AVOCADO_TEST_SRCDIR envi-
ronment variable set by Avocado. This was done after a deprecation period, so tests should have been modified
by now to make use of the avocado.Test.workdir instead.

• The avocado.Test.datadir attribute has been removed, and with it, the AVOCADO_TEST_DATADIR
environment variable set by Avocado. This was done after a deprecation period, so tests should have been
modified by now to make use of the avocado.Test.get_data() instead.

• The avocado.utils.cpu.set_cpuidle_state() function now takes a boolean value for its
disable parameter (while still allowing the previous integer (0/1) values to be used). The goal is to have
a more Pythonic interface, and to drop support legacy integer (0/1) use in the upcoming releases.

• avocado.utils.astring.ENCODING is a new addition, and holds the encoding used on many other
Avocado utilities. If your test needs to convert between binary data and text, we recommend you use it as the
default encoding (unless your test knows better).

• avocado.utils.astring.to_text() now supports setting the error handler. This means that when a
perfect decoding is not possible, users can choose how to handle it, like, for example, ignoring the offending
characters.

228 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/62.0...63.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=Z0I_ukaLQLE
https://trello.com/c/EqauNWfL/1349-sprint-theme-greed-in-the-sun-1964
http://avocado-framework.readthedocs.io/en/62.0/

avocado Documentation, Release 88.1

• When running a process by means of the avocado.utils.process module utilities, the output of such
a process is captured and can be logged in a stdout/stderr (or combined output) file. The logging is
now more resilient to decode errors, and will use the replace error handler by default. Please note that the
downside is that this may produce different content in those files, from what was actually output by the processes
if decoding error conditions happen.

• The avocado.utils.astring.tabular_output() will now properly strip trailing whitespace from
lines that don’t contain data for all “columns”. This is also reflected in the (tabular) output of commands such
as avocado list -v.

Bug Fixes

• Users of the avocado.utils.service module can now safely instantiate the service manager multiple
times. It was previously limited to a single instance per interpreter.

• The avocado.utils.vmimage library default usage broke with the release of Fedora 28, which added a
different directory layout for its cloud images. This has now been fixed and should allow for a successful image
= avocado.utils.vmimage() usage.

Internal Changes

• Refactor of the avocado.utils.asset module, in preparation for new functionality.

• The avocado.utils.cpu module now treats reads/writes to/from /proc/* and /sys/* as binary data.

• The selftests for the avocado.utils.cpu module will now run under Python 3 (>= 3.6), due to more
detailed checks of capable mock versions.

• The test that serves as the example for the whiteboard feature has been simplified, and the more complex test
moved to selftests.

• Package builds with make rpm are now done with the systemd-nspawn based chroot implementation for mock.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/4KtpSeGT/1305-sprint-theme-farewell-2009

61.0 Seven Pounds

The Avocado team is proud to present another release: Avocado version 60.0, AKA “Seven Pounds”, is now available!

Release documentation: Avocado 61.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

9.6. Avocado Releases 229

https://github.com/avocado-framework/avocado/compare/61.0...62.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=cJXt0kzQta4
https://trello.com/c/4KtpSeGT/1305-sprint-theme-farewell-2009
http://avocado-framework.readthedocs.io/en/61.0/

avocado Documentation, Release 88.1

Users/Test Writers

• The xunit result plugin can now limit the amount of output generated by individual tests that will make into
the XML based output file. This is intended for situations where tests can generate prohibitive amounts of output
that can render the file too large to be reused elsewhere (such as imported by Jenkins).

• SIMPLE tests can also finish with SKIP OR WARN status, depending on the output produced, and the Avocado
test runner configuration. It now supports patterns that span across multiple lines. For more information, refer
to SIMPLE Tests Status.

• Simple bytes and “unicode strings” utility functions have been added to avocado.utils.astring, and
can be used by extension and test writers that need consistent results across Python major versions.

• All of core Avocado and all but one plugin (yaml-to-mux) now have all their tests enabled on Python 3.
This means that for virtually all use cases, the experience of Python 3 users should be on par to the Python
2 experience. Please refer to https://trello.com/c/Q8QVmj8E/1254-bug-non-ascii-character-breaks-yaml2mux
and https://trello.com/c/eFY9Vw1R/1282-python-3-functional-tests-checklist for the outstanding issues.

Bug Fixes

• The TAP plugin was ommiting the output generated by the test from its own output. Now, that functionality is
back, and commented out output will be shown after the ok or not ok lines.

• Packaging issues which prevented proper use of RPM packages installations, due to the lack dependencies, were
fixed. Now, on both Python 2 and 3 packages, the right dependencies should be fulfilled.

• Replaying jobs that use the “YAML loader” is now possible. The fix was the implementation of the
fingerprint method, previously missing from the avocado.core.tree.TreeNodeEnvOnly class.

Internal Changes

• The glib test loader plugin won’t attempt to execute test references to list the glib tests, unless the test reference
is an executable file.

• Files created after the test name, which include the ; character, will now be properly mapped to a filesystem
safe _;

• A number of improvements to the code quality, as a result of having more “warning” checks enabled on our lint
check.

• A significant reduction in the default timeout used when waiting for hotplug operations on memory devices, as
part of the utility module avocado.utils.memory .

• Improved support for non-ASCII input, including the internal use of “unicode” string types for avocado.
utils.process.run() and similar functions. The command parameter given to those functions are now
expected to be “unicode” strings.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

230 Chapter 9. Build and Quality Status

https://trello.com/c/Q8QVmj8E/1254-bug-non-ascii-character-breaks-yaml2mux
https://trello.com/c/eFY9Vw1R/1282-python-3-functional-tests-checklist
https://github.com/avocado-framework/avocado/compare/60.0...61.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=1N0YiM6FC48

avocado Documentation, Release 88.1

Sprint theme: https://trello.com/c/4KtpSeGT/1305-sprint-theme-farewell-2009

60.0 Better Call Saul

The Avocado team is proud to present another release: Avocado version 60.0, AKA “Better Call Saul”, is now avail-
able!

Release documentation: Avocado 60.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The legacy options --filter-only, --filter-out and --multiplex have now been removed.
Please adjust your usage, replacing those options with --mux-filter-only, --mux-filter-out and
--mux-yaml respectively.

• The deprecated skip method, previously part of the avocado.Test API, has been removed. To skip a test,
you can still use the avocado.skip(), avocado.skipIf() and avocado.skipUnless() decora-
tors.

• The avocado.Test.srcdir() property has been deprecated, and will be removed in the next release.
Please use avocado.Test.workdir() instead.

• Python 3 RPM packages are now available for the core Avocado and for many of the plugins. Users can
install both versions side by side, and they’ll share the same configuration. To run the Python 3 version, run
avocado-3 (or avocado-3.x, which x is the minor Python version) instead of avocado.

• The avocado.utils.kernel library now supports setting the URL that will be used to fetch the Linux
kernel from, and can also build installable packages on supported distributions (such as .deb packages on
Ubuntu).

• The avocado.utils.process library now contains helper functions similar to the Python 2 commands.
getstatusoutput() and commands.getoutput() which can be of help to people porting code from
Python 2 to Python 3.

Bug Fixes

• Each job now gets its own temporary directory, which allows multiple jobs to be used in a single interpreter
execution.

• On some situations, Avocado would, internally, attempt to operate on a closed file, resulting in ValueError:
I/O operation on closed file. This has been fixed in the avocado.utils.process.
FDDrainer class, which will not only check if the file is not closed, but if the file-like object is capable
of operations such as fsync().

• Avocado can now (again) run tests that will produce output in encoding different than the Python standard one.
This has been implemented as an Avocado-wide, hard-coded setting, that defines the default encoding to be
utf-8. This may be made configurable in the future.

9.6. Avocado Releases 231

https://trello.com/c/4KtpSeGT/1305-sprint-theme-farewell-2009
http://avocado-framework.readthedocs.io/en/60.0/

avocado Documentation, Release 88.1

Internal Changes

• A memory optimization was applied, and allows test jobs with a large number of tests to run smoothly. Pre-
viously, Avocado would save the avocado.Test.params attribute, a avocado.core.parameters.
AvocadoParams instance to the test results. Now, it just keeps the relevant contents of the test parameters
instead.

• A number of warnings have been enabled on Avocado’s “lint” checks, and consequently a number of mistakes
have been fixed.

• The usage of the avocado.core.job.Job class now requires the use of avocado.core.job.Job.
setup() and avocado.core.job.Job.cleanup(), either explicitly or as a context manager. This
makes sure the temporary files are properly cleaned up after the job finishes.

• The exception raised by the utility functions in avocado.utils.memory has been renamed from
MemoryError and became avocado.utils.memory.MemError. The reason is that MemoryError is
a Python standard exception, that is intended to be used on different situations.

• A number of small improvements to the avocado.Test implementation, including making avocado.
Test.workdir() creation more consistent with other test temporary directories, extended logging of test
metadata, logging of test initialization (look for INIT in your test logs) in addition to the already existing start
of test execution (logged as START), etc.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/6a7jrsxA/1292-sprint-theme-better-call-saul

59.0 The Lobster

The Avocado team is proud to present another release: Avocado version 59.0, AKA “The Lobster”, is now available!

Release documentation: Avocado 59.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A new plugin enables users to list and execute tests based on the GLib test framework. This plugin allows
individual tests inside a single binary to be listed and executed.

• Users of the YAML test loader have now access to a few special keys that can tweak test attributes, including
adding prefixes to test names. This allows users to easily differentiate among execution of the same test, but
executed different configurations. For more information, look for “special keys” in the YAML Loader plugin
documentation.

232 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/59.0...60.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=NPx6swhbMUs
https://trello.com/c/6a7jrsxA/1292-sprint-theme-better-call-saul
http://avocado-framework.readthedocs.io/en/59.0/
https://developer.gnome.org/glib/stable/glib-Testing.html

avocado Documentation, Release 88.1

• Users can now dump variants to a (JSON) file, and also reuse a previously created file in their future jobs
execution. This allows users to avoid recomputing the variants on every job, which might bring significant
speed ups in job execution or simply better control of the variants used during a job. Also notice that even when
users do not manually dump a variants file to a specific location, Avocado will automatically save a suitable file
at jobdata/variants.json as part of a Job results directory structure.

• SIMPLE tests were limited to returning PASS, FAIL and WARN statuses. Now SIMPLE tests can now also
return SKIP status. At the same time, SIMPLE tests were previously limited in how they would flag a WARN
or SKIP from the underlying executable. This is now configurable by means of regular expressions.

• The avocado.utils.process has seen a number of changes related to how it handles data from the ex-
ecuted processes. In a nutshell, process output (on both stdout and stderr) is now considered binary
data. Users that need to deal with text instead, should use the newly added avocado.utils.process.
CmdResult.stdout_text and avocado.utils.process.CmdResult.stderr_text, which
are convenience properties that will attempt to decode the stdout or stderr data into a string-like type
using the encoding set, and if none is set, falling back to the system default encoding. This change of behavior
was needed to accommodate Python’s 2 and Python’s 3 differences in bytes and string-like types and handling.

• The TAP result format plugin received improvements, including support for reporting Avocado tests with CAN-
CEL status as SKIP (which is the closest status available in the TAP specification), and providing more visible
warning information in case Avocado tests finish with WARN status (while maintaining the test as a PASS, since
TAP doesn’t define a WARN status).

• Removal of a number of already deprecated features related to the 36.0 LTS series, which reached End-Of-Life
during this sprint.

• Redundant (and deprecated) fields in the test sections of the JSON result output were removed. Now, instead of
url, test and id carrying the same information, only id remains.

• Python 3 (beta) support. After too many changes to mention individually, Avocado can now run satisfactorily
on Python 3. The Avocado team is aware of a small number of issues, which maps to a couple of functional
tests, and is conscientious of the fact that many other issues may come up as users deploy and run it on Python
3. Please notice that all code on Avocado already goes through the Python 3 versions of inspekt lint,
inspekt style and runs all unittests. Because of the few issues mentioned earlier, functional tests do yet
run on Avocado’s own CI, but are expected to be enable shortly after this release. For this release, expect
packages to be available on PyPI (and consequently installable via pip). RPM packages should be available in
the next release.

Bug Fixes

• Avocado won’t crash when attempting, and not succeeding, to create a user-level configuration file ~/.
config/avocado.conf. This is useful in restricted environments such as in containers, where the user
may not have its own home directory. Avocado also won’t crash, but will report failure and exit, when it’s not
able to create the job results directory.

• Avocado will now properly respect the configuration files shipped in the Python module location, then the system
wide (usually in /etc) configuration file, and finally the user level configuration files.

• The YAML test loader will now correctly log messages intended to go the log files, instead of printing them in
the UI.

• Linux distributions detection code has been fixed for SuSE systems.

• The avocado.utils.kernel library now supports fetching all major versions of the Linux kernel, and not
only kernels from the 3.x series.

9.6. Avocado Releases 233

avocado Documentation, Release 88.1

Internal Changes

• Tests that perform checks on core Avocado features should not rely on upper level Avocado code.
The functional/test_statuses.py selftest was changed in such a way, and doesn’t require the
varianter_yaml_to_mux plugin anymore.

• The Avocado assets and repository server now supports HTTPS connections. The documentation and code that
refers to these services have been updated to use secure connections.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/OTRQpSs7/1228-sprint-theme-the-lobster

58.0 Journey to the Christmas Star

The Avocado team is proud to present another release: Avocado version 58.0, AKA “Journey to the Christmas Star”,
is now available!

Release documentation: Avocado 58.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.utils.vmimage library now contains support for Avocado’s own JeOS image. A nice ad-
dition given the fact that it’s the default image used in Avocado-VT and the latest version is available in the
following architectures: x86_64, aarch64, ppc64, ppc64le and s390x.

• Avocado packages are now available in binary “wheel” format on PyPI. This brings faster, more convenient and
reliable installs via pip. Previously, the source-only tarballs would require the source to be built on the target
system, but the wheel package install is mostly an unpack of the already compiled files.

• The installation of Avocado from sources has improved and moved towards a more “Pythonic” approach. In-
stallation of files in “non-Pythonic locations” such as /etc are no longer attempted by the Python setup.py
code. Configuration files, for instance, are now considered package data files of the avocado package. The
end result is that installation from source works fine outside virtual environments (in addition to installations
inside virtual environments).

• Python 3 has been enabled, in “allow failures mode” in Avocado’s CI environment. All static source code checks
pass, and most of the unittests (not the functional tests) also pass. It’s yet another incremental steps towards full
Python 3 support.

234 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/58.0...59.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=uL8ZW_WopDM
https://trello.com/c/OTRQpSs7/1228-sprint-theme-the-lobster
http://avocado-framework.readthedocs.io/en/58.0/

avocado Documentation, Release 88.1

Bug Fixes

• The avocado.utils.software_manager library received improvements with regards to downloads of
source packages, working around bugs in older yumdownloader versions.

Internal Changes

• Spelling exceptions and fixes were added throughout and now make spell is back to a good shape.

• The Avocado CI checks (Travis-CI) are now run in parallel, similar to the stock make check behavior.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/lHnzJT06/1208-sprint-theme-journey-to-the-christmas-star

57.0 Star Trek: Discovery

The Avocado team is proud to present another release: Avocado version 57.0, AKA “Star Trek: Discovery”, is now
available!

Release documentation: Avocado 57.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A new (optional) plugin is available, the “result uploader”. It allows job results to be copied over to a centralized
results server at the end of job execution. Please refer to Results Upload Plugin for more information.

• The avocado.utils.cpu functions, such as avocado.utils.cpu.cpu_oneline_list() now
support the S390X architecture.

• The default_parameters mechanism for setting default parameters on tests has been removed. This was
introduced quite early in the Avocado development, and allowed users to set a dictionary at the class level with
keys/values that would serve as default parameter values. The recommended approach now, is to just provide
default values when calling self.parameters.get within a test method, such as self.parameters.
get("key", default="default_value_for_key").

• The __getattr__ interface for self.params has been removed. It used to allow users to use a syntax
such as self.params.key when attempting to access the value for key key. The supported syntax is
self.params.get("key") to achieve the same thing.

9.6. Avocado Releases 235

https://github.com/avocado-framework/avocado/compare/57.0...58.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=kjWilUSdEnw
https://trello.com/c/lHnzJT06/1208-sprint-theme-journey-to-the-christmas-star
http://avocado-framework.readthedocs.io/en/57.0/

avocado Documentation, Release 88.1

• Yet another batch of progress towards Python 3 support. On this release, we have only 3 unittests that FAIL
on a Python 3 environment. We even got bug reports of Avocado on Python 3, which makes us believe that
it’s already being used. Still, keep in mind that there are still issues, which will hopefully be iron out on the
upcoming release(s).

Bug Fixes

• The avocado.utils.crypto.hash_file() function received fixes for a bug caused by a badly in-
dented block.

• The Golang Plugin now won’t report a test as found if the GO binary is not available to subsequently run those
tests.

• The output record functionality receives fixes at the API level, so that it’s now possible to enable and disable at
the each API call.

• The subtests filter, that can be added to test references, was fixed and now works properly when added to
directories and SIMPLE tests.

• The avocado.utils.process.FDDrainer now properly flushes its contents and the once ocurring data
loss (last line read) is now fixed.

Internal Changes

• The “multiplexer” related code is being moved outside of the core Avocado. Only the variant plugin interface
and support code (but not such an implementation) will remain in core Avocado.

• A new core avocado.core.parameter module was added and it’s supposed to contain just the implemen-
tation of parameters, but no variants and/or multiplexer related code.

• The sysinfo feature implementation received a code clean up and now relies on the common avocado.
utils.process code, to run the commands that will be collected, instead of having its own custom code for
handling with output, timeouts, etc.

Other Changes

• The Avocado project now has a new server that hosts its RPM package repository and some other assets, in-
cluding the JeOS images used on Avocado-VT. The documentation now points towards the new server and its
updated URLs.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/fJ1ilSuA/1198-sprint-theme-star-trek-discovery

236 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/56.0..57.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=TSE0q4OXG6U
https://trello.com/c/fJ1ilSuA/1198-sprint-theme-star-trek-discovery

avocado Documentation, Release 88.1

56.0 The Second Mother

The Avocado team is proud to present another release: Avocado version 56.0, AKA “The Second Mother”, is now
available!

Release documentation: Avocado 56.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.core.utils.vmimage library now allows users to expand the builtin list of image
providers. If you have a local cache of public images, or your own images, you can quickly and easily reg-
ister your own providers and thus use your images on your tests.

• A documentation on how to create your own base classes for your tests, kind of like you own Avocado-based
test framework, was introduced. This should help users put common tasks into base classes and get even more
productive test development.

• Avocado can record the output generated from a test, which can then be used to determine if the test passed
or failed. This feature is commonly known as “output check”. Traditionally, users would choose to record
the output from STDOUT and/or STDERR into separate streams, which would be saved into different files.
Some tests suites actually put all content of STDOUT and STDERR together, and unless we record them to-
gether, it’d be impossible to record them in the right order. This version introduces the combined option to
--output-check-record option, which does exactly that: it records both STDOUT and STDERR into a
single stream and into a single file (named output in the test results, and output.expected in the test data
directory).

• A new varianter plugin has been introduced, based on PICT. PICT is a “Pair Wise” combinatorial tool, that
can generate optimal combination of parameters to tests, so that (by default) at least a unique pair of parameter
values will be tested at once.

• Further progress towards Python 3 support. While this version does not yet advertise full Python 3 support, the
next development cycle will tackle any Python 3 issue as a critical bug. On this release, some optional plugins,
including the remote and docker runner plugins, received attention and now execute correctly on a Python 3
stack.

Bug Fixes

• The remote plugin had a broken check for the timeout when executing commands remotely. It meant that the
out-most timeout loop would never reach a second iteration.

• The remote and docker plugins had issues on how they were checking the installed Avocado versions.

Internal Changes

• The CI checks on Travis received a lot of attention, and a new script that and should be used by maintainers was
introduced. contrib/scripts/avocado-check-pr.sh runs tests on all commits in a PR, and sends
the result over to GitHub, showing other developers that no regression was introduced within the series.

For more information, please check out the complete Avocado changelog.

9.6. Avocado Releases 237

http://avocado-framework.readthedocs.io/en/56.0/
https://github.com/avocado-framework/avocado/compare/56.0...55.0

avocado Documentation, Release 88.1

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/s1WobkdE/1157-sprint-theme-the-second-mother-2015

55.0 Never Let Me Go

The Avocado team is proud to present another release: Avocado version 55.0, aka, “Never Let Me Go” is now avail-
able!

Release documentation: Avocado 55.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Improvements in the serialization of TestIDs allow test result directories to be properly stored and accessed on
Windows based filesystems.

• Support for listing and running golang tests has been introduced. Avocado can now discover tests written in Go,
and if Go is properly installed, Avocado can run them.

• The support for test data files has been improved to support more specific sources of data. For instance, when
a test file used to contain more than one test, all of them shared the same datadir property value, thus the
same directory which contained data files. Now, tests should use the newly introduced get_data() API,
which will attempt to locate data files specific to the variant (if used), test name, and finally file name. For more
information, please refer to the section Accessing test data files.

• The output check feature will now use the to the most specific data source location available, which is a conse-
quence of the switch to the use of the get_data() API discussed previously. This means that two tests in a
single file can generate different output, generate different stdout.expected or stderr.expected.

• When the output check feature finds a mismatch between expected and actual output, will now produce a unified
diff of those, instead of printing out their full content. This makes it a lot easier to read the logs and quickly spot
the differences and possibly the failure cause(s).

• Sysinfo collection can now be enabled on a test level basis.

• Progress towards Python 3 support. Avocado can now run most commands on a Python 3 environment, including
listing and running tests. The goal is to make Python 3 a “top tier” environment in the next release, being
supported in the same way that Python 2 is.

Bug Fixes

• Avocado logs its own version as part of a job log. In some situations Avocado could log the version of a source
repository, if the current working directory was an Avocado git source repo. That means that even when running,
say, from RPM packages, the version number based on the source code would be registered.

238 Chapter 9. Build and Quality Status

https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=PPFzrbA9AF0
https://trello.com/c/s1WobkdE/1157-sprint-theme-the-second-mother-2015
http://avocado-framework.readthedocs.io/en/55.0/

avocado Documentation, Release 88.1

• The output check record feature used to mistakenly add a newline to the end of the record stdout/stderr files.

• Problems with newline based buffering prevented Avocado from properly recording test stdout/stderr. If no
newline was given at the end of a line, it would never show up in the stdout/stderr files.

Internal Changes

• The reference to examples/*.yaml, which isn’t a valid set of files, was removed from the package manifest.

• The flexmock library requirement, used on some unittests, has been removed. Those tests were rewritten using
mock, which is standard on Python 3 (unittest.mock) and available on Python 2 as a standalone module.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/Oplm42c0/1132-sprint-theme-never-let-me-go

54.1 House of Cards (minor release)

Right on the heels of the 54.0 release, the Avocado team would like to apologize for a mistake that made into that
version. The following change, as documented on 54.0 has been reverted on this 54.1 release:

• Test ID format Avocado has been using for a while received a minor tweak, to allow for better serialization
into some filesystem types, such as Microsoft Windows’ ones. Basically, the character that precedes the variant
name, a separator, used to be ;, which is not allowed on some filesystems. Now, a + character is used. A Test ID
sleeptest.py:SleepTest.test;short-beaf on a previous Avocado version is now sleeptest.
py:SleepTest.test+short-beaf.

The reason for the revert and the new release, is that the actual character causing trouble in Windows filesystems was
“lost in translation”. The culprit was the : character, and not ;. This means that the Variant ID separator character
change was unnecessary, and another fix is necessary.

Release documentation: Avocado 54.1

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

For more information, please check out the complete Avocado changelog.

54.0 House of Cards

The Avocado team is proud to present another release: Avocado version 54.0, aka, “House of Cards” is now available!

Release documentation: Avocado 54.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

9.6. Avocado Releases 239

https://github.com/avocado-framework/avocado/compare/55.0...54.1
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=Zk4B8H6L53Y
https://trello.com/c/Oplm42c0/1132-sprint-theme-never-let-me-go
http://avocado-framework.readthedocs.io/en/54.1/
https://github.com/avocado-framework/avocado/compare/54.0...54.1
http://avocado-framework.readthedocs.io/en/54.0/

avocado Documentation, Release 88.1

Users/Test Writers

• Avocado can now run list and run standard Python unittests, that is, tests written in Python that use the
unittest library alone. This should help streamline the execution of tests on projects that use different
test types. Or, it may just be what plain unittest users were waiting for to start running them with Avocado.

• The Test ID format Avocado has been using for a while received a minor tweak, to allow for better serialization
into some filesystem types, such as Microsoft Windows’ ones. Basically, the character that precedes the variant
name, a separator, used to be ;, which is not allowed on some filesystems. Now, a + character is used. A Test ID
sleeptest.py:SleepTest.test;short-beaf on a previous Avocado version is now sleeptest.
py:SleepTest.test+short-beaf.

• The full path of the filename that holds the currently running test is now output is the test log, under the heading
Test metadata:.

• The yaml_to_mux varianter plugin, while parsing the YAML files, would convert objects into avocado.
core.tree.TreeNode. This caused when the variants were serialized (such as part of the job replay sup-
port). Objects are now converted into ordered dictionaries, which, besides supporting a proper serialization are
also more easily accessible as test parameters.

• The test profilers, which are defined by default in /etc/avocado/sysinfo/profilers, are now exe-
cuted without a backing shell. While Avocado doesn’t ship with examples of shell commands as profilers, or
suggests users to do so, it may be that some users could be using that functionality. If that’s the case, it will now
be necessary to write a script that wraps you previous shell command. The reason for doing so, was to fix a bug
that could leave profiler processes after the test had already finished.

• The newly introduced avocado.utils.vmimage library can immensely help test writers that need access
to virtual machine images in their tests. The simplest use of the API, vmimage.get() returns a ready to use
disposable image (snapshot based, backed by a complete base image). Users can ask for more specific images,
such as vmimage.get(arch='aarch64') for a image with a ARM OS ready to run.

• When installing and using Avocado in a Python virtual environment, the ubiquitous “venvs”, the base data
directory was one defined outside the virtual environment. Now, Avocado respects the virtual environment also
in this aspect.

• A new network related utility function, avocado.utils.network.PortTracker was ported from
Avocado-Virt, given the perceived general value in a variety of tests.

• A new memory utility utility, avocado.utils.memory.MemInfo, and its ready to use instance
avocado.utils.memory.meminfo, allows easy access to most memory related information on Linux
systems.

• The complete output of tests, that is the combination of STDOUT and STDERR is now also recorded in the test
result directory as a file named output.

Bug Fixes

• As mentioned before, test profiler processes could be left running in the system, even after the test had already
finished.

• The change towards serializing YAML objects as ordered dicts, instead of as
:class:‘avocado.core.tree.TreeNode, also fixed a bug, that manifested itself in the command line applica-
tion UI.

• When the various skip* decorators were applied to setUp test methods, they would not be effective, and
tearDown would also be called.

• When a job was replayed, tests without variants in the original (AKA “source” job, would appear to have a
variant named None in the replayed job.

240 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest

avocado Documentation, Release 88.1

Internal Changes

• Avocado is now using the newest inspektor version 0.4.5. Developers should also update their installed versions
to have comparable results to the CI checks.

• The old avocado.test.TestName class was renamed to avocado.core.test.TestID, and its mem-
ber attributes updated to reflect the fact that it covers the complete Test ID, and not just a Test Name.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/fA4RL1eo/1100-sprint-theme-house-of-cards

53.0 Rear Window

The Avocado team is proud to present another release: Avocado version 53.0, aka, “Rear Window” now available!

Release documentation: Avocado 53.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A new loader implementation, that reuses (and resembles) the YAML input used for the varianter yaml_to_mux
plugin. It allows the definition of test suite based on a YAML file, including different variants for different tests.
For more information refer to yaml_loader.

• A better handling of interruption related signals, such as SIGINT and SIGTERM. Avocado will now try harder
to not leave test processes that don’t respond to those signals, and will itself behave better when it receives them.
For a complete description refer to signal_handlers.

• The output generated by tests on stdout and stderr are now properly prefixed with [stdout] and
[stderr] in the job.log. The prefix is not applied in the case of $test_result/stdout and
$test_result/stderr files, as one would expect.

• Test writers will get better protection against mistakes when trying to overwrite avocado.core.test.Test
“properties”. Some of those were previously implemented using avocado.utils.data_structures.
LazyProperty() which did not prevent test writers from overwriting them.

Internal Changes

• Some avocado.core.test.Test “properties” were implemented as lazy properties, but without the need
to be so. Those have now be converted to pure Python properties.

9.6. Avocado Releases 241

https://github.com/avocado-framework/avocado/compare/53.0...54.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=ssAYB0Kb-rw
https://trello.com/c/fA4RL1eo/1100-sprint-theme-house-of-cards
http://avocado-framework.readthedocs.io/en/53.0/

avocado Documentation, Release 88.1

• The deprecated jobdata/urls link to jobdata/test_references has been removed.

• The avocado command line argument parser is now invoked before plugins are initialized, which allows the
use of --config with configuration file that influence plugin behavior.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/SfBg9gdl/1072-sprint-theme-rear-window-1954

52.0 Pat & Mat

The Avocado team is proud to present another LTS (Long Term Stability) release: Avocado version 52.0, aka, “Pat &
Mat” is now available!

Release documentation: Avocado 52.0

LTS Release

For more information on what a LTS release means, please read RFC: Long Term Stability.

For a complete list of changes from the last LTS release to this one, please refer to 52.0 LTS.

Changes

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Bugfixes

• The job replay option would not work with the --execution-order feature, but has now been fixed.

• The avocado variants --system-wide command is supposed to return one variant with the default
parameter tree. This was not functional on the last few releases, but has now been fixed.

• The replay of jobs executed with Avocado 36.4 is now possible with this release.

Documentation

A lot of the activity on this specific sprint was on documentation. It includes these new topics:

• A list of all differences that users should pay attention to, from the 36.X release to this one.

• The steps to take when migrating from 36.X to 52.0.

242 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/52.0...53.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=E4HpNZjBCYA
https://trello.com/c/SfBg9gdl/1072-sprint-theme-rear-window-1954
http://avocado-framework.readthedocs.io/en/52.0/

avocado Documentation, Release 88.1

• A review guide, with the list of steps to be followed by developers when taking a look at Pull Requests.

• The environment in which a test runs (a different process) and its peculiarities.

• The interface for the pre/post plugins for both jobs and tests.

Other Changes

• The HTML reports (generated by an optional plugin) now output a single file containing all the resources needed
(JS, CSS and images). The original motivation of this change was to let users quickly access the HTML when
they are stored as test results artifacts on servers that compress those files. With multiple files, multiple files
had to be decompressed. If the process wasn’t automatic (server and client support decompression) this would
require a tedious process.

• Better examples of YAML files (to be used with the yaml_to_mux plugin) have been given. The other “ex-
ample” files where really files intended to be used by selftests, and having thus been moved to the selftests data
directory.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/6PuGdjJd/1054-sprint-theme-pat-mat-1976

51.0 The White Mountains

The Avocado team is proud to present another release: Avocado version 51.0, aka, “The White Mountains” now
available!

Release documentation: Avocado 51.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Users will be given more information when a test reference is not recognized by a given test loader.

• Users can now choose to proceed with the execution of a job even if one or more test references have
not been resolved by one Avocado test loader (AKA a test resolver). By giving the command line option
--ignore-missing-references=on, jobs will be executed (provided the job’s test suite has at least one
test).

• The yaml-to-mux varianter implementation (the only one at this point) is now an optional plugin. Basi-
cally, this means that users deploying this (and later) version of Avocado, should also explicitly install it. For
pip users, the module name is avocado-framework-plugin-varianter-yaml-to-mux. The RPM
package name is python-avocado-plugins-varianter-yaml-to-mux.

9.6. Avocado Releases 243

https://github.com/avocado-framework/avocado/compare/51.0...52.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=nTeyu_XgFwM
https://trello.com/c/6PuGdjJd/1054-sprint-theme-pat-mat-1976
http://avocado-framework.readthedocs.io/en/51.0/

avocado Documentation, Release 88.1

• Users can now choose in which order the job will execute tests (from its suite) and variants. Previously, users
would always get one test executed with all its variants, than the second tests with all variants, and so on. Now,
users can give the --execution-order=tests-per-variant command line option and all tests on the
job’s test suite will be executed with the first variant, then all tests will be executed with the second variant and
so on. The original (still the current default behavior) can also be available explicitly selected with the command
line option --execution-order=variants-per-test.

• Test methods on parent classes are now found upon the use of the new recursive <docstring-directive-recursive>
docstring directive. While :avocado: enable enables Avocado to find INSTRUMENTED tests that do
not look like one (more details here), recursive will do that while also finding test methods present on parent
classes.

• The docstring directives now have a properly defined format. This applies to :avocado: tags= docstring
directives, used for categorizing tests.

• Users can now see the tags set on INSTRUMENTED test when listing tests with the -V (verbose) option.

Internal Changes

• The jobdata file responsible for keeping track of the variants on a given job (saved under $JOB_RESULTS/
jobdata/multiplex) is now called variants.json. As it names indicates, it’s now a JSON file that
contains the result of the variants generation. The previous file format was based on Python’s pickle, which was
not reliable across different Avocado versions and/or environments.

• Avocado is one step closer to Python 3 compatibility. The basic avocado command line application runs,
and loads some plugins. Still, the very much known byte versus string issues plague the code enough to
prevent tests from being loaded and executed. We anticipate that once the byte versus string is tackled,
most functionality will be available.

• Avocado now uniformly uses avocado.core.output.LOG_UI for outputting to the UI and avocado.
core.output.LOG_JOB to output to the job log.

• Some classes previously regarded as “test types” to flag error conditions have now be rewritten to not inherit
from avocado.core.test.Test. It’s now easier to identify real Avocado test types.

Improvements for Developers

• Developers now will also get Python “eggs” cleaned up when running make clean.

• Developers can now run make requirements-plugins to (attempt to) install external plugins dependen-
cies, provided they are located at the same base directory where Avocado is.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Next Release

The next Avocado release, 52.0, will be a LTS (Long Term Stability Release). For more information please read RFC:
Long Term Stability.

244 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/50.0...51.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=NWfOvo2gWhE

avocado Documentation, Release 88.1

Sprint theme: https://trello.com/c/dDou6uk0/1034-sprint-theme-the-white-mountains-the-tripods

50.0 A Dog’s Will

The Avocado team is proud to present another release: Avocado version 50.0, aka, “A Dog’s Will” now available!

Release documentation: Avocado 50.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Avocado now supports resuming jobs that were interrupted. This means that a system crash, or even an in-
tentional interruption, won’t prevent you from continuing the execution of a job. To use this feature, provide
--replay-resume on the Avocado execution that proceeds the crash or interruption.

• The docstring directives that Avocado uses to allow for test categorization was previously limited to a class
docstring. Now, individual test methods can also have their own tags, while also respecting the ones at the class
level. The documentation has been updated with an example.

• The HTML report now presents the test ID and variant ID in separate columns, allowing users to also sort and
filter results based on those specific fields.

• The HTML report will now show the test parameters used in a test when the user hovers the cursor over the test
name.

• Avocado now reports the total job execution time on the UI, instead of just the tests execution time. This may
affect users that are looking for the TESTS TIME: line, and reinforce that machine readable formats such as
JSON and XUnit are more dependable than the UI intended for humans.

• The avocado.core.plugin_interfaces.JobPre is now properly called before avocado.
core.job.Job.run(), and accordingly avocado.core.plugin_interfaces.JobPost
is called after it. Some plugins which depended on the previous behavior can use the avocado.
core.plugin_interfaces.JobPreTests and avocado.core.plugin_interfaces.
JobPostTests for a similar behavior. As a example on how to write plugin code that works properly
this Avocado version, as well as on previous versions, take a look at this accompanying Avocado-VT plugin
commit.

• The Avocado multiplex command has been renamed to variants. Users of avocado multiplex will
notice a deprecation message, and are urged to switch to the new command. The command line options and
behavior of the variants command is identical to the multiplex one.

• The number of variants produced with the multiplex command (now variants) was missing in the previ-
ous version. It’s now been restored.

Internal Changes

• Avocado’s own internal tests now can be given different level marks, and will run a different level on different
environments. The idea is to increase coverage without having false positives on more restricted environments.

• The test_tests_tmp_dir selftests that was previously disable due to failure on our CI environment was
put back to be executed.

9.6. Avocado Releases 245

https://trello.com/c/dDou6uk0/1034-sprint-theme-the-white-mountains-the-tripods
http://avocado-framework.readthedocs.io/en/50.0/
https://github.com/avocado-framework/avocado-vt/commit/d1cef6d
https://github.com/avocado-framework/avocado-vt/commit/d1cef6d

avocado Documentation, Release 88.1

• The amount of the test runner will wait for the test process exit status has received tweaks and is now better doc-
umented (see avocado.core.runner.TIMEOUT_TEST_INTERRUPTED, avocado.core.runner.
TIMEOUT_PROCESS_DIED and avocado.core.runner.TIMEOUT_PROCESS_ALIVE).

• Some cleanups and refactors were made to how the SKIP and CANCEL test statuses are implemented.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/FleklxHi/1016-sprint-theme-a-dog-s-will-2000

49.0 The Physician

The Avocado team is proud to present another release: Avocado version 49.0, aka, “The Physician” now available!

Release documentation: Avocado 49.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A brand new ResultsDB plugin. This allows Avocado jobs to send results directly to any ResultsDB server.

• Avocado’s data_dir is now set by default to /var/lib/avocado/data instead of /usr/share/
avocado/data. This was a problem because /usr must support read only mounts, and is not intended
for that purpose at all.

• When users run avocado list --loaders ? they used to receive a single list containing loader plugins
and test types, all mixed together. Now users will get one loader listed per line, along with the test types that
each loader supports.

• Variant-IDs created by the multiplexer are now much more meaningful. Previously, the Variant-ID would be a
simple sequential integer, it now combines information about the leaf names in the multiplexer tree and a 4 digit
fingerprint. As a quick example, users will now get sleeptest.py:SleepTest.test;short-beaf
instead of sleeptest.py:SleepTest.test;1 as test IDs when using the multiplexer.

• The multiplexer now supports the use filters defined inside the YAML files, and greatly expand its filtering
capabilities.

• [BUGFIX] Instrumented tests support docstring directives, but only one of the supported directives (either en-
able/disable or tags) at once. It’s now possible to use both in a single docstring.

• [BUGFIX] Some result plugins would generate some output even when the job did not contain a valid test suite.

• [BUGFIX] Avocado would crash when listing tests with the file loader disabled. MissingTests used to
be initialized by the file loader, but are now registered as a part of the loader proxy (similar to a plugin manager)
so this is not an issue anymore.

246 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/49.0...50.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=MHOZbj29hBQ
https://trello.com/c/FleklxHi/1016-sprint-theme-a-dog-s-will-2000
http://avocado-framework.readthedocs.io/en/49.0/
https://pagure.io/taskotron/resultsdb

avocado Documentation, Release 88.1

Distribution

• The packages on Avocado’s own RPM repository are now a lot more similar to the ones in the Fedora and EPEL
repositories. This will make future maintenance easier, and also allows users to switch between versions with
greater ease.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/CuQX9Mew/991-sprint-theme-the-physician-2013

48.0 Lost Boundaries

The Avocado team is proud to present another release: Avocado version 48.0, aka, “Lost Boundaries” now available!

Release documentation: Avocado 48.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Users of avocado.utils.linux_modules functions will find that a richer set of information is provided
in their return values. It now includes module name, size, submodules if present, filename, version, number of
modules using it, list of modules it is dependent on and finally a list of params.

• avocado.TestFail, avocado.TestError and avocado.TestCancel are now public Avocado Test
APIs, available from the main avocado namespace. The reason is that test suites may want to define their own
exceptions that, while have some custom meaning, also act as a way to fail (or error or cancel) a test.

• Support for new type of test status, CANCEL, and of course the mechanisms to set a test with this status.
CANCEL is a lot like what many people think of SKIP, but, to keep solid definitions and predictable behavior,
a SKIP(ped) test is one that was never executed, and a CANCEL(ed) test is one that was partially executed,
and then canceled. Calling self.skip() from within a test is now deprecated to adhere even closer to these
definitions. Using the skip* decorators (which are outside of the test execution) is still permitted and won’t be
deprecated.

• Introduction of the robot plugin, which allows Robot Framework tests to be listed and executed natively within
Avocado. Just think of a super complete Avocado job that runs build tests, unit tests, functional and integration
tests. . . and, on top of it, interactive UI tests for your application!

• Adjustments to the use of AVOCADO_JOB_FAIL and AVOCADO_FAIL exit status code by Avocado. This
matters if you’re checking the exact exit status code that Avocado may return on error condtitions.

9.6. Avocado Releases 247

https://github.com/avocado-framework/avocado/compare/48.0...49.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=btrGGCInnD4
https://trello.com/c/CuQX9Mew/991-sprint-theme-the-physician-2013
http://avocado-framework.readthedocs.io/en/48.0/
http://robotframework.org/

avocado Documentation, Release 88.1

Documentation / Contrib

• Updates to the README and Getting Started documentation section, which now mention the updated package
names and are pretty much aligned with each other.

Distribution

• Avocado optional plugins are now also available on PyPI, that is, can be installed via pip. Here’s a list of the
current package pages:

• https://pypi.python.org/pypi/avocado-framework-plugin-result-html

• https://pypi.python.org/pypi/avocado-framework-plugin-runner-remote

• https://pypi.python.org/pypi/avocado-framework-plugin-runner-vm

• https://pypi.python.org/pypi/avocado-framework-plugin-runner-docker

• https://pypi.python.org/pypi/avocado-framework-plugin-robot

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/Y02Koizf/952-sprint-theme-lost-boundaries

47.0 The Lost Wife

The Avocado team is proud to present another release: Avocado version 47.0, aka, “The Lost Wife” now available!

Release documentation: Avocado 47.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.Test class now better exports (and protects) the core class attributes members (such as
params and runner_queue). These were turned into properties so that they’re better highlighted in the
docs and somehow protected when users would try to replace them.

• Users sending SIGTERM to Avocado can now expect it to be properly handled. The handling done by Avocado
includes sending the same SIGTERM to all children processes.

248 Chapter 9. Build and Quality Status

https://pypi.python.org/pypi/avocado-framework-plugin-result-html
https://pypi.python.org/pypi/avocado-framework-plugin-runner-remote
https://pypi.python.org/pypi/avocado-framework-plugin-runner-vm
https://pypi.python.org/pypi/avocado-framework-plugin-runner-docker
https://pypi.python.org/pypi/avocado-framework-plugin-robot
https://github.com/avocado-framework/avocado/compare/47.0...48.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=Wnh3odoph1M
https://trello.com/c/Y02Koizf/952-sprint-theme-lost-boundaries
http://avocado-framework.readthedocs.io/en/47.0/

avocado Documentation, Release 88.1

Internal improvements

• The multiplexer has just become a proper plugin, implementing the also new avocado.core.
plugin_interfaces.Varianter interface.

• The selftests wouldn’t check for the proper location of the avocado job results directory, and always assumed
that ~/avocado/job-results exists. This is now properly verified and fixed.

Bug fixes

• The UI used to show the number of tests in a TESTS: <no_of_tests> line, but that would not take into
account the number of variants. Since the following line also shows the current test and the total number of tests
(including the variants) the TESTS: <no_of_tests> was removed.

• The Journal plugin would crash when used with the remote (and derivative) runners.

• The whiteboard would not be created when the current working directory would change inside the test. This
was related to the datadir not being returned as an absolute path.

Documentation / Contrib

• The avocado man page (man 1 avocado) is now update and lists all currently available commands and
options. Since some command and options depend on installed plugins, the man page includes all “optional”
plugins (remote runner, vm runner, docker runner and html).

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/HaFLiXyD/928-sprint-theme-the-lost-wife

46.0 Burning Bush

The Avocado team is proud to present another release: Avocado version 46.0, aka, “Burning Bush” now available!

Release documentation: Avocado 46.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

9.6. Avocado Releases 249

https://github.com/avocado-framework/avocado/compare/46.0...47.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=NdTmgl1Fl20
https://trello.com/c/HaFLiXyD/928-sprint-theme-the-lost-wife
http://avocado-framework.readthedocs.io/en/46.0/

avocado Documentation, Release 88.1

Users/Test Writers

• Avocado test writers can now use a family of decorators, namely avocado.skip(), avocado.skipIf()
and avocado.skipUnless() to skip the execution of tests. These are similar to the well known unittest
decorators.

• Sysinfo collection based on command execution now allows a timeout to be set. This makes test job executions
with sysinfo enabled more reliable, because the job won’t hang until it reaches the job timeout.

• Users will receive better error messages from the multiplexer (variant subsystem) when the given YAML files
do not exist.

• Users of the avocado.utils.process.system_output() will now get the command output with the
trailing newline stripped by default. If needed, a parameter can be used to preserve the newline. This is now
consistent with most Python process execution utility APIs.

Distribution

• The non-local runner plugins are now distributed in separate RPM packages. Users installing
from RPM packages should also install packages such as avocado-plugins-runner-remote,
avocado-plugins-runner-vm and avocado-plugins-runner-docker. Users upgrading from
previous Avocado versions should also install these packages manually or they will lose the corresponding
functionality.

Internal improvements

• Python 2.6 support has been dropped. This now paves the way for our energy to be better spent on developing
new features and also bring proper support for Python 3.x.

Bug fixes

• The TAP result plugin was printing an incorrect test plan when using the multiplexer (variants) mechanism. The
total number of tests to be executed (the first line in TAP output) did not account for the number of variants.

• The remote, vm and docker runners would print some UI related messages even when other types of result (such
as TAP, json, etc) would be set to output to STDOUT.

• Under some scenarios, an Avocado test would create an undesirable and incomplete job result directory on
demand.

Documentation / Contrib

• The Avocado page on PythonHosted.org now redirects to our official documentation page.

• We now document how to pause and unpause tests.

• A script to simplify bisecting with Avocado has been added to the contrib directory.

For more information, please check out the complete Avocado changelog.

250 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/unittest.html#module-unittest
http://pythonhosted.org/avocado-framework
http://avocado-framework.readthedocs.io
https://github.com/avocado-framework/avocado/compare/45.0...46.0

avocado Documentation, Release 88.1

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/I6KG9bpq/893-sprint-theme-burning-bush

45.0 Anthropoid

The Avocado team is proud to present another release: Avocado version 45.0, aka, “Anthropoid”, is now available!

Release documentation: Avocado 45.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Tests running with the external runner (--external-runner) feature will now have access to the extended
behavior for SIMPLE tests, such as being able to exit a test with the WARNING status.

• Users will now be able to properly run tests based on any Unicode string (as a test reference). To achieve that, the
support for arguments to SIMPLE tests was dropped, as it was impossible to have a consistent way to determine
if special characters were word separators, arguments or part of the main test name. To overcome the removal
of support for arguments on SIMPLE tests, one can use custom loader configurations and the external runner.

• Test writers now have access to a test temporary directory that will last not only for the duration of the test, but
for the duration of the whole job execution. This is a feature that has been requested by many users and one
practical example is a test reusing binaries built on by a previous test on the same job. Please note that Avocado
still provides as much test isolation and independence as before, but now allows tests to share this one directory.

• When running jobs with the TAP plugin enabled (the default), users will now also get a results.tap file cre-
ated by default in their job results directory. This is similar to how JSON, XUNIT and other supported result for-
mats already operate. To disable the TAP creation, either disable the plugin or use --tap-job-result=off.

Distribution

• Avocado is now available on Fedora. That’s great news for test writers and test runners, who will now be able
to rely on Avocado installed on test systems much more easily. Because of Fedora’s rules that favor the stability
of packages during a given release, users will find older Avocado versions (currently 43.0) on already released
Fedora versions. For users interested in packages for the latest Avocado releases, we’ll continue to provide
updated packages on our own repo.

• After some interruption, we’ve addressed issues that were preventing the update of Avocado packages on
PyPI, and thus, preventing users from getting the latest Avocado versions when running $ pip install
avocado-framework.

9.6. Avocado Releases 251

https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=hj31AJq94Nk
https://trello.com/c/I6KG9bpq/893-sprint-theme-burning-bush
http://avocado-framework.readthedocs.io/en/45.0/
https://admin.fedoraproject.org/pkgdb/package/rpms/python-avocado/

avocado Documentation, Release 88.1

Internal improvements

• The HTML report plugin contained a font, included by the default bootstrap framework data files, that was not
really used. It has now been removed.

• The selfcheck will now require commits to have a Signed-off-by line, in order to make sure contributors
are aware of the terms of their contributions.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/fwEUquwd/881-sprint-theme-anthropoid

44.0 The Shadow Self

The Avocado team is proud to present another release: Avocado version 44.0, aka, “The Shadow Self”, is now avail-
able!

Release documentation: Avocado 44.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Avocado now supports filtering tests by user supplied “tags”. These tags are given in docstrings, similar to the
already existing docstring directives that force Avocado to either enable or disable the detection of a class as an
Avocado INSTRUMENTED test. With this feature, you can now write your tests more freely accross Python
files and choose to run only a subset of them, based on the their tag values. For more information, please take a
look at Categorizing tests.

• Users can now choose to keep the complete set of files, including temporary ones, created during an Avocado
job run by using the --keep-tmp option.

• The --job-results-dir option was previously used to point to where the job results should be saved.
Some features, such as job replay, also look for content (jobdata) into the job results dir, and it now respects
the value given in --job-results-dir.

Documentation

• A warning is now present to help avocado users on some architectures and older PyYAML versions to work
around failures in the Multiplexer.

252 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/44.0...45.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=4LxdWAfnQB4
https://trello.com/c/fwEUquwd/881-sprint-theme-anthropoid
http://avocado-framework.readthedocs.io/en/44.0/

avocado Documentation, Release 88.1

Bugfixes

• A quite nasty, logging related, RuntimeError would happen every now and then. While it was quite hard to
come up with a reproducer (and thus a precise fix), this should be now a thing of the past.

• The Journal plugin could not handle Unicode input, such as in test names.

Internal improvements

• Selftests are now also executed under EL7. This means that Avocado on EL7, and EL7 packages, have an
additional level of quality assurance.

• The old check-long Makefile target is now named check-full and includes both tests that take a long
time to run, but also tests that are time sensitive, and that usually fail when not enough computing resources are
present.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/CLTdFYLW/869-sprint-theme-the-shadow-self

43.0 The Emperor and the Golem

The Avocado team is proud to present another release: Avocado version 43.0, aka, “The Emperor and the Golem”, is
now available!

Release documentation: Avocado 43.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The --remote-no-copy option has been removed. The reason is that the copying of tests to the remote
hosts (as set with --remote-hostname) was also removed. That feature, while useful to some, had a lot of
corner cases. Instead of keeping a feature with a lot of known caveats, it was decided that users should setup the
remote machines so that tests are available before Avocado attempts to run them.

• The avocado.utils.process library, one of the most complex pieces of utility code that Avocado ships,
now makes it possible to ignore background processes that never finish (while Avocado is reading from their file
descriptors to properly return their output to the caller). The reason for such a feature is that if a command spawn
many processes, specially daemon-like ones that never finish, the avocado.utils.process.run() func-
tion would hang indefinitely. Since waiting for all the children processes to finish is the right thing to do, users
need to set the ignore_bg_processes parameter to True to request this newly added behavior.

9.6. Avocado Releases 253

https://github.com/avocado-framework/avocado/compare/43.0...44.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=cI4fInte9uI
https://trello.com/c/CLTdFYLW/869-sprint-theme-the-shadow-self
http://avocado-framework.readthedocs.io/en/43.0/

avocado Documentation, Release 88.1

• When discovering tests on a directory, that is, when running avocado list /path/to/tests/
directory or avocado run /path/to/tests/directory, Avocado would return tests in a non
predictable way, based on os.walk(). Now, the result is a properly alphabetically ordered list of tests.

• The ZIP Archive feature (AKA as --archive or -z) feature, which allows to archive job results is now a
proper plugin.

• Plugins can now be setup to run at a specific order. This is a response to a user issue/request, where the
--archive feature would run before some other results would be generated. This feature is not limited to
plugins of type result. It allows any ordering on the enabled set of plugins of a given plugin type.

• A contrib script that looks for a job result directory based on a partial (or complete) job ID is now available at
contrib/scripts/avocado-get-job-results-dir.py. This should be useful inside automation
scripts or even for interactive users.

Documentation

• Users landing on http://avocado-framework.readthedocs.io would previously be redirect to the “latest” docu-
mentation, which tracks the development master branch. This could be confusing since the page titles would
contain a version notice with the latest released version. Users will now be redirected by default to the latest
released version, matching the page title, although the version tracking the master branch will still be available
at the http://avocado-framework.readthedocs.io/en/latest URL.

Bugfixes

• During the previous development cycle, a bug where journalctl would receive KeyboardInterrupt received
an workaround by using the subprocess library instead of Avocado’s own avocado.utils.process,
which was missing a default handler for SIGINT. With the misbehavior of Avocado’s library now properly
addressed, and consequently, we’ve reverted the workaround applied previously.

• The TAP plugin would fail at the end_test event with certain inputs. This has now been fixed, and in the event
of errors, a better error message will be presented.

Internal improvements

• The test_utils_partition.py selftest module now makes use of the avocado.core.utils.
process.can_sudo() function, and will only be run when the user is either running as root or has sudo
correctly configured.

• Avocado itself preaches that tests should not attempt to skip themselves during their own execution. The idea
is that, once a test started executing, you can’t say it wasn’t executed (skipped). This is actually enforced in
avocado.Test based tests. But since Avocado’s own selftests are based on unittest.TestCase, some
of them were using skip at the “wrong” place. This is now fixed.

• The avocado.core.job.Job class received changes that make it more closer to be usable as a formally
announced and supported API. This is another set of changes towards the so-called “Job API” support.

• There is now a new plugin type, named result_events. This replaces the previous implementation that used
avocado.core.result.Result as a base class. There’s now a single avocado.core.result.
Result instance in a given job, which tracks the results, while the plugins that act on result events (such
as test has started, test has finished, etc) are based on the avocado.core.plugins_interfaces.
ResultEvents.

• A new result_events plugin called human now replaces the old HumanResult implementation.

254 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/os.html#os.walk
http://avocado-framework.readthedocs.io
http://avocado-framework.readthedocs.io/en/latest
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/unittest.html#unittest.TestCase

avocado Documentation, Release 88.1

• Ported versions of the TAP and journal plugins to the new result_events plugin type.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/r2fwf66S/853-sprint-theme-the-emperor-and-the-golem-1952

42.0 Stranger Things

The Avocado team is proud to present another release: Avocado version 42.0, aka, “Stranger Things”, is now available!

Release documentation: Avocado 42.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Multiplexer: it now defines an API to inject and merge data into the multiplexer tree. With that, it’s now possible
to come up with various mechanisms to feed data into the Multiplexer. The standard way to do so continues to be
by YAML files, which is now implemented in the avocado.plugins.yaml_to_mux plugin module. The
–multiplex option, which used to load YAML files into the multiplexer is now deprecated in favor of –mux-yaml.

• Docker improvements: Avocado will now name the container accordingly to the job it’s running. Also, it not
allows generic Docker options to be passed by using –docker-options on the Avocado command line.

• It’s now possible to disable plugins by using the configuration file. This is documented at disabling-a-plugin.

• avocado.utils.iso9660: this utils module received a lot of TLC and it now provides a more complete
standard API across all backend implementations. Previously, only the mount based backend implementation
would support the mnt_dir API, which would point to a filesystem location where the contents of the ISO would
be available. Now all other backends can support that API, given that requirements (such as having the right
privileges) are met.

• Users of the avocado.utils.processmodule will now be able to access the process ID in the avocado.
utils.process.CmdResult

• Users of the avocado.utils.build module will find an improved version of avocado.utils.
build.make() which will now return the make process exit status code.

• Users of the virtual machine plugin (--vm-domain and related options) will now receive better messages
when errors occur.

9.6. Avocado Releases 255

https://github.com/avocado-framework/avocado/compare/42.0...43.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=D746rSbuecc
https://trello.com/c/r2fwf66S/853-sprint-theme-the-emperor-and-the-golem-1952
http://avocado-framework.readthedocs.io/en/42.0/

avocado Documentation, Release 88.1

Documentation

• Added section on how to use custom Docker images with user’s own version of Avocado (or anything else for
that matter).

• Added section on how to install Avocado using standard OpenSUSE packages.

• Added section on unittest compatibility limitations and caveats.

• A link to Scylla Clusters tests has been added to the list of Avocado test repos.

• Added section on how to install Avocado by using standard Python packages.

Developers

• The make develop target will now activate in-tree optional plugins, such as the HTML report plugin.

• The selftests/run script, usually called as part of make check, will now fail at the first failure (by default). This
is controlled by the SELF_CHECK_CONTINUOUS environment variable.

• The make check target can also run tests in parallel, which can be enabled by setting the environment variable
AVOCADO_PARALLEL_CHECK.

Bugfixes

• An issue where KeyboardInterrupts would be caught by the journalctl run as part of sysinfo was fixed with a
workaround. The root cause appears to be located in the avocado.utils.process library, and a task is
already on track to verify that possible bug.

• avocado.util.git module had an issue where git executions would generate content that would erro-
neously be considered as part of the output check mechanism.

Internal improvements

• Selftests are now run while building Enterprise Linux 6 packages. Since most Avocado developers use newer
platforms for development, this should make Avocado more reliable for users of those older platforms.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/icVc5Szx/851-sprint-theme-stranger-things

256 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/unittest.html#module-unittest
https://github.com/avocado-framework/avocado/compare/41.0...42.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=LlrXKEOxeAY
https://trello.com/c/icVc5Szx/851-sprint-theme-stranger-things

avocado Documentation, Release 88.1

41.0 Outlander

The Avocado team is proud to present another release: Avocado version 41.0, aka, “Outlander”, is now available!

Release documentation: Avocado 41.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Multiplex: remove the -s (system-wide) shortcut to avoid confusion with silent from main apps.

• New avocado.utils.linux_modules.check_kernel_config() method, with which users can
check if a kernel configuration is not set, a module or built-in.

• Show link to file which failed to be processed by sysinfo.

• New path key type for settings that auto-expand tilde notation, that is, when using avocado.core.
settings.Settings.get_value() you can get this special value treatment.

• The automatic VM IP detection that kicks in when one uses –vm-domain without a matching –vm-hostname,
now uses a more reliable method (libvirt/qemu-gust-agent query). On the other hand, the QEMU guest agent is
now required if you intend to omit the VM IP/hostname.

• Warn users when sysinfo configuration files are not present, and consequently no sysinfo is going to be collected.

• Set LC_ALL=C by default on sysinfo collection to simplify avocado diff comparison between different ma-
chines. It can be tweaked in the config file (locale option under sysinfo.collect).

• Remove deprecated option –multiplex-files.

• List result plugins (JSON, XUnit, HTML) in avocado plugins command output.

Documentation

• Mention to the community maintained repositories.

• Add GIT workflow to the contribution guide.

Developers

• New make check-long target to run long tests. For example, the new FileLockTest.

• New make variables target to display Makefile variables.

• Plugins: add optional plugins directory optional_plugins. This also adds all directories to be found under
optional_plugins to the list of candidate plugins when running make clean or make link.

Bugfixes

• Fix undefined name error avocado.core.remote.runner.

• Ignore r when checking for avocado in remote executions.

• Skip file if UnicodeDecodeError is raised when collecting sysinfo.

• Sysinfo: respect package collection on/off configuration.

9.6. Avocado Releases 257

http://avocado-framework.readthedocs.io/en/41.0/

avocado Documentation, Release 88.1

• Use -y in lvcreate to ignore warnings avocado.utils.lv_utils.

• Fix crash in avocado.core.tree when printing non-string values.

• setup.py: fix the virtualenv detection so readthedocs.org can properly probe Avocado’s version.

Internal improvements

• Cleanup runner->multiplexer API

• Replay re-factoring, renamed avocado.core.replay to avocado.core.jobdata.

• Partition utility class defaults to ext2. We documented that and reinforced in the accompanying unittests.

• Unittests for avocado.utils.partition has now more specific checks for the conditions necessary to
run the Partition tests (sudo, mkfs.ext2 binary).

• Several Makefile improvements.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/5oShOR1D/812-sprint-theme-outlander

40.0 Dr Who

The Avocado team is proud to present another release: Avocado version 40.0, aka, “Dr Who”, is now available!

Release documentation: Avocado 40.0

The major changes introduced on this version are listed below.

• The introduction of a tool that generated a diff-like report of two jobs. For more information on this feature,
please check out its own documentation at Job Diff .

• The avocado.utils.process library has been enhanced by adding the avocado.utils.process.
SubProcess.get_pid() method, and also by logging the command name, status and execution time when
verbose mode is set.

• The introduction of a rr based wrapper. With such a wrapper, it’s possible to transparently record the process
state (when executed via the avocado.utils.process APIs), and deterministically replay them later.

• The coredump generation contrib scripts will check if the user running Avocado is privileged to actually generate
those dumps. This means that it won’t give errors in the UI about failures on pre/post scripts, but will record
that in the appropriate job log.

• BUGFIX: The --remote-no-copy command line option, when added to the --remote-* options that
actually trigger the remote execution of tests, will now skip the local test discovery altogether.

258 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/40.0...41.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=kGNiOk8UrMs
https://trello.com/c/5oShOR1D/812-sprint-theme-outlander
http://avocado-framework.readthedocs.io/en/40.0/
http://rr-project.org

avocado Documentation, Release 88.1

• BUGFIX: The use of the asset fetcher by multiple avocado executions could result in a race condition. This is
now fixed, backed by a file based utility lock library: avocado.utils.filelock.

• BUGFIX: The asset fetcher will now properly check the hash on file: based URLs.

• BUGFIX: A busy loop in the avocado.utils.process library that was reported by our users was promptly
fixed.

• BUGFIX: Attempts to install Avocado on bare bones environments, such as virtualenvs, won’t fail anymore
due to dependencies required at setup.py execution time. Of course Avocado still requires some external
Python libraries, but these will only be required after installation. This should let users to pip install
avocado-framework successfully.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/P1Ps7T0F/782-sprint-theme-dr-who

39.0 The Hateful Eight

The Avocado team is proud to present another incremental release: version 39.0, aka, “The Hateful Eight”, is now
available!

Release documentation: Avocado 39.0

The major changes introduced on this version are listed below.

• Support for running tests in Docker container. Now, in addition to running tests on a (libvirt based) Virtual
Machine or on a remote host, you can now run tests in transient Docker containers. The usage is as simple as:

$ avocado run mytests.py --docker ldoktor/fedora-avocado

The container will be started, using ldoktor/fedora-avocado as the image. This image contains a Fedora
based system with Avocado already installed, and it’s provided at the official Docker hub.

• Introduction of the “Fail Fast” feature.

By running a job with the --failfast flag, the job will be interrupted after the very first test failure. If your
job only makes sense if it’s a complete PASS, this feature can save you a lot of time.

• Avocado supports replaying previous jobs, selected by using their Job IDs. Now, it’s also possible to use the
special keyword latest, which will cause Avocado to rerun the very last job.

• Python’s standard signal handling is restored for SIGPIPE, and thus for all tests running on Avocado.

In previous releases, Avocado introduced a change that set the default handler to SIGPIPE, which caused the
application to be terminated. This seemed to be the right approach when testing how the Avocado app would
behave on broken pipes on the command line, but it introduced side effects to a lot of Python code. Instead of
exceptions, the affected Python code would receive the signal themselves.

9.6. Avocado Releases 259

https://github.com/avocado-framework/avocado/compare/39.0...40.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=bWL8JHYN_ec
https://trello.com/c/P1Ps7T0F/782-sprint-theme-dr-who
http://avocado-framework.readthedocs.io/en/39.0/

avocado Documentation, Release 88.1

This is now reverted to the Python standard, and the signal behavior of Python based tests running on Avocado
should not surprise anyone.

• The project release notes are now part of the official documentation. That means that users can quickly find
when a given change was introduced.

Together with those changes listed, a total of 38 changes made into this release. For more information, please check
out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/nEiT7IjJ/755-sprint-theme-the-hateful-eight

38.0 Love, Ken

You guessed it right: this is another Avocado release announcement: release 38.0, aka “Love, Ken”, is now out!

Release documentation: Avocado 38.0

Another development cycle has just finished, and our community will receive this new release containing a nice
assortment of bug fixes and new features.

• The download of assets in tests now allow for an expiration time. This means that tests that need to download
any kind of external asset, say a tarball, can now automatically benefit from the download cache, but can also
keep receiving new versions automatically.

Suppose your asset uses an asset named myproject-daily.tar.bz2, and that your test runs 50 times a day. By
setting the expire time to 1d (1 day), your test will benefit from cache on most runs, but will still fetch the new
version when the 24 hours from the first download have passed.

For more information, please check out the documentation on the expire parameter to the fetch_asset() method.

• Environment variables can be propagated into tests running on remote systems. It’s a known fact that one way
to influence application behavior, including test, is to set environment variables. A command line such as:

$ MYAPP_DEBUG=1 avocado run myapp_test.py

Will work as expected on a local system. But Avocado also allows running tests on remote machines, and up
until now, it has been lacking a way to propagate environment variables to the remote system.

Now, you can use:

$ MYAPP_DEBUG=1 avocado run --env-keep MYAPP_DEBUG \
--remote-host test-machine myapp_test.py

• The plugin interfaces have been moved into the avocado.core.plugin_interfaces module. This means that plugin
writers now have to import the interface definitions this namespace, example:

260 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/38.0...39.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=GotEH7SmHSw
https://trello.com/c/nEiT7IjJ/755-sprint-theme-the-hateful-eight
http://avocado-framework.readthedocs.io/en/38.0/
http://avocado-framework.readthedocs.io/en/38.0/WritingTests.html

avocado Documentation, Release 88.1

...
from avocado.core.plugin_interfaces import CLICmd

class MyCommand(CLICmd):
...

This is a way to keep ourselves honest, and say that there’s no difference from plugin interfaces to Avocado’s
core implementation, that is, they may change at will. For greater stability, one should be tracking the LTS
releases.

Also, it effectively makes all plugins the same, whether they’re implemented and shipped as part of Avocado, or
as part of external projects.

• A contrib script for running kvm-unit-tests. As some people are aware, Avocado has indeed a close relation to
virtualization testing. Avocado-VT is one obvious example, but there are other virtualization related test suites
can Avocado can run.

This release adds a contrib script that will fetch, download, compile and run kvm-unit-tests using Avocado’s
external runner feature. This gives results in a better granularity than the support that exists in Avocado-VT,
which gives only a single PASS/FAIL for the entire test suite execution.

For more information, please check out the Avocado changelog.

Avocado-VT

Also, while we focused on Avocado, let’s also not forget that Avocado-VT maintains it’s own fast pace of incoming
niceties.

• s390 support: Avocado-VT is breaking into new grounds, and now has support for the s390 architecture. Fedora
23 for s390 has been added as a valid guest OS, and s390-virtio has been added as a new machine type.

• Avocado-VT is now more resilient against failures to persist its environment file, and will only give warnings
instead of errors when it fails to save it.

• An improved implementation of the “job lock” plugin, which prevents multiple Avocado jobs with VT tests to
run simultaneously. Since there’s no finer grained resource locking in Avocado-VT, this is a global lock that will
prevent issues such as image corruption when two jobs are run at the same time.

This new implementation will now check if existing lock files are stale, that is, they are leftovers from previous
run. If the processes associated with these files are not present, the stale lock files are deleted, removing the
need to clean them up manually. It also outputs better debugging information when failures to acquire lock.

The complete list of changes to Avocado-VT are available on Avocado-VT changelog.

Miscellaneous

While not officially part of this release, this development cycle saw the introduction of new tests on our avocado-misc-
tests. Go check it out!

Finally, since Avocado and Avocado-VT are not newly born anymore, we decided to update information mentioning
KVM-Autotest, virt-test on so on around the web. This will hopefully redirect new users to the Avocado community
and avoid confusion.

Happy hacking and testing!

Sprint Theme: https://trello.com/c/Y6IIFXBS/732-sprint-theme

9.6. Avocado Releases 261

https://github.com/avocado-framework/avocado/compare/37.0...38.0
https://github.com/avocado-framework/avocado-vt/compare/37.0...38.0
https://github.com/avocado-framework/avocado-misc-tests
https://github.com/avocado-framework/avocado-misc-tests
https://trello.com/c/Y6IIFXBS/732-sprint-theme

avocado Documentation, Release 88.1

37.0 Trabant vs. South America

This is another proud announcement: Avocado release 37.0, aka “Trabant vs. South America”, is now out!

Release documentation: Avocado 37.0

This release is yet another collection of bug fixes and some new features. Along with the same changes that made the
36.0lts release[1], this brings the following additional changes:

• TAP[2] version 12 support, bringing better integration with other test tools that accept this streaming format as
input.

• Added niceties on Avocado’s utility libraries “build” and “kernel”, such as automatic parallelism and resource
caching. It makes tests such as “linuxbuild.py” (and your similar tests) run up to 10 times faster.

• Fixed an issue where Avocado could leave processes behind after the test was finished.

• Fixed a bug where the configuration for tests data directory would be ignored.

• Fixed a bug where SIMPLE tests would not properly exit with WARN status.

For a complete list of changes please check the Avocado changelog[3].

For Avocado-VT, please check the full Avocado-VT changelog[4].

Happy hacking and testing!

[1] https://www.redhat.com/archives/avocado-devel/2016-May/msg00025.html
[2] https://en.wikipedia.org/wiki/Test_Anything_Protocol
[3] https://github.com/avocado-framework/avocado/compare/35.0. . . 37.0
[4] https://github.com/avocado-framework/avocado-vt/compare/35.0. . . 37.0
[5] http://avocado-framework.readthedocs.io/en/37.0/GetStartedGuide.html#installing-avocado
Sprint Theme: https://trello.com/c/XbIUqU1Y/673-sprint-theme

36.0 LTS

This is a very proud announcement: Avocado release 36.0lts, our very first “Long Term Stability” release, is now out!

Release documentation: Avocado 36.0

LTS in a nutshell

This release marks the beginning of a special cycle that will last for 18 months. Avocado usage in production environ-
ments should favor the use of this LTS release, instead of non-LTS releases.

Bug fixes will be provided on the “36lts”[1] branch until, at least, September 2017. Minor releases, such as “36.1lts”,
“36.2lts” an so on, will be announced from time to time, incorporating those stability related improvements.

Keep in mind that no new feature will be added. For more information, please read the “Avocado Long Term Stability”
RFC[2].

Changes from 35.0

As mentioned in the release notes for the previous release (35.0), only bug fixes and other stability related changes
would be added to what is now 36.0lts. For the complete list of changes, please check the GIT repo change log[3].

262 Chapter 9. Build and Quality Status

http://avocado-framework.readthedocs.io/en/37.0/
https://www.redhat.com/archives/avocado-devel/2016-May/msg00025.html
https://en.wikipedia.org/wiki/Test_Anything_Protocol
https://github.com/avocado-framework/avocado/compare/35.0...37.0
https://github.com/avocado-framework/avocado-vt/compare/35.0...37.0
http://avocado-framework.readthedocs.io/en/37.0/GetStartedGuide.html#installing-avocado
https://trello.com/c/XbIUqU1Y/673-sprint-theme
http://avocado-framework.readthedocs.io/en/36lts/

avocado Documentation, Release 88.1

Install avocado

The Avocado LTS packages are available on a separate repository, named “avocado-lts”. These repositories are avail-
able for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Updated “.repo” files are available on the usual locations:

• https://repos-avocadoproject.rhcloud.com/static/avocado-fedora.repo

• https://repos-avocadoproject.rhcloud.com/static/avocado-el.repo

Those repo files now contain definitions for both the “LTS” and regular repositories. Users interested in the LTS
packages, should disable the regular repositories and enable the “avocado-lts” repo.

Instructions are available in our documentation on how to install either with packages or from source[4].

Happy hacking and testing!

[1] https://github.com/avocado-framework/avocado/tree/36lts
[2] https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
[3] https://github.com/avocado-framework/avocado/compare/35.0. . . 36.0lts
[4] http://avocado-framework.readthedocs.io/en/36lts/GetStartedGuide.html#installing-avocado

35.0 Mr. Robot

This is another proud announcement: Avocado release 35.0, aka “Mr. Robot”, is now out!

This release, while a “regular” release, will also serve as a beta for our first “long term stability” (aka “lts”) release.
That means that the next release, will be version “36.0lts” and will receive only bug fixes and minor improvements.
So, expect release 35.0 to be pretty much like “36.0lts” feature-wise. New features will make into the “37.0” release,
to be released after “36.0lts”. Read more about the details on the specific RFC[9].

The main changes in Avocado for this release are:

• A big round of fixes and on machine readable output formats, such as xunit (aka JUnit) and JSON. The xunit
output, for instance, now includes tests with schema checking. This should make sure interoperability is even
better on this release.

• Much more robust handling of test references, aka test URLs. Avocado now properly handles very long test
references, and also test references with non-ascii characters.

• The avocado command line application now provides richer exit status[1]. If your application or custom script
depends on the avocado exit status code, you should be fine as avocado still returns zero for success and non-zero
for errors. On error conditions, though, the exit status code are richer and made of combinable (ORable) codes.
This way it’s possible to detect that, say, both a test failure and a job timeout occurred in a single execution.

• [SECURITY RELATED] The remote execution of tests (including in Virtual Machines) now allows for proper
checks of host keys[2]. Without these checks, avocado is susceptible to a man-in-the-middle attack, by connect-
ing and sending credentials to the wrong machine. This check is disabled by default, because users depend on
this behavior when using machines without any prior knowledge such as cloud based virtual machines. Also, a
bug in the underlying SSH library may prevent existing keys to be used if these are in ECDSA format[3]. There’s
an automated check in place to check for the resolution of the third party library bug. Expect this feature to be
enabled by default in the upcoming releases.

9.6. Avocado Releases 263

https://repos-avocadoproject.rhcloud.com/static/avocado-fedora.repo
https://repos-avocadoproject.rhcloud.com/static/avocado-el.repo
https://github.com/avocado-framework/avocado/tree/36lts
https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
https://github.com/avocado-framework/avocado/compare/35.0...36.0lts
http://avocado-framework.readthedocs.io/en/36lts/GetStartedGuide.html#installing-avocado

avocado Documentation, Release 88.1

• Pre/Post Job hooks. Avocado now defines a proper interface for extension/plugin writers to execute actions while
a Job is runnning. Both Pre and Post hooks have access to the Job state (actually, the complete Job instance).
Pre job hooks are called before tests are run, and post job hooks are called at the very end of the job (after tests
would have usually finished executing).

• Pre/Post job scripts[4]. As a feature built on top of the Pre/Post job hooks described earlier, it’s now possible
to put executable scripts in a configurable location, such as /etc/avocado/scripts/job/pre.d and have them called
by Avocado before the execution of tests. The executed scripts will receive some information about the job via
environment variables[5].

• The implementation of proper Test-IDs[6] in the test result directory.

Also, while not everything is (yet) translated into code, this release saw various and major RFCs, which are definitely
shaping the future of Avocado. Among those:

• Introduce proper test IDs[6]

• Pre/Post test hooks[7]

• Multi-stream tests[8]

• Avocado maintainability and integration with avocado-vt[9]

• Improvements to job status (completely implemented)[10]

For a complete list of changes please check the Avocado changelog[11]. For Avocado-VT, please check the full
Avocado-VT changelog[12].

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[13].

Updated RPM packages are be available in the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Packages

As a heads up, we still package the latest version of the various Avocado sub projects, such as the very popular
Avocado-VT and the pretty much experimental Avocado-Virt and Avocado-Server projects.

For the upcoming releases, there will be changes in our package offers, with a greater focus on long term stability
packages for Avocado. Other packages may still be offered as a convenience, or may see a change of ownership. All
in the best interest of our users. If you have any concerns or questions, please let us know.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/35.0/ResultFormats.html#exit-codes
[2] https://github.com/avocado-framework/avocado/blob/35.0/etc/avocado/avocado.conf#L41
[3] https://github.com/avocado-framework/avocado/blob/35.0/selftests/functional/test_thirdparty_bugs.py#L17
[4] http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#job-pre-and-post-scripts
[5] http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#script-execution-environment
[6] https://www.redhat.com/archives/avocado-devel/2016-March/msg00024.html
[7] https://www.redhat.com/archives/avocado-devel/2016-April/msg00000.html
[8] https://www.redhat.com/archives/avocado-devel/2016-April/msg00042.html
[9] https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html

264 Chapter 9. Build and Quality Status

http://avocado-framework.readthedocs.org/en/35.0/ResultFormats.html#exit-codes
https://github.com/avocado-framework/avocado/blob/35.0/etc/avocado/avocado.conf#L41
https://github.com/avocado-framework/avocado/blob/35.0/selftests/functional/test_thirdparty_bugs.py#L17
http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#job-pre-and-post-scripts
http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#script-execution-environment
https://www.redhat.com/archives/avocado-devel/2016-March/msg00024.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00000.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00042.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html

avocado Documentation, Release 88.1

[10] https://www.redhat.com/archives/avocado-devel/2016-April/msg00010.html
[11] https://github.com/avocado-framework/avocado/compare/0.34.0. . . 35.0
[13] https://github.com/avocado-framework/avocado-vt/compare/0.34.0. . . 35.0
[12] http://avocado-framework.readthedocs.org/en/35.0/GetStartedGuide.html#installing-avocado
Sprint Theme: https://trello.com/c/7dWknPDJ/637-sprint-theme

0.34.0 The Hour of the Star

Hello to all test enthusiasts out there, specially to those that cherish, care or are just keeping an eye on the greenest
test framework there is: Avocado release 0.34.0, aka The Hour of the Star, is now out!

The main changes in Avocado for this release are:

• A complete overhaul of the logging and output implementation. This means that all Avocado output uses the
standard Python logging library making it very consistent and easy to understand [1].

• Based on the logging and output overhaul, the command line test runner is now very flexible with its output.
A user can choose exactly what should be output. Examples include application output only, test output only,
both application and test output or any other combination of the builtin streams. The user visible command
line option that controls this behavior is –show, which is an application level option, that is, it’s available to all
avocado commands. [2]

• Besides the builtin streams, test writers can use the standard Python logging API to create new streams. These
streams can be shown on the command line as mentioned before, or persisted automatically in the job results by
means of the –store-logging-stream command line option. [3][4]

• The new avocado.core.safeloader module, intends to make it easier to to write new test loaders for various types
of Python code. [5][6]

• Based on the new avocado.core.safeloader module, a contrib script called avocado-find-unittests, returns the
name of unittest.TestCase based tests found on a given number of Python source code files. [7]

• Avocado is now able to run its own selftest suite. By leveraging the avocado-find-unittests contrib script and the
External Runner [8] feature. A Makefile target is available, allowing developers to run make selfcheck to have
the selftest suite run by Avocado. [9]

• Partial Python 3 support. A number of changes were introduced that allow concurrent Python 2 and 3 support
on the same code base. Even though the support for Python 3 is still incomplete, the avocado command line
application can already run some limited commands at this point.

• Asset fetcher utility library. This new utility library, and INSTRUMENTED test feature, allows users to trans-
parently request external assets to be used in tests, having them cached for later use. [10]

• Further cleanups in the public namespace of the avocado Test class.

• [BUG FIX] Input from the local system was being passed to remote systems when running tests with either in
remote systems or VMs.

• [BUG FIX] HTML report stability improvements, including better Unicode handling and support for other
versions of the Pystache library.

• [BUG FIX] Atomic updates of the “latest” job symlink, allows for more reliable user experiences when running
multiple parallel jobs.

• [BUG FIX] The avocado.core.data_dir module now dynamically checks the configuration system when deciding
where the data directory should be located. This allows for later updates, such as when giving one extra –config
parameter in the command line, to be applied consistently throughout the framework and test code.

9.6. Avocado Releases 265

https://www.redhat.com/archives/avocado-devel/2016-April/msg00010.html
https://github.com/avocado-framework/avocado/compare/0.34.0...35.0
https://github.com/avocado-framework/avocado-vt/compare/0.34.0...35.0
http://avocado-framework.readthedocs.org/en/35.0/GetStartedGuide.html#installing-avocado
https://trello.com/c/7dWknPDJ/637-sprint-theme

avocado Documentation, Release 88.1

• [MAINTENANCE] The CI jobs now run full checks on each commit on any proposed PR, not only on its
topmost commit. This gives higher confidence that a commit in a series is not causing breakage that a later
commit then inadvertently fixes.

For a complete list of changes please check the Avocado changelog[11].

For Avocado-VT, please check the full Avocado-VT changelog[12].

Avocado Videos

As yet another way to let users know about what’s available in Avocado, we’re introducing short videos with very
targeted content on our very own YouTube channel: https://www.youtube.com/channel/UCP4xob52XwRad0bU_
8V28rQ

The first video available demonstrates a couple of new features related to the advanced logging mechanisms, introduced
on this release: https://www.youtube.com/watch?v=8Ur_p5p6YiQ

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[13].

Updated RPM packages are be available in the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html
[2] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#tweaking-the-ui
[3] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#storing-custom-logs
[4] http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#advanced-logging-capabilities
[5] https://github.com/avocado-framework/avocado/blob/0.34.0/avocado/core/safeloader.py
[6]
http://avocado-framework.readthedocs.org/en/0.34.0/api/core/avocado.core.html#module-avocado.core.safeloader
[7] https://github.com/avocado-framework/avocado/blob/0.34.0/contrib/avocado-find-unittests
[8]
http://avocado-framework.readthedocs.org/en/0.34.0/GetStartedGuide.html#running-tests-with-an-external-runner
[9] https://github.com/avocado-framework/avocado/blob/0.34.0/Makefile#L33
[10] http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#fetching-asset-files
[11] https://github.com/avocado-framework/avocado/compare/0.33.0. . . 0.34.0
[12] https://github.com/avocado-framework/avocado-vt/compare/0.33.0. . . 0.34.0
[13] http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado
Sprint Theme: https://trello.com/c/QIbM3NvY/590-sprint-theme

0.33.0 Lemonade Joe or Horse Opera

Hello big farmers, backyard gardeners and supermarket reapers! Here is a new announcement to all the appreciators
of the most delicious green fruit out here. Avocado release 0.33.0, aka, Lemonade Joe or Horse Opera, is now out!

The main changes in Avocado are:

• Minor refinements to the Job Replay feature introduced in the last release.

266 Chapter 9. Build and Quality Status

https://www.youtube.com/channel/UCP4xob52XwRad0bU_8V28rQ
https://www.youtube.com/channel/UCP4xob52XwRad0bU_8V28rQ
https://www.youtube.com/watch?v=8Ur_p5p6YiQ
http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html
http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#tweaking-the-ui
http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#storing-custom-logs
http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#advanced-logging-capabilities
https://github.com/avocado-framework/avocado/blob/0.34.0/avocado/core/safeloader.py
http://avocado-framework.readthedocs.org/en/0.34.0/api/core/avocado.core.html#module-avocado.core.safeloader
https://github.com/avocado-framework/avocado/blob/0.34.0/contrib/avocado-find-unittests
http://avocado-framework.readthedocs.org/en/0.34.0/GetStartedGuide.html#running-tests-with-an-external-runner
https://github.com/avocado-framework/avocado/blob/0.34.0/Makefile#L33
http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#fetching-asset-files
https://github.com/avocado-framework/avocado/compare/0.33.0...0.34.0
https://github.com/avocado-framework/avocado-vt/compare/0.33.0...0.34.0
http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado
https://trello.com/c/QIbM3NvY/590-sprint-theme

avocado Documentation, Release 88.1

• More consistency naming for the status of tests that were not executed. Namely, the TEST_NA has been renamed
to SKIP all across the internal code and user visible places.

• The avocado Test class has received some cleanups and improvements. Some attributes that back the class
implementation but are not intended for users to rely upon are now hidden or removed. Additionally some the
internal attributes have been turned into proper documented properties that users should feel confident to rely
upon. Expect more work on this area, resulting in a cleaner and leaner base Test class on the upcoming releases.

• The avocado command line application used to show the main app help message even when help for a specific
command was asked for. This has now been fixed.

• It’s now possible to use the avocado process utility API to run privileged commands transparently via SUDO.
Just add the “sudo=True” parameter to the API calls and have your system configured to allow that command
without asking interactively for a password.

• The software manager and service utility API now knows about commands that require elevated privileges to be
run, such as installing new packages and starting and stopping services (as opposed to querying packages and
services status). Those utility APIs have been integrated with the new SUDO features allowing unprivileged
users to install packages, start and stop services more easily, given that the system is properly configured to
allow that.

• A nasty “fork bomb” situation was fixed. It was caused when a SIMPLE test written in Python used the Avo-
cado’s “main()” function to run itself.

• A bug that prevented SIMPLE tests from being run if Avocado was not given the absolute path of the executable
has been fixed.

• A cleaner internal API for registering test result classes has been put into place. If you have written your own
test result class, please take a look at avocado.core.result.register_test_result_class.

• Our CI jobs now also do quick “smoke” checks on every new commit (not only the PR’s branch HEAD) that are
proposed on github.

• A new utility function, binary_from_shell_cmd, has been added to process API allows to extract the executable
to be run from complex command lines, including ones that set shell variable names.

• There have been internal changes to how parameters, including the internally used timeout parameter, are han-
dled by the test loader.

• Test execution can now be PAUSED and RESUMED interactively! By hitting CTRL+Z on the Avocado com-
mand line application, all processes of the currently running test are PAUSED. By hitting CTRL+Z again, they
are RESUMED.

• The Remote/VM runners have received some refactors, and most of the code that used to live on the result test
classes have been moved to the test runner classes. The original goal was to fix a bug, but turns out test runners
were more suitable to house some parts of the needed functionality.

For a complete list of changes please check the Avocado changelog[1].

For Avocado-VT, there were also many changes, including:

• A new utility function, get_guest_service_status, to get service status in a VM.

• A fix for ssh login timeout error on remote servers.

• Fixes for usb ehci on PowerPC.

• Fixes for the screenshot path, when on a remote host

• Added libvirt function to create volumes with by XML files

• Added utility function to get QEMU threads (get_qemu_threads)

And many other changes. Again, for a complete list of changes please check the Avocado-VT changelog[2].

9.6. Avocado Releases 267

avocado Documentation, Release 88.1

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[3].

Updated RPM packages are be available in the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] https://github.com/avocado-framework/avocado/compare/0.32.0. . . 0.33.0
[2] https://github.com/avocado-framework/avocado-vt/compare/0.32.0. . . 0.33.0
[3] http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado
Sprint Theme: https://www.youtube.com/watch?v=H5Lg_14m-sM

0.32.0 Road Runner

Hi everyone! A new year brings a new Avocado release as the result of Sprint #32: Avocado 0.32.0, aka, “Road
Runner”.

The major changes introduced in the previous releases were put to trial on this release cycle, and as a result, we have
responded with documentation updates and also many fixes. This release also marks the introduction of a great feature
by a new member of our team: Amador Pahim brought us the Job Replay feature! Kudos!!!

So, for Avocado the main changes are:

• Job Replay: users can now easily re-run previous jobs by using the –replay command line option. This will
re-run the job with the same tests, configuration and multiplexer variants that were used on the origin one. By
using –replay-test-status, users can, for example, only rerun the failed tests of the previous job. For more check
our docs[1].

• Documentation changes in response to our users feedback, specially regarding the setup.py install/develop re-
quirement.

• Fixed the static detection of test methods when using repeated names.

• Ported some Autotest tests to Avocado, now available on their own repository[2]. More contributions here are
very welcome!

For a complete list of changes please check the Avocado changelog[3].

For Avocado-VT, there were also many changes, including:

• Major documentation updates, making them simpler and more in sync with the Avocado documentation style.

• Refactor of the code under the avocado_vt namespace. Previously most of the code lived under the plugin file
itself, now it better resembles the structure in Avocado and the plugin files are hopefully easier to grasp.

Again, for a complete list of changes please check the Avocado-VT changelog[4].

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[5].

Updated RPM packages are be available in the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

268 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/0.32.0...0.33.0
https://github.com/avocado-framework/avocado-vt/compare/0.32.0...0.33.0
http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado
https://www.youtube.com/watch?v=H5Lg_14m-sM

avocado Documentation, Release 88.1

[1] http://avocado-framework.readthedocs.org/en/0.32.0/Replay.html
[2] http://github.com/avocado-framework/avocado-misc-tests
[3] https://github.com/avocado-framework/avocado/compare/0.31.0. . . 0.32.0
[4] https://github.com/avocado-framework/avocado-vt/compare/0.31.0. . . 0.32.0
[5] http://avocado-framework.readthedocs.org/en/0.32.0/GetStartedGuide.html

0.31.0 Lucky Luke

Hi everyone! Right on time for the holidays, Avocado reaches the end of Sprint 31, and together with it, we’re very
happy to announce a brand new release! This version brings stability fixes and improvements to both Avocado and
Avocado-VT, some new features and a major redesign of our plugin architecture.

For Avocado the main changes are:

• It’s now possible to register callback functions to be executed when all tests finish, that is, at the end of a
particular job[1].

• The software manager utility library received a lot of love on the Debian side of things. If you’re writing tests
that install software packages on Debian systems, you may be in for some nice treats and much more reliable
results.

• Passing malformed commands (such as ones that can not be properly split by the standard shlex library) to the
process utility library is now better dealt with.

• The test runner code received some refactors and it’s a lot easier to follow. If you want to understand how the
Avocado test runner communicates with the processes that run the test themselves, you may have a much better
code reading experience now.

• Updated inspektor to the latest and greatest, so that our code is kept is shiny and good looking (and performing)
as possible.

• Fixes to the utility GIT library when using a specific local branch name.

• Changes that allow our selftest suite to run properly on virtualenvs.

• Proper installation requirements definition for Python 2.6 systems.

• A completely new plugin architecture[2]. Now we offload all plugin discovery and loading to the Stevedore
library. Avocado now defines precise (and simpler) interfaces for plugin writers. Please be aware that the public
and documented interfaces for plugins, at the moment, allows adding new commands to the avocado command
line app, or adding new options to existing commands. Other functionality can be achived by “abusing” the core
avocado API from within plugins. Our goal is to expand the interfaces so that other areas of the framework can
be extended just as easily.

For a complete list of changes please check the Avocado changelog[3].

Avocado-VT received just too many fixes and improvements to list. Please refer to the changelog[4] for more infor-
mation.

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[5].

Within a couple of hours, updated RPM packages will be available in the project repos for Fedora 22, Fedora 23, EPEL
6 and EPEL 7.

Happy hacking and testing!

9.6. Avocado Releases 269

http://avocado-framework.readthedocs.org/en/0.32.0/Replay.html
http://github.com/avocado-framework/avocado-misc-tests
https://github.com/avocado-framework/avocado/compare/0.31.0...0.32.0
https://github.com/avocado-framework/avocado-vt/compare/0.31.0...0.32.0
http://avocado-framework.readthedocs.org/en/0.32.0/GetStartedGuide.html

avocado Documentation, Release 88.1

[1] http://avocado-framework.readthedocs.org/en/0.31.0/ReferenceGuide.html#job-cleanup
[2] http://avocado-framework.readthedocs.org/en/0.31.0/Plugins.html
[3] https://github.com/avocado-framework/avocado/compare/0.30.0. . . 0.31.0
[4] https://github.com/avocado-framework/avocado-vt/compare/0.30.0. . . 0.31.0
[5] http://avocado-framework.readthedocs.org/en/0.31.0/GetStartedGuide.html

0.30.0 Jimmy’s Hall

Hello! Avocado reaches the end of Sprint 30, and with it, we have a new release available! This version brings stability
fixes and improvements to both Avocado and Avocado-vt.

As software doesn’t spring out of life itself, we’d like to acknowledge the major contributions by Lucas (AKA lmr)
since the dawn of time for Avocado (and earlier projects like Autotest and virt-test). Although the Avocado team at
Red Hat was hit by some changes, we’re already extremely happy to see that this major contributor (and good friend)
has not gone too far.

Now back to the more informational part of the release notes. For Avocado the main changes are:

• New RPM repository location, check the docs[1] for instructions on how to install the latest releases

• Makefile rules for building RPMs are now based on mock, to ensure sound dependencies

• Packaged versions are now available for Fedora 22, newly released Fedora 23, EL6 and EL7

• The software manager utility library now supports DNF

• The avocado test runner now supports a dry run mode, which allows users to check how a job would be executed,
including tests that would be found and parameters that would be passed to it. This is currently complementary
to the avocado list command.

• The avocado test runner now supports running simple tests with parameters. This may come in handy for simple
use cases when Avocado will wrap a test suite, but the test suite needs some command line arguments.

Avocado-vt also received many bugfixes[3]. Please refer to the changelog for more information.

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[1].

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.30.0/GetStartedGuide.html
[2] https://github.com/avocado-framework/avocado/compare/0.29.0. . . 0.30.0
[3] https://github.com/avocado-framework/avocado-vt/compare/0.29.0. . . 0.30.0

0.29.0 Steven Universe

Hello! Avocado reaches the end of Sprint 29, and with it, we have a great release coming! This version of avocado
once brings new features and plenty of bugfixes:

270 Chapter 9. Build and Quality Status

http://avocado-framework.readthedocs.org/en/0.31.0/ReferenceGuide.html#job-cleanup
http://avocado-framework.readthedocs.org/en/0.31.0/Plugins.html
https://github.com/avocado-framework/avocado/compare/0.30.0...0.31.0
https://github.com/avocado-framework/avocado-vt/compare/0.30.0...0.31.0
http://avocado-framework.readthedocs.org/en/0.31.0/GetStartedGuide.html
http://avocado-framework.readthedocs.org/en/0.30.0/GetStartedGuide.html
https://github.com/avocado-framework/avocado/compare/0.29.0...0.30.0
https://github.com/avocado-framework/avocado-vt/compare/0.29.0...0.30.0

avocado Documentation, Release 88.1

• The remote and VM plugins now work with –multiplex, so that you can use both features in conjunction. * The
VM plugin can now auto detect the IP of a given libvirt domain you pass to it, reducing typing and providing an
easier and more pleasant experience. * Temporary directories are now properly cleaned up and no re-creation
of directories happens, making avocado more secure.

• Avocado docs are now also tagged by release. You can see the specific documentation of this one at our readthe-
docs page [1]

• Test introspection/listing is safer: Now avocado does not load Python modules to introspect its contents, an
alternative method, based on the Python AST parser is used, which means now avocado will not load possible
badly written/malicious code at listing stage. You can find more about that in our test resolution documentation
[2]

• You can now specify low level loaders to avocado to customize your test running experience. You can learn
more about that in the Test Discovery documentation [3]

• The usual many bugfixes and polishing commits. You can see the full amount of 96 commits at [4]

For our Avocado VT plugin, the main changes are:

• The vt-bootstrap process is now more robust against users interrupting previous bootstrap attempts

• Some issues with RPM install in RHEL hosts were fixed

• Issues with unsafe temporary directories were fixed, making the VT tests more secure.

• Issues with unattended installed were fixed

• Now the address of the virbr0 bridge is properly auto detected, which means that our unattended installation
content server will work out of the box as long as you have a working virbr0 bridge.

Install avocado

As usual, go to https://copr.fedoraproject.org/coprs/lmr/Autotest/ to install our YUM/DNF repo and get the latest
goodies!

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.29.0
[2] http://avocado-framework.readthedocs.org/en/0.29.0/ReferenceGuide.html#test-resolution
[3] http://avocado-framework.readthedocs.org/en/0.29.0/Loaders.html
[4] https://github.com/avocado-framework/avocado/compare/0.28.0. . . 0.29.0

0.28.0 Jára Cimrman, The Investigation of the Missing Class Register

This release basically polishes avocado, fixing a number of small usability issues and bugs, and debuts avocado-vt as
the official virt-test replacement!

Let’s go with the changes from our last release, 0.27.0:

Changes in avocado:

• The avocado human output received another stream of tweaks and it’s more compact, while still being informa-
tive. Here’s an example:

9.6. Avocado Releases 271

https://copr.fedoraproject.org/coprs/lmr/Autotest/
http://avocado-framework.readthedocs.org/en/0.29.0
http://avocado-framework.readthedocs.org/en/0.29.0/ReferenceGuide.html#test-resolution
http://avocado-framework.readthedocs.org/en/0.29.0/Loaders.html
https://github.com/avocado-framework/avocado/compare/0.28.0...0.29.0

avocado Documentation, Release 88.1

JOB ID : f2f5060440bd57cba646c1f223ec8c40d03f539b
JOB LOG : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/job.log
TESTS : 1
(1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB HTML : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/html/
→˓results.html
TIME : 0.00 s

• The unittest system was completely revamped, paving the way for making avocado self-testable! Stay tuned for
what we have on store.

• Many bugfixes. Check [1] for more details.

Changes in avocado-vt:

• The Spice Test provider has been separated from tp-qemu, and changes reflected in avocado-vt [2].

• A number of bugfixes found by our contributors in the process of moving avocado-vt into the official virt-testing
project. Check [3] for more details.

See you in a few weeks for our next release! Happy testing!

The avocado development team

[1] https://github.com/avocado-framework/avocado/compare/0.27.0. . . 0.28.0
[2] https://github.com/avocado-framework/avocado-vt/commit/fd9b29bbf77d7f0f3041e66a66517f9ba6b8bf48
[3] https://github.com/avocado-framework/avocado-vt/compare/0.27.0. . . 0.28.0

0.27.1

Hi guys, we’re up to a new avocado release! It’s basically a bugfix release, with a few usability tweaks.

• The avocado human output received some extra tweaks. Here’s how it looks now:

$ avocado run passtest
JOB ID : f186c729dd234c8fdf4a46f297ff0863684e2955
JOB LOG : /home/lmr/avocado/job-results/job-2015-08-15T08.09-f186c72/job.log
TESTS : 1
(1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB HTML : /home/lmr/avocado/job-results/job-2015-08-15T08.09-f186c72/html/
→˓results.html
TIME : 0.00 s

• Bugfixes. You may refer to [1] for the full list of 58 commits.

Changes in avocado-vt:

• Bugfixes. In particular, a lot of issues related to –vt-type libvirt were fixed and now that backend is fully
functional.

News:

We, the people that bring you avocado will be at LinuxCon North America 2015 (Aug 17-19). If you are attending,
please don’t forget to drop by and say hello to yours truly (lmr). And of course, consider attending my presentation on
avocado [2].

272 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/0.27.0...0.28.0
https://github.com/avocado-framework/avocado-vt/commit/fd9b29bbf77d7f0f3041e66a66517f9ba6b8bf48
https://github.com/avocado-framework/avocado-vt/compare/0.27.0...0.28.0

avocado Documentation, Release 88.1

[1] https://github.com/avocado-framework/avocado/compare/0.27.0. . . 0.27.1
[2] http://sched.co/3Xh9

0.27.0 Terminator: Genisys

Hi guys, here I am, announcing yet another avocado release! The most exciting news for this release is that
our avocado-vt plugin was merged with the virt-test project. The avocado-vt plugin will be very important for
QEMU/KVM/Libvirt developers, so the main avocado received updates to better support the goal of having a good
quality avocado-vt.

Changes in avocado:

• The avocado human output received some tweaks and it’s more compact, while still being informative. Here’s
an example:

JOB ID : f2f5060440bd57cba646c1f223ec8c40d03f539b
JOB LOG : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/job.log
JOB HTML : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/html/
→˓results.html
TESTS : 1
(1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TIME : 0.00 s

• The avocado test loader was refactored and behaves more consistently in different test loading scenarios.

• The utils API received new modules and functions:

• NEW avocado.utils.cpu: APIs related to CPU information on linux boxes [1]

• NEW avocado.utils.git: APIs to clone/update git repos [2]

• NEW avocado.utils.iso9660: Get information about ISO files [3]

• NEW avocado.utils.service: APIs to control services on linux boxes (systemv and systemd) [4]

• NEW avocado.utils.output: APIs that help avocado based CLI programs to display results to users [5]

• UPDATE avocado.utils.download: Add url_download_interactive

• UPDATE avocado.utils.download: Add new params to get_file

• Bugfixes. You may refer to [6] for the full list of 64 commits.

Changes in avocado-vt:

• Merged virt-test into avocado-vt. Basically, the virt-test core library (virttest) replaced most uses of autotest by
equivalent avocado API calls, and its code was brought up to the virt-test repository [7]. This means, among
other things, that you can simply install avocado-vt through RPM and enjoy all the virt tests without having to
clone another repository manually to bootstrap your tests. More details about the process will be sent on an
e-mail to the avocado and virt-test mailing lists. Please go to [7] for instructions on how to get started with all
our new tools.

See you in a couple of weeks for our next release! Happy testing!

9.6. Avocado Releases 273

https://github.com/avocado-framework/avocado/compare/0.27.0...0.27.1
http://sched.co/3Xh9

avocado Documentation, Release 88.1

[1] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.cpu
[2] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.git
[3] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.iso9660
[4] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.service
[5] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.output
[6] https://github.com/avocado-framework/avocado/compare/0.26.0. . . 0.27.0
[7] https://github.com/avocado-framework/avocado-vt/commit/20dd39ef00db712f78419f07b10b8f8edbd19942
[8] http://avocado-vt.readthedocs.org/en/latest/GetStartedGuide.html

0.26.0 The Office

Hi guys, I’m here to announce avocado 0.26.0. This release was dedicated to polish aspects of the avocado user
experience, such as documentation and behavior.

Changes

• Now avocado tests that raise exceptions that don’t inherit from avocado.core.exceptions.TestBaseException now
will be marked as ERRORs. This change was made to make avocado to have clearly defined test statuses. A
new decorator, avocado.fail_on_error was added to let arbitrary exceptions to raise errors, if users need a more
relaxed behavior.

• The avocado.Test() utility method skip() now can only be called from inside the setUp() method. This was
made because by definition, if we get to the test execution step, by definition it can’t be skipped anymore. It’s
important to keep the concepts clear and well separated if we want to give users a good experience.

• More documentation polish and updates. Make sure you check out our documentation website http://
avocado-framework.readthedocs.org/en/latest/.

• A number of avocado command line options and help text was reviewed and updated.

• A new, leaner and mobile friendly version of the avocado website is live. Please check http://
avocado-framework.github.io/ for more information.

• We have the first version of the avocado dashboard! avocado dashboard is the initial version of an avocado
web interface, and will serve as the frontend to our testing database. You can check out a screenshot here:
https://cloud.githubusercontent.com/assets/296807/8536678/dc5da720-242a-11e5-921c-6abd46e0f51e.png

• And the usual bugfixes. You can take a look at the full list of 68 commits here: https://github.com/avocado-
framework/avocado/compare/0.25.0. . . 0.26.0

0.25.0 Blade

Hi guys, I’m here to announce the newest avocado release, 0.25.0. This is an important milestone in avocado develop-
ment, and we would like to invite you to be a part of the development process, by contributing PRs, testing and giving
feedback on the test runner’s usability and new plugins we came up with.

What to expect

This is the first release aimed for general use. We did our best to deliver a coherent and enjoyable experience, but keep
in mind that it’s a young project, so please set your expectations accordingly. What is expected to work well:

• Running avocado ‘instrumented’ tests

• Running arbitrary executables as tests

• Automatic test discovery and run of tests on directories

274 Chapter 9. Build and Quality Status

http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.cpu
http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.git
http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.iso9660
http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.service
http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.output
https://github.com/avocado-framework/avocado/compare/0.26.0...0.27.0
https://github.com/avocado-framework/avocado-vt/commit/20dd39ef00db712f78419f07b10b8f8edbd19942
http://avocado-vt.readthedocs.org/en/latest/GetStartedGuide.html
http://avocado-framework.readthedocs.org/en/latest/
http://avocado-framework.readthedocs.org/en/latest/
http://avocado-framework.github.io/
http://avocado-framework.github.io/
https://cloud.githubusercontent.com/assets/296807/8536678/dc5da720-242a-11e5-921c-6abd46e0f51e.png
https://github.com/avocado-framework/avocado/compare/0.25.0...0.26.0
https://github.com/avocado-framework/avocado/compare/0.25.0...0.26.0

avocado Documentation, Release 88.1

• xUnit/JSON report

Known Issues

• HTML report of test jobs with multiplexed tests has a minor naming display issue that is scheduled to be fixed
by next release.

• avocado-vt might fail to load if virt-test was not properly bootstrapped. Make sure you always run bootstrap in
the virt-test directory on any virt-test git updates to prevent the issue. Next release will have more mechanisms
to give the user better error messages on tough to judge situations (virt-test repo with stale or invalid config files
that need update).

Changes

• The Avocado API has been greatly streamlined. After a long discussion and several rounds of reviews and plan-
ning, now we have a clear separation of what is intended as functions useful for test developers and plugin/core
developers:

• avocado.core is intended for plugin/core developers. Things are more fluid on this space, so that we can move
fast with development

• avocado.utils is a generic library, with functions we found out to be useful for a variety of tests and core code
alike.

• avocado has some symbols exposed at its top level, with the test API:

• our Test() class, derived from the unittest.TestCase() class

• a main() entry point, similar to unittest.main()

• VERSION, that gives the user the avocado version (eg 0.25.0).

Those symbols and classes/APIs will be changed more carefully, and release notes will certainly contain API update
notices. In other words, we’ll be a lot more mindful of changes in this area, to reduce the maintenance cost of writing
avocado tests.

We believe this more strict separation between the available APIs will help test developers to quickly identify what
they need for test development, and reduce following a fast moving target, what usually happens when we have a new
project that does not have clear policies behind its API design.

• There’s a new plugin added to the avocado project: avocado-vt. This plugin acts as a wrapper for the virt-test
test suite (https://github.com/autotest/virt-test), allowing people to use avocado to list and run the tests available
for that test suite. This allows people to leverage a number of the new cool avocado features for the virt tests
themselves:

• HTML reports, a commonly asked feature for the virt-test suite. You can see a screen-
shot of what the report looks like here: https://cloud.githubusercontent.com/assets/296807/7406339/
7699689e-eed7-11e4-9214-38a678c105ec.png

• You can run virt-tests on arbitrary order, and multiple instances of a given test, something that is also currently
not possible with the virt test runner (also a commonly asked feature for the suite.

• System info collection. It’s a flexible feature, you get to configureeasily what gets logged/recorded between
tests.

• The avocado multiplexer (test matrix representation/generation system) also received a lot of work and fixes
during this release. One of the most visible (and cool) features of 0.25.0 is the new, improved –tree representation
of the multiplexer file:

9.6. Avocado Releases 275

https://github.com/autotest/virt-test
https://cloud.githubusercontent.com/assets/296807/7406339/7699689e-eed7-11e4-9214-38a678c105ec.png
https://cloud.githubusercontent.com/assets/296807/7406339/7699689e-eed7-11e4-9214-38a678c105ec.png

avocado Documentation, Release 88.1

$ avocado multiplex examples/mux-environment.yaml -tc
run

hw
cpu

intel
→ cpu_CFLAGS: -march=core2
amd
→ cpu_CFLAGS: -march=athlon64
arm
→ cpu_CFLAGS: -mabi=apcs-gnu -march=armv8-a -mtune=arm8

disk
scsi
→ disk_type: scsi
virtio
→ disk_type: virtio

distro
fedora
→ init: systemd
mint
→ init: systemv

env
debug
→ opt_CFLAGS: -O0 -g
prod
→ opt_CFLAGS: -O2

We hope you find the multiplexer useful and enjoyable.

• If an avocado plugin fails to load, due to factors such as missing dependencies, environment problems and
misconfiguration, in order to notify users and make them mindful of what it takes to fix the root causes for the
loading errors, those errors are displayed in the avocado stderr stream.

However, often we can’t fix the problem right now and don’t need the constant stderr nagging. If that’s the case, you
can set in your local config file:

[plugins]
Suppress notification about broken plugins in the app standard error.
Add the name of each broken plugin you want to suppress the notification
in the list. The names can be easily seen from the stderr messages. Example:
avocado.core.plugins.htmlresult ImportError No module named pystache
add 'avocado.core.plugins.htmlresult' as an element of the list below.
skip_broken_plugin_notification = []

• Our documentation has received a big review, that led to a number of improvements. Those can be seen online
(http://avocado-framework.readthedocs.org/en/latest/), but if you feel so inclined, you can build the documenta-
tion for local viewing, provided that you have the sphinx python package installed by executing:

$ make -C docs html

Of course, if you find places where our documentation needs fixes/improvements, please send us a PR and we’ll gladly
review it.

• As one would expect, many bugs were fixed. You can take a look at the full list of 156 commits here:
https://github.com/avocado-framework/avocado/compare/0.24.0. . . 0.25.0

276 Chapter 9. Build and Quality Status

http://avocado-framework.readthedocs.org/en/latest/
https://github.com/avocado-framework/avocado/compare/0.24.0...0.25.0

avocado Documentation, Release 88.1

9.7 BP000

Number BP000

Title Blueprint specification and requirements

Author Beraldo Leal <bleal@redhat.com>

Reviewers Cleber Rosa <crosa@redhat.com>, Jan Richter <jarichte@redhat.com>, Plamen Dimitrov
<pdimitrov@pevogam.com>, Willian Rampazzo <willianr@redhat.com>

Created 29-Sep-2020

Type Meta Blueprint

Status Approved

Table of Contents

• BP000

– TL;DR

– Motivation

– Specification

* One blueprint per topic

* File format and location

* Write for your audience

* Blueprints types

* Headers

* Blueprint statuses

* Sections

– Backwards Compatibility

– Security Implications

– How to Teach This

– Related Issues

– References

9.7.1 TL;DR

Having better records of architectural decisions in our repository is a good way to socialize our technical decisions,
improve the code review process, avoid unnecessary code, and balance the workload among other developers. We are
already using the “blueprint” documents for a while and still learning how to write them. Although we have a basic
idea of what is a blueprint, some may not understand the concept because we are missing one meta-document that
describes the blueprint’s basic notions. This document is a blueprint to specify how we should write blueprints from
now on.

9.7. BP000 277

mailto:bleal@redhat.com
mailto:crosa@redhat.com
mailto:jarichte@redhat.com
mailto:pdimitrov@pevogam.com
mailto:willianr@redhat.com

avocado Documentation, Release 88.1

9.7.2 Motivation

Depending on the project size, having very well defined and structured documents about the architecture decisions
seems like an overkill, but could help projects of any size, including Avocado, save time, make better decisions and
improve the way we socialize those decisions.

Today in the Avocado project we have the good practice to submit an RFC to our mailing list or to use/open a GitHub
issue when we have a new idea. RFCs are a widespread way to disclose the architecture decisions, but they are just
one part of a longer process. During the RFC phase, we argue in favor of a proposal, and we are mostly concerned
about collecting feedback. After this phase, we could go one step forward and consolidate the discussion in Blueprints
(sometimes called ADRs - Architecture Decision Records). This could be the next step so we could better socialize
our decisions for future readers. A very well defined and structured document has some advantages over an RFC, but
it is not intended to replace it, just be a later stage to follow from it.

With blueprints, we could not only, but mainly:

• Create better documents for future members and future reference, when we are trying to answer the following
questions:

a) why are you doing this? (the “problem” or the “motivation”);

b) what are you proposing to solve the problem? (your “solution”)?

c) And how are you going to implement the proposed solution?

Depending on the type of your blueprint, the answer for the last question (c) could be written in pseudocode, general
text or might even not be necessary (although desired) — more details on the section named Specification.

When using RFCs as email threads, there are no sections or headers, each contributor will try to send the RFC without
following formal sections and headers. RFCs, as we use them today are just thread discussions and are not focused on
future review/reading.

• Make sure that another peer will be able to implement a feature/requirement.

Blueprints are not for you; they are for the community. If you know that a problem exists and know how to fix it, the
most natural course of action would be to start coding this fix and submitting a Pull Request. While this is still valid
for most of the cases, some important architectural changes must be discussed first to explain the “why”, “what” and
“how” to keep everyone on the same page, avoid unnecessary coding, and most importantly: allow others to implement
it in case you are not available.

• Improve the code review quality and time.

Having a better understanding of the problem and the big picture is better for code review. It is harder to capture that
from the Pull Request (PR) description and PR changes. Developers that are aware of the problem tend to review your
changes with the problem in mind and hence more quickly.

• Reduce onboarding time for new members.

Having a history of how we made an architectural decision and why we are implementing it this way will give new
members reading material to understand our project, avoiding unnecessary discussions and meetings to explain some-
thing.

• Create a common standard that will make it easier for readers.

With an open RFC, authors tend to organize the ideas in different ways with different sections. Having a very well
structured document with common sections will make it easier for readers to understand the problem and the solution.

• Track the progress of a significant implementation.

We could use the blueprints header “status” line to track the progress of some features. We could even have a page
parsing and listing all the blueprints with the title, author, status, and target milestone for that feature.

• Find the middle ground between “overthinking” and “auto-pilot.”

278 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Last but not least: we are not trying to overthink here and/or slow down our development processes. The idea is to
have a lightweight document, very objective that will save us time in the medium and long run. We don’t have to
overthink by trying to handle any possible scenario outside of ones we actually have a use case for. But we should
also avoid the “auto-pilot” mode in our contributions where we are fixing issues as quick as possible without thinking
about the big picture, it is not healthy for the project.

9.7.3 Specification

One blueprint per topic

Try to follow the minimalist approach and be concise with content relevant to one particular topic. If you have a
more general topic to discuss, you should set the type as “Epic Blueprint” (more below) but still try to be concise and
focused on the subject.

File format and location

Our current documentation already uses ReStructuredText (.rst) format, so we will adopt .rst format here too. All
blueprints will be located inside docs/source/blueprints with the filename BPXXX.rst, where XXX is the number of
the blueprint. Just pick the next number available for your blueprint.

It’s recomended that you use docs/source/blueprints/template.rst as a starting point.

Write for your audience

As mentioned before, your blueprint will be read by your peers, future members, and future yourself. Keep in mind
that your audience is developers with a minimal understanding of the Avocado internals and be kind providing any
necessary context to understand the problem.

Blueprints types

Currently, we have the following blueprint types:

• Architectural Blueprint: Any blueprint changing or introducing a new core feature or architectural change to
Avocado.

• Process Blueprint: Any blueprint that is not implementing a new core feature, but changing how the project
works. This could be, for instance, related to the repositories or processes.

• Meta Blueprint: A blueprint about blueprints. Like this one and any future blueprint that changes our blueprint’s
styles and methods.

• Epic Blueprint: A blueprint that is touching on multiple areas and is too big to have all the documentation in
one single blueprint. We could split epic blueprints into smaller blueprints or issues (if they are small and easy
to understand). Epic Blueprints are not a merge of all sub-blueprints. Like an epic issue, epic blueprints don’t
need to detail “how” (or provide details) that the sub-blueprints could have.

• Component Blueprint: A blueprint with the intent to describe a new utility module or a new plugin.

Headers

Python PEPs (Python Enhancement Proposals) uses RFC822 for describing the headers. This could be useful here too,
especially when parsing those headers to display our list of blueprints with the current status.

The current list of items of our blueprint headers is below:

9.7. BP000 279

avocado Documentation, Release 88.1

• Number: Usually, the blueprint number in the format BPXXX

• Title: A short descriptive title, limited to 80 characters

• Author: The author or authors of blueprint. Following the format: [FIRST NAME] [LAST NAME] -
<email@domain>

• Reviewers: All reviewers that approved and helped during the review process

• Created: Date string when the blueprint first draft was submitted. Please use the following format: DD-MMM-
YYYY.

• Type: One of the types described during the previous section

• Status: One of the types described during the next section

Here is an example of a header:

:Number: BP001
:Title: Configuration by convention
:Author: Beraldo Leal <bleal@redhat.com>
:Reviewers: Cleber Rosa, Lukáš Doktor and Plamen Dimitrov
:Created: 06-Dec-2019
:Type: Epic Blueprint
:Status: WIP

Blueprint statuses

• Draft: All blueprints should be created in this state. This means the blueprint is accepting comments, and
probably there is a discussion happening. Blueprints in draft mode can be part of our repository.

• Approved: Blueprint was approved after discussions, and all suggestions are already incorporated on the docu-
ment. Nobody has started working on this yet.

• Assigned: This status is not about the blueprint itself, but about the proposal that is the subject of the BP. This
means that the blueprint was approved, and someone is already working on implementing it. A BP status can
change from Draft to Assigned if the work has started already.

• WIP: Blueprint was approved and someone is working on it. Work in Progress.

• Implemented: This means the BP is already implemented and delivered to the Avocado’s master branch.

• Rejected: Rejected status means the idea was not implemented because it wasn’t approved by everyone or has
some technical limitations.

• Deprecated: Deprecated means it was approved, implemented, and at some point, makes no more sense to
have it. For example, anything related to the legacy runner. Usually, Deprecated means that it was replaced by
something else.

As you can see, there is no status to accommodate any future change in a blueprint. Blueprints should not be “voided.”
Any improvement on an old blueprint should be presented as a new blueprint, changing the status of the original to
“deprecated”.

Sections

In order to facilitate the reading and understanding of the problem, all blueprints must have the following sections:

• TL;DR

• Motivation

280 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

• Specification

• Backwards Compatibility

• Security Implications

• How to Teach This

• Related Issues

• References

Below you can find a brief description of what you should write in each section:

• TL;DR: Should be a short description of your blueprint. Like an abstract. We recommend writing this at the end
of your first draft. This will give you a better overview of it.

• Motivation: This should be the motivation of your proposed solution, not the motivation of the blueprint itself.
It describes the problem. Here, you should answer “why” your solution is needed.

• Specification: In this section, you should describe how you are going to solve the problem. You can create
subsections here to organize your ideas better. Please keep in mind that it is useful to mention the details, with
code snippets, examples, and/or references. This will save you time, making sure that everyone is in agreement
with the proposed solution.

• Backwards Compatibility: How is your proposal going to affect older versions of Avocado? Should we deprecate
some modules, classes, or methods? Are we going to keep backwards compatibility or not?

• Security Implications: Do you have any concerns about security with your proposed solution and what are they?
If there’s functionality that is insecure but highly convenient, consider how to make it “opt-in”, disabled by
default.

• How to Teach This: What is the best way to inform our devs and users about your new feature/solution? Consider
both “how-to” and reference style documentation, and if appropriate, examples (under examples/) using the
feature.

• Related Issues: Here, you should mention Github links for both: a) current open issues that are blocking while
waiting for your BP and b) all open issues that will render this BP as “implemented” when closed.

1. Issues to address this BP

Would be nice, if possible, to open issues on GH that covers all aspects of your Blueprint.

2. Issues this BP will solve

What are the issues already existent on Avocado project that your proposal will solve?

• References: Any external reference for helping understand the problem and your solution.

9.7.4 Backwards Compatibility

So far, we are on our 3rth blueprint (BP003 was the last one). This BP000 should have been released before those
blueprints. So probably those three blueprints are not 100% compliaant with this meta blueprint, and that is fine. We
were learning on the fly. We don’t need to change any of those blueprints after BP000 gets approved.

9.7.5 Security Implications

No security implications found so far.

9.7. BP000 281

avocado Documentation, Release 88.1

9.7.6 How to Teach This

Getting used to writing blueprints is not an easy task. And probably we are going to find unplanned issues with this
process on the way. The general rule of thumb is to use common sense. To make this more public, we could consider
the following:

• If approved, BP000 should be on top of our blueprints lists for reference.

• We could also have a template inside the blueprints directory to help people when submitting their own
blueprints.

• Also, we could include pointers and instructions in our development guide for this BP.

• Another good practice would be to make comments in Avocado’s source code with some pointers to specific
blueprints.

9.7.7 Related Issues

None.

9.7.8 References

None.

9.8 BP001

Number BP001

Title Configuration by convention

Author Beraldo Leal <bleal@redhat.com>

Discussions-To avocado-devel@redhat.com

Reviewers Cleber Rosa, Lukáš Doktor and Plamen Dimitrov

Created 06-Dec-2019

Type Epic Blueprint

Status Approved

Table of Contents

• BP001

– TL;DR

– Motivation

– Specification

* Basics on Defaults

* Mapping between configuration options

* Standards for Command Line Interface

282 Chapter 9. Build and Quality Status

mailto:bleal@redhat.com
mailto:avocado-devel@redhat.com

avocado Documentation, Release 88.1

· Argument Types

· Presentation

* Standards for Config File Interface

· Nested Sections

· Plugin section name

· Reserved Sections

· Config Types

* Presentation

– Backwards Compatibility

* Command line syntax changes

* Plugin name changes

– Security Implications

– How to Teach This

– Related Issues

– References

9.8.1 TL;DR

The number of plugins made by many people and the lack of some name, config options, and argument type conven-
tions may turn Avocado’s usability difficult. This also makes it challenging to create a future API for executing more
complex jobs. Even without plugins the lack of convention (or another type or order setting mechanism) can induce
growth pains.

After an initial discussion on avocado-devel, we came up with this “blueprint” to change some config file settings and
argparse options in Avocado.

This document has the intention to list the requirements before coding. And note that, since this is a relatively big
change, this blueprint will be broken into small cards/issues. At the end of this document you can find a list of all
issues that we should solve in order to solve this big epic Blueprint.

9.8.2 Motivation

An Avocado Job is primarily executed through the avocado run command line. The behavior of such an Avocado Job
is determined by parsing the following settings (listed in parsed order):

1) Default values in source code

2) Configuration file contents

3) Command-line options

Currently, the Avocado config file is an .ini file that is parsed by Python’s configparser library and this config is broken
into sections. Each Avocado plugin has its dedicated section.

Today, the parsing of the command line options is made by argparse library and produces a dictionary that is given to
the avocado.core.job.Job() class as its config parameter.

9.8. BP001 283

avocado Documentation, Release 88.1

There is a lack of convention/order in the item 1. For instance, we have “avocado/core/defaults.py” with some defaults,
but there are other such defaults scattered around the project, with ad-hoc names.

There is also no convention on the naming pattern used either on configuration files or on command-line options.
Besides the name convention, there is also a lack of convention for some argument types. For instance:

$ avocado run -d

and:

$ avocado run --sysinfo on

Both are boolean variables, but with different “execution model” (the former doesn’t need arguments and the latter
needs on or off as argument).

Since the Avocado trend is to have more and more plugins, we need to design a name convention on command-line
arguments and settings to avoid chaos.

But, most important: It would be valuable for our users if Avocado provides a Python API in such a way that developers
could write more complex jobs programmatically and advanced users that know the configuration entries used on jobs,
could do a quick one-off execution on command-line.

Example:

import sys
from avocado.core.job import Job

config = {'references': ['tests/passtest.py:PassTest.test']}

with Job(config) as j:
sys.exit(j.run())

Before we address this API use-case, it is important to create this convention so we can have an intuitive use of
Avocado config options.

We understand that, plugin developers have the flexibility to configure they options as desired but inside Avocado core
and plugin, settings should have a good naming convention.

9.8.3 Specification

Basics on Defaults

The Oxford dictionary lists the following as one of the meanings of the word “default” (noum):

“a preselected option adopted by a computer program or other mechanism when no alternative is specified
by the user or programmer.”

The basic behavior on defaults values vs config files vs command line arguments should be:

1. Avocado has all default values inside the source code;

2. Avocado parses the config files and override the defined values;

3. Avocado parses the command-line options and override the defined values;

If the config files or configuration options are missing, Avocado should still be able to use the default values. Users
can only change 2 and 3.

284 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Note: New Issue: Converte all “currently configured settings” into a default value.

Mapping between configuration options

Currently, Avocado has the following options to configure it:

1. Default values;

2. Configuration files;

3. Command-line options;

Soon, we will have a fourth option:

4. Job API config argument;

Although we should keep an eye on item 4 while implementing this blueprint, it is not intended to address the API at
this time.

The default values (within the source code) should have an 1:1 mapping to the configuration file options. Must follow
the same naming convention and sections. Example:

#avocado.conf:
[core]
foo = bar
[core.sysinfo]
foo = bar
[pluginx]
foo = bar

Should generate a dictionary or object in memory with a 1:1 mapping, respecting chained sections:

{'core': {'foo': 'bar',
'sysinfo': {'foo': 'bar'}},

'pluginx': {'foo': 'bar'}}

Again, if the config file is missing or some option is missing the result should be the same, but with the default values.

Since the command-line options are only the most used and basic ones, there is no need to have a 1:1 mapping between
item 2 and item 3.

When naming subcommands options you don’t have to worry about name conflicts outside the subcommand scope,
just keep them short, simple and intuitive.

When naming a command-line option on the core functionality we should remove the “core” word section and replace
“_” by “-”. For instance:

[core]
execution_timeout = 30

Should be:

avocado --execution-timeout 30

When naming plugin options, we should try to use the following standard:

[pluginx]
foo = bar

9.8. BP001 285

avocado Documentation, Release 88.1

Becames:

avocado --pluginx-foo bar

This only makes sense if the plugins’ names are short.

Warning: Maybe I have to get more used with all the Avocado options to understand better. Or someone could
help here.

Standards for Command Line Interface

When it comes to the command line interface, a very interesting recommendation is the POSIX Standard’s recommen-
dation for arguments[1]. Avocado should try to follow this standard and its recommendations.

This pattern does not cover long options (starting with –). For this, we should also embrace the GNU extension[2].

One of the goals of this extension, by introducing long options, was to make command-line utilities user-friendly. Also,
another aim was to try to create a norm among different command-line utilities. Thus, –verbose, –debug, –version
(with other options) would have the same behavior in many programs. Avocado should try to, where applicable, use
the GNU long options table[3] as reference.

Note: New Issue: Review the command line options to see if we can use the GNU long options table.

Many of these recommendations are obvious and already used by Avocado or enforced by default, thanks to libraries
like argparse.

However, those libraries do not force the developer to follow all recommendations.

Besides the basic ones, there is a particular case to pay attention: “option-arguments”.

Option-arguments should not be optional (Guideline 7, from POSIX). So we should avoid this:

avocado run --loaders [LOADERS [LOADERS ...]]

or:

avocado run --store-logging-stream [STREAM[:LEVEL] [STREAM[:LEVEL] ...]]

As discussed we should try to have this:

avocado run --loaders LOADERS [LOADERS ...]

Note: New Issue: Make the option-arguments not optional.

Argument Types

Basic types, like strings and integers, are clear how to use. But here is a list of what should expect when using other
types:

1. Booleans: Boolean options should be expressed as “flags” args (without the “option-argument”). Flags, when
present, should represent a True/Active value. This will reduce the command line size. We should avoid using
this:

286 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

avocado run --json-job-result {on,off}

So, if the default it is enabled, we should have only one option on the command-line:

avocado run --disable-json-job-result

This is just an example, the name and syntax may be diferent.

Note: New Issue: Fix boolean command line options

2. Lists: When an option argument has multiple values we should use the space as the separator.

Note: New Issue: Review if we have any command line list using non space as separator.

Presentation

Finding options easily, either in the manual or in the help, favor usability and avoids chaos.

We can arrange the display of these options in alphabetical order within each section.

Standards for Config File Interface

Many other config file options could be used here, but since that this is another discussion, we are assuming that we
are going to keep using configparser for a while.

As one of the main motivations of this Blueprint is to create a convention to avoid chaos and make the job execution
API use as straightforward as possible, We believe that the config file should be as close as possible to the dictionary
that will be passed to this API.

For this reason, this may be the most critical point of this blueprint. We should create a pattern that is intuitive for the
developer to convert from one format to another without much juggling.

Nested Sections

While the current configparser library does not support nested sections, Avocado can use the dot character as a con-
vention for that. i.e: [runner.output].

This convention will be important soon, when converting a dictionary into a config file and vice-versa.

And since almost everything in Avocado is a plugin, each plugin section should not use the “plugins” prefix and must
respect the reserved sections mentioned before. Currently, we have a mix of sections that start with “plugins” and
sections that don’t.

Note: New Issue: Remove “plugins” from the configuration section names.

Plugin section name

Most plugins currently have the same name as the python module. Example: human, diff, tap, nrun, run, journal,
replay, sysinfo, etc.

9.8. BP001 287

avocado Documentation, Release 88.1

These are examples of “good” names.

However, some other plugins do not follow this convention. Ex: runnable_run, runnable_run_recipe, task_run,
task_run_recipe, archive, etc.

We believe that having a convention here helps when writing more complex tests, configfiles, as well as easily finding
plugins in various parts of the project, either on a manual page or during the installation procedure.

We understand that the name of the plugin is different from the module name in python, but in any case we should try
to follow the PEP8:

From PEP8: Modules should have short, all-lowercase names. Underscores can be used in the module
name if it improves readability. Python packages should also have short, all-lowercase names, although
the use of underscores is discouraged.

Let’s get the human example:

• Python module name: human

• Plugin name: human

Let’s get the task_run_recipe example:

• Python module name: task_run_recipe

• Plugin name: task-run-recipe

Let’s get another example:

• Python module name: archive

• Plugin name: zip_archive

One suggestion should be to have a namespace like resolvers.tests.exec, resolvers.tests.unit.python.

And all the duplicated code could be imported from a common module inside the plugin. But yes, it is a “delicate
issue”.

Note: New Issue: Rename the plugins modules and names. This might be tricky.

Reserved Sections

We should have one reserved section, the core section for the Avocado’s core functionalities.

All plugin code that it is considered “core” should be inside core as a “nested section”. Example:

[core]
foo = bar

[core.sysinfo]
collect_enabled = True

Note: New Issue: Move all ‘core’ related settings to the core section.

288 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Config Types

configparser do not guess datatypes of values in configuration files, always storing them internally as strings. This
means that if you need other datatypes, you should convert on your own

There are few methods on this library to help us: getboolean(), getint() and getfloat(). Basic types here, are also
straightforward.

Regarding boolean values, getboolean() can accept yes/no, on/off, true/false or 1/0. But we should adopt one style and
stick with it.

Note: New Issue: Create a simple but effective type system for configuration files and argument options.

Presentation

As the avocado trend is to have more and more plugins, We believe that to make it easier for the user to find where each
configuration is, we should split the file into smaller files, leaving one file for each plugin. Avocado already supports
that with the conf.d directory. What do you think?

Note: New Issue: Split config files into small ones (if necessary).

9.8.4 Backwards Compatibility

In order to keep a good naming convention, this set of changes probably will rename some args and/or config file
options.

While some changes proposed here are simple and do not affect Avocado’s behavior, others are critical and may break
Avocado jobs.

Command line syntax changes

These command-line conversions will lead to a “syntax error”. We should have a transition period with a “deprecated
message”.

Plugin name changes

Changing the modules names and/or the ‘name’ attribute of plugins will require to change the config files inside
Avocado as well. This will not break unless the user is using an old config file. In that case, we should also have a
“deprecated message” and accept the old config file option for some time.

9.8.5 Security Implications

Avocado users should have the warranty that their jobs are running on isolated environment.

We should consider this and keep in mind that any moves here should continue with this assumption.

9.8. BP001 289

avocado Documentation, Release 88.1

9.8.6 How to Teach This

We should provide a complete configuration reference guide section in our User’s Documentation.

Note: New Issue: Create a complete configuration reference.

In the future, the Job API should also be very well detailed so sphinx could generate good documentation on our Test
Writer’s Guide.

Besides a good documentation, there is no better way to learn than by example. If our plugins, options and settings
follow a good convention it will serve as template to new plugins.

If these changes are accepted by the community and implemented, this RFC could be adapted to become a section on
one of our guides, maybe something like the a Python PEP that should be followed when developing new plugins.

Note: New Issue: Create a new section in our Contributor’s Guide describing all the conventions on this blueprint.

9.8.7 Related Issues

Here a list of all issues related to this blueprint:

1. Create a new section in our Contributor’s Guide describing all the conventions on this blueprint.

2. Create a complete configuration reference.

3. Split config files into small ones (if necessary).

4. Create a simple but effective type system for configuration files and argument options.

5. Move all ‘core’ related settings to the core section.

6. Rename the plugins modules and names. This might be tricky.

7. Remove “plugins” from the configuration section names.

8. Review if we have any command line list using non space as separator.

9. Fix boolean command line options.

10. Make the option-arguments not optional.

11. Review the command line options to see if we can use the GNU long options table.

12. Converte all “currently configured settings” into a default value.

Warning: After this blueprint get approved, I will open all issues on GH, add links here and remove all the notes.

9.8.8 References

[1] - https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html

[2] - https://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html

[3] - https://www.gnu.org/prep/standards/html_node/Option-Table.html#Option-Table

290 Chapter 9. Build and Quality Status

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html
https://www.gnu.org/prep/standards/html_node/Option-Table.html#Option-Table

avocado Documentation, Release 88.1

9.9 BP002

Number BP002

Title Requirements resolver

Author Willian Rampazzo <willianr@redhat.com>

Discussions-To https://github.com/avocado-framework/avocado/issues/3455

Reviewers Beraldo Leal, Cleber Rosa

Created 27-Jan-2020

Type Architecture Blueprint

Status Approved

Table of Contents

• BP002

– TL;DR

– Motivation

– Specification

* Basics

* Requirements representations

· Requirements representation as JSON files

· Requirements representation as Python executable

· Requirements representation as Metadata on test docstring

* Requirements files location

* Requirements files command-line parameter

– Backward Compatibility

– Security Implications

– How to Teach This

– Related Issues

– References

9.9.1 TL;DR

The current management of test assets is handled manually by the test developer. It is usual to have a set of repetitive
code blocks to define the name, location, and other attributes of an asset, download it or signal an error condition if a
problem occurred and the download failed.

Based on use cases compiled from the discussion on qemu-devel mailing-list [1] and discussions during Avocado
meetings, this blueprint describes the architecture of a requirements resolver aiming the extensibility and flexibility
when handling different types of assets, like a file, a cloud image, a package, a Git repository, source codes or Operating
System parameters.

9.9. BP002 291

mailto:willianr@redhat.com
https://github.com/avocado-framework/avocado/issues/3455

avocado Documentation, Release 88.1

9.9.2 Motivation

Implementing a test that gathers its requirements while executing may lead to a wrong interpretation of the test results
if a requirement is not satisfied. The failure of a test because of a missing requirement does not mean the test itself
failed. During its execution, the test has never reached the core test code; still, it may be considered a failing test.

Fulfilling all the test requirements beforehand can be an efficient way to handle requirements problems and can im-
prove the trustworthiness of the test result. It means that if a test ran and failed, the code responsible for the failure is
related to the core test and not with one of its requirements.

Regardless of how the test defines a requirement, an architecture capable of identifying them is beneficial. Storing its
references and delegating to the code responsible for handling each different type of requirement makes the overall
architecture of Avocado and the requirement definition of a test more flexible.

A requirements resolver can bring the necessary flexibility to the Avocado architecture, as well as managing support
for different types of requirements.

This blueprint discusses the architecture of a requirements resolver responsible for handling the different requirements
types.

9.9.3 Specification

Basics

The strict meaning of a resolver is related to something responsible for creating resolutions from a given representation.
When there is a well-defined way to declare something, a resolver can translate this representation to another well-
defined representation. The classic example is a Domain Name Server (DNS), which resolves the hostname into an
Internet Protocol (IP) address. The use of the word resolver in this text means a code responsible for gathering and
fulfilling well-know representations with little or no transformation.

The definition of requirements resolver in this blueprint is a code responsible for gathering well-known formats of
requirements, possibly from different sources, and centralizing in one place, or fulfilling them. The requirements
fulfillment can take place starting from the centralized collection of requirements as input to one of several modules
responsible for handling each specific type of requirement, like, for example, files, images, packages, git repositories,
source code or operating system parameters.

The following diagram shows the underlying architecture of a requirements resolver proposed in this blueprint. The
next sessions describes, in detail, each part of the resolver, its inputs, and outputs.

292 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Requirements representations

Define how to represent a requirement is the first step to define the architecture of a resolver. This blueprint defines
the following ways to represent a requirement:

1. JavaScript Object Notation (JSON) file;

2. Python executable that produces a JSON file;

3. Metadata included in the test docstring.

Requirements representation as JSON files

JSON is a lightweight data-interchange format [2] supported by the Python standard library. Using it to represent
requirements is flexible and straightforward.

The standard proposed way to represent requirements with JSON is defining one requirement per entry. Each entry
should start with the requirement type, followed by other keyword arguments related to that type. Example:

[
{"type": "file", "uri": "https://cabort.com/cabort.c", "hash": "deadbeefdeadbeef"}

→˓,
{"type": "vmimage", "distro": "fedora", "version": 31, "arch": "x86_64"},
{"type": "package", "package": "lvm"}

]

The requirement type should match the module responsible for that type of requirement.

Requirements representation as Python executable

Another way to create the requirements representation as JSON files is by writing a Python executable. This approach
makes the requirements representation flexible, by allowing the use of Python variables and code that may change the

9.9. BP002 293

avocado Documentation, Release 88.1

parameters values for the requirements, depending on the environment the Python code runs.

The following example shows a requirement that depends on the architecture the test is running:

#!/usr/bin/python3

import os
import json

requirements = [
{"type": "file", "uri": "https://cabort.com/cabort.c", "hash": "deadbeefdeadbeef"}

→˓,
{"type": "vmimage", "distro": "fedora", "version": 31, "arch": os.uname()[4]},
{"type": "package", "package": "lvm"}

]

print(json.dumps(requirements))

Requirements representation as Metadata on test docstring

Test writers may want to add the requirements of a test into de test code. The option proposed here allows the use of
metadata on test docstrings to represent the requirements list.

Below is an example of how to define requirements as metadata on docstrings:

def test_something(self):
'''

:avocado: requirement={"type": "file", "uri": "https://cabort.com/cabort.c", "hash
→˓": "deadbeefdeadbeef"}

:avocado: requirement={"type": "vmimage", "distro": "fedora", "version": 31, "arch
→˓": "x86_64"}

:avocado requirement={"type": "package", "package": "lvm"}
'''

<test code>

Requirements files location

It may be useful for test writers to define a standard source location for the requirements JSON files and the require-
ments Python executable.

This blueprint defines the default location for a job-wide requirements file in the same directory of the test files or
test-specific requirements files into a requirements directory preceded by the test file name. It is also possible to use
sub-directories with the name of a specific test to define requirements for that test.

The following file tree is an example of possible use for requirements directories for a test:

requirements.json
cabort.py
cabort.py.requirements/

CAbort.test_2
requirements.py

requirements.json

In this case, all the tests on cabort.py, except for CAbort.test_2, use the requirements.json file located at
cabort.py.requirements. The CAbort.test_2 test uses its own requirements.py located at CAbort.test_2 directory in-

294 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

side the requirements directory. The tests located at the same directory of cabort.py use the requirements.json in the
root directory.

Requirements files command-line parameter

It is also possible to use a command-line parameter to define the location of the requirements file. The command-line
parameter supersedes all the other possible uses of requirements files. For that, this blueprint defines the parameter
–requirements-file followed by the location of the requirements file. As a command-line example, we have:

avocado --requirements-file requirements.json run passtest.py

Note: New Issue: Add the support for –requirements-file command-line parameter.

9.9.4 Backward Compatibility

The implementation of the requirements resolver, proposed here, affects Avocado’s behavior related to the tasks exe-
cuted before a test execution starts.

To make the requirements resolver as flexible as possible, the implementation of this blueprint may change the utility
APIs related to a requirement type.

9.9.5 Security Implications

Avocado users should have the warranty that their jobs are running in an isolated environment, but Avocado can,
conservatively, create mechanisms to protect the users from running unintended code.

The use of a Python executable to build the requirements file is subject to security considerations. A malicious code
distributed as a Python executable to build the requirements file can lead to security implications. This blueprint pro-
poses a security flag in a general Avocado configuration file to avoid Python executable code to run by default. Users
can change this flag anytime to be able to use the ability to run Python executable codes to generate the requirements
JSON file.

Following is an example of how this flag can look like:

[resolver.requirements]
Whether to run Python executables to build the requirements file
unsafe = False

Note: New Issue: Add the unsafe flag support for the requirements resolver.

9.9.6 How to Teach This

We should provide a complete and detailed explanation of how to handle test requirements in the User’s Documenta-
tion.

Note: New Issue: Create a complete section in the User’s Guide on how to handle test requirements.

Also, we should address how to create utility modules to handle new types of requirements in the Contributor’s Guide.

9.9. BP002 295

avocado Documentation, Release 88.1

Note: New Issue: Create a new section in the Contributor’s Guide on how to develop modules to handle new types of
requirements.

9.9.7 Related Issues

Here a list of all issues related to this blueprint:

1. Add the support for –requirements-file command-line parameter.

2. Add the unsafe flag support for the requirements resolver.

3. Create a complete section in the User’s Guide on how to handle test requirements.

4. Create a new section in the Contributor’s Guide on how to develop modules to handle new types of requirements.

Warning: The link to the GitHub issues will be added to this list as they are created.

9.9.8 References

[1] - https://lists.gnu.org/archive/html/qemu-devel/2019-11/msg04074.html

[2] - https://docs.python.org/3/library/json.html

9.10 BP003

Number BP003

Title N(ext)Runner Task Life-Cycle

Author Cleber Rosa <crosa@redhat.com>

Discussions-To avocado-devel@redhat.com

Reviewers Beraldo Leal <bleal@redhat.com>, Willian Rampazzo <willianr@redhat.com>

Created 20-July-2020

Type Architecture Blueprint

Status WIP

Table of Contents

• BP003

– TL;DR

– Motivations

– Goals of this BluePrint

– Requirements

* Task Execution Requirements Verification

296 Chapter 9. Build and Quality Status

https://lists.gnu.org/archive/html/qemu-devel/2019-11/msg04074.html
https://docs.python.org/3/library/json.html
mailto:crosa@redhat.com
mailto:avocado-devel@redhat.com
mailto:bleal@redhat.com
mailto:willianr@redhat.com

avocado Documentation, Release 88.1

* Parallelization and Result Events

* Non-blocking Parallelization

* Passive Task Status Collection

* Proxy from Task Status To Job Result

* Task Monitoring and Termination

– Suggested Terminology for the Task Phases

* Task execution has been requested

* Task is being triaged

* Task is ready to be started

* Task has been started

* Task is finished

– Task life-cycle example

* Iteration I

* Iteration II

* Iteration III

* Final Iteration

* Tallying results

– Implementation Example

– Backwards Compatibility

– Security Implications

– How to Teach This

– Related Issues

– Future work

* Tasks’ requirements fulfilment

* Active Task Status Collection

– References

9.10.1 TL;DR

The N(ext) Runner has been used as Avocado’s runner for selftests for over a year. The implementation used is based
on the avocado nrun command, that is, outside of the Avocado’s traditional avocado run entrypoint. Under
the hood, it means that the N(ext) Runner is not integrated well enough with an Avocado Job.

A partial implementation of the N(ext) Runner integration with an Avocado Job is available at avocado/plugins/
runner_nrunner.py but it has a number limitations.

The N(ext) Runner executes tests as Tasks. This blueprint describes the phases that a Task can be in throughout its
life-cycle, and how the handling of these phases or states, will power the tests execution mechanism within the context
of an Avocado Job.

9.10. BP003 297

avocado Documentation, Release 88.1

9.10.2 Motivations

Propose an architecture for integrating the N(ext) Runner concepts and features into an Avocado Job. Because the
N(ext) Runner contains distinguishing features that the original Avocado Job did not anticipate, a proxy layer is
necessary.

The current runner (and Job) is built on the premises that there’s a “currently executing test”, and thus, does not need
to keep track of various running tests states at once. The N(ext) Runner, on the other hand, support for running tests
in parallel, and thus needs supporting code for keeping track of their state and forward their relevant information to an
Avocado Job.

9.10.3 Goals of this BluePrint

1. Propose an architecture based on the life-cycle phases that an N(ext) Runner Task can go through while running
under an Avocado Job.

2. Describe how the proposed architecture can power an implementation suitable for the next Avocado LTS release
(82.0), having feature completeness when compared to the current runner, while still making its distinguishing
features available to users who opt in. This also means that the current Avocado Job interface will continue to
support the current runner implementation.

3. Prove that the current runner can be removed without significant user impact after the LTS release (within the
83.0 development cycle), based on the feature completeness of the N(ext) Runner with regards to its integration
with an Avocado Job.

4. Allow for future extension of the Task life-cycle phases architecture, such as into a more capable and further
reaching scheduler for Tasks. This means that this BluePrint is focused on short term integration issues, as de-
scribe in the motivation, but at the same tries to not impose future limitations to have new features implemented
for other use cases.

9.10.4 Requirements

This section describes the requirements to manage the Task’s life-cycle. It also describes the phases of a Task life-cycle
and includes an example.

Task Execution Requirements Verification

For a Task to actually be executed, there needs to be a minimal number of requirements present. For instance, it’s
pointless to attempt to execute a Task of kind “custom” without either:

1. An avocado-runner-custom runner script that is compatible with the Avocado interface, OR

2. A CustomRunner runner class that is compatible with the avocado.core.nrunner.BaseRunner in-
terface

Other types of Task Execution Requirements checks may be added in the future, but the core concept that a Task can
not always be executed remains.

Currently, as per the avocado nrun implementation, this verification is done in a synchronous way, and it’s of
limited visibility to the user.

Requirements:

1. The verification of one Task’s requirement should not block other Tasks from progressing to other phases.

2. The user interface should provide more information on tasks that either failed the verification or that still going
through the verification process.

298 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Parallelization and Result Events

The N(ext) Runner allows for the parallel execution of tasks. When integrated into a Job, it means there can be more
than one test running at a given time.

Currently, plugins that implement the avocado.core.plugin_interfaces.ResultEvents interface may
contain logic that assumes that the same test will have start_test, test_progress and then end_test
methods called in that particular order, and only then another test will have any of those called on its behalf.

For instance, the Human UI plugin will currently:

1. Print a line such as (1/1) /bin/true: when a test starts, that is, when avocado.core.
plugin_interfaces.ResultEvents.start_test() is called.

2. Add a throbber and/or change its state whenever a progress update is received, that is, when avocado.core.
plugin_interfaces.ResultEvents.test_progress() is called.

3. Add a test result such as PASS (0.01 s) when the test finishes, that is, when avocado.core.
plugin_interfaces.ResultEvents.end_test() is called.

Other implementations, such as the TAP result plugin, will only print a line when the final test result is known.

Requirement: have no conflicts of test information when more than one is running in parallel.

Requirement example: provide the test progress notification and the final test result information “in line” with the
correct test indication (if given earlier).

Note: Ideally, this shouldn’t require a change to the interface, but only within the implementation so that the presen-
tation of coherent test result events is achieved.

Non-blocking Parallelization

As stated earlier, the N(ext) Runner allows for the parallel execution of tasks. A given Task should be allowed to be
executed as early as possible, provided:

1. Its requirements (such as its specific test runners) are available.

2. A limit for concurrently running tasks has not been reached.

Requirement: there should be no artificial and unnecessary blocking of the parallelization level.

Requirement example: if an hypothetical Result Events plugin interacts with a high latency server, and such interaction
takes 2 minutes, the execution of new tasks should not be affected by it.

Note: There are a number of strategies for concurrent programming in Python these days, and the “avocado nrun”
command currently makes use of asyncio to have coroutines that spawn tasks and collect results concurrently (in a
preemptive cooperative model). The actual tools/libraries used in the implementation shall be discussed later.

Passive Task Status Collection

The N(ext) Runner architecture allows tests to run in a much more decoupled way, because of a number of its charac-
teristics, including the fact that Tasks communicate their status by sending asynchronous messages.

9.10. BP003 299

avocado Documentation, Release 88.1

Note: The current implementation uses network sockets as the transport for these messages, in part for its universal
aspect, and in part to enforce this decoupling. Future implementations may provide alternate transports, such as file
descriptors, serial connections, etc.

There currently is a component used for a similar role used in avocado nrun: avocado.core.nrunner.
StatusServer, but it exceeds what’s needed here in some aspects, and lacks in others aspects.

Requirement: have a mechanism that can receive and collect in an organized manner, all the state messages coming
from tasks that are part of an Avocado Job.

Requirement example: the Avocado Job should be able to use the collection of task status information to ask questions
such as the following.

1. When was the last time that task “123-foobar” gave an status update? Such information would be useful to
determine if the task should be abandoned or destroyed as part of a timeout handling, as described in the later
section about Task Monitoring and Termination.

2. Has the task “123-foobar” given a final status update? That is, can we conclude that, as a Task, regardless of the
success or failure of what it ran, it finished its execution? Such information would be useful to post the final test
result to the Job results and ResultEvent plugins, as described in the next section.

Proxy from Task Status To Job Result

An Avocado Job contains an avocado.core.result.Result which tallies the overall job results. But, the state
messages coming from Tasks are not suitable to being given directly to methods such as avocado.core.result.
Result.check_state(). A mechanism is needed to proxy and convert the relevant message and events to the
current Avocado job result and ResultEvents plugins.

Requirements:

1. Proxy Task Status messages and convert them into the appropriate information suitable for avocado.core.
result.Result.

2. Allow ResultEvents plugins to act as soon as possible on relevant status messages;

Task Monitoring and Termination

The N(ext) Runner architecture, as stated before, can have tasks running without much, if any, contact with an Avocado
Job. But, an Avocado Job must have a beginning and end, and with that it’s necessary to monitor tasks, and if their
situation is not clear, decide their fate.

For instance, a Task started as part of an Avocado Job may communicate the following messages:

{'status': 'started', 'time': 1596680574.8790667, 'output_dir': '/tmp/.avocado-task-
→˓d8w0k9s1', 'id': '1-/bin/sleep'}
{'status': 'running', 'time': 1596680574.889258, 'id': '1-/bin/sleep'}

Then it may go offline for eternity. The possible reasons are varied, and despite them, the Job will eventually have to
deal the non-final, unknown state of tasks and given them a resolution.

Note: The Spanwer may be able to provide additional information that will help to decide the handling given to such
as Task (or its recorded final status). For instance, if a Task running on a container is not communicating its status,
and its verified that the container has finished its execution, it may be wise to not wait for the timeout.

Requirements:

300 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

1. Monitor the execution of a task (from an external PoV).

2. Unless it proves to be, say because of complexity or impossibilities when interacting with the spawners, tasks
that are unresponsive should attempt to be terminated.

3. Notify the user if stray tasks should be clean up manually. This may be, for instance, necessary if a Task on
a container seems to be stuck, and the container can not be destroyed. The same applies to a process in an
uninterruptible sleep state.

4. Update Job result with the information about monitored tasks.

Note: Tasks going through the usual phases will end up having their final state in the going through the
task status collection described earlier, and from there have them proxied/converted into the Job result
and plugins. At first sight, it seems that the task monitoring should use the same repository of status and
update it in a similar way, but on behalf of the “lost/exterminated task”.

9.10.5 Suggested Terminology for the Task Phases

Task execution has been requested

A Task whose execution was requested by the user. All of the tasks on a Job’s test_suite attribute are requested
tasks.

If a software component deals with this type of task, it’s advisable that it refers to TASK_REQUESTED or
requested_tasks or a similar name that links to this definition.

Task is being triaged

The details of the task are being analyzed, including, and most importantly, the ability of the system to run it. A task
that leaves triage, and it’s either considered FINISHED because it can not be executed, or is READY and waits to be
executed.

If a software component deals with this type of task, for instance, if a “task scheduler” is looking for runners matching
the Task’s kind, it should keep it under a tasks_under_triage or mark the tasks as TASK_UNDER_TRIAGE or
TASK_TRIAGING a similar name that links to this definition.

Task is ready to be started

Task has been triaged, and as much as the system knows, it’s ready to be executed. A task may be in this phase for any
amount of time, given that the capacity to have an additional task started is dynamic and may be enforced here.

If a software component deals with this type of task, it should keep it under a tasks_ready or mark the tasks as
TASK_READY or a similar name that links to this definition.

Task has been started

A task was successfully started by a spawner.

Note that it does not mean that the test that the task runner (say, an avocado-runner-$kind task-run com-
mand) will run has already started. This will be signaled by a runner, say avocado-runner-$kind producing an
status: started kind of status message.

If a software component deals with this type of task, it should keep it under a tasks_started or mark the tasks as
TASK_STARTED or a similar name that links to this definition.

9.10. BP003 301

avocado Documentation, Release 88.1

Task is finished

This means that there’s no longer any activity or a new phase for this task to move to.

It’s expected that extra information will be available explaining how/why the task arrived in this phase. For instance, it
may have come from the TASK_TRIAGING phase and never gone through the TASK_STARTED phase. Alternatively,
it may been in the TASK_STARTED phase and finished without any errors.

It should be kept under a tasks_finished structure or be marked as TASK_FINISHED or a similar name that
links to this definition.

Note: There’s no associated meaning here about the pass/fail output of the test payload executed by the task.

9.10.6 Task life-cycle example

A task will usually be created from a Runnable. A Runnable will, in turn, almost always be created as part of the
“avocado.core.resolver” module. Let’s consider the following output of a resolution:

Two Runnables here will be transformed into Tasks. The process usually includes adding an identification and a status
URI:

302 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

In the end, a job will contain a test_suite with “Task #1” and “Task #2”. It means that the execution of both tasks
was requested by the Job owner.

These tasks will now be triaged. A suitable implementation will move those tasks to a tasks_under_triage
queue, mark them as TASK_UNDER_TRIAGE or some other strategy to differentiate the tasks at this stage.

9.10. BP003 303

avocado Documentation, Release 88.1

304 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

Iteration I

Task #1 is selected on the first iteration, and it’s found that:

1. A suitable runner for tasks of kind python-unittest exists;

2. The mylib.py requirement is already present on the current environment;

3. The gcc and libc-devel packages are not installed in the current environment;

Task #1 is not ready to be executed, so it’s moved to TASK_FINISHED and it’s reason is recorded.

No further action is performed on the first iteration because no other relevant state exists (Task #2, the only other
requested task, has not progressed beyond its initial stage).

Iteration II

On the second iteration, Task #2 is selected, and it’s found that:

1. A suitable runner for tasks of kind python-unittest exists;

2. The mylib.py requirement is already present on the current environment.

Task #2 is now ready to be started.

As a reminder, Task #1 has not passed triaging and is TASK_FINISHED.

Iteration III

On the third iteration, there are no tasks left under triage, so the action is now limited to tasks being prepared and
ready to be started.

Note: As an optmization, supposing that the “status uri” 127.0.0.1:8080, was set by the job, as its internal status
server, it must be started before any task, to avoid any status message being lost. Without such an optmization, the
status server could be started earlier.

At this stage, Task #2 has been started.

Final Iteration

On the fifth iteration, the spawner reports that Task #2 is not alive anymore, and the status server has received a
message about it.

Because of that, Task #2 is now considered TASK_FINISHED.

Tallying results

The nrunner plugin should be able to provide meaningful results to the Job, and consequently, to the user, based on
the resulting information on the final iteration.

Notice that some information, such as the PASS for the second test, will come from the “result” given in a status
message from the task itself. Some other status, such as the CANCEL status for the first test will not come from a
status message received, but from a realization of the actual management of the task execution. It’s expected to other
information will also have to be inferred, and “filled in” by the nrunner plugin implementation.

In the end, it’s expected that results similar to this would be presented:

9.10. BP003 305

avocado Documentation, Release 88.1

JOB ID : f59bd40b8ac905864c4558dc02b6177d4f422ca3
JOB LOG : /home/cleber/avocado/job-results/job-2020-05-20T17.58-f59bd40/job.log
(1/2) tests.py:Test.test_1: CANCEL (0 s)
(1/2) tests.py:Test.test_2: PASS (2.56 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 1
JOB TIME : 0.19 s
JOB HTML : /home/cleber/avocado/job-results/job-2020-05-20T17.58-f59bd40/results.
→˓html

Notice that Task #2 may show up before Task #1. There may be issues associated with the current UI to deal with
regarding out of order task status updates.

9.10.7 Implementation Example

The following implementation example uses random sleeps and random (but biased) results from operations expected
to happen on different phases, to simulate the behavior of real tasks.

The enforcement of some artifical limits (such as the number of tasks TASK_STARTED) is also exemplified. As a
general rule, all tasks are attempted to be moved further into their life-cycle and a number of “workers” doing that
should not conflict with each other.

This implementation uses Python’s asyncio library very crudely. The final implementation may use other tools,
such as a asyncio.Queue instead of plain lists with a asyncio.Lock. It may also use individual Tasks for
each work in each phase.

9.10.8 Backwards Compatibility

The compatibility of the resulting Job compatible runner implementation with the current runner is to be verified by
running the same set of “Job API feature tests”, but with this runner selected instead.

There are no compatibility issues with the previous versions of itself, or with the non-Job compatible nrun imple-
mentation.

9.10.9 Security Implications

None that we can determine at this point.

9.10.10 How to Teach This

The distinctive features that the N(ext) Runner provides should be properly documented.

Users should not be required to learn about the N(ext) Runner features to use it just as an alternative to the current
runner implementation.

9.10.11 Related Issues

Current issues that are expected to be solved when this blueprint is implemented:

1. Have a passive Task Status collection server implementation.

2. Have a Task Life Cycle / State Machine implementation.

306 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/asyncio-sync.html#asyncio.Lock
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task

avocado Documentation, Release 88.1

3. Have Spawner features to check the status (alive or not) for Tasks. This is inteded to be used in place or in
addition of the status messages from Tasks, when they failed to be generated by tasks or received by the Task
Status collection server.

4. Have Spawner features to destroy (best effort) stray Tasks.

5. Fully integrate the N(ext) Runner into the Avocado Job and command line app, that is, as a general rule all
features of the current runner should be present when the N(ext) Runner is used in a job.

9.10.12 Future work

These are possible future improvements to the Task phases, and may be a partial list of addition towards a more
comprehensive “Task scheduler”. They are provided for discussion only and do not constitute hard requirements for
this or future work.

Tasks’ requirements fulfilment

1. Prepare for the execution of a task, such as the fulfillment of extra task requirements. The requirements resolver is
one, if not the only way, component that should be given a chance to act here;

2. Executes a task in a prepared environment;

Active Task Status Collection

Some environments and use cases may require disconnected execution of tasks. In such cases, a Job will have to
activelly poll for tasks’ statuses, which may be:

1. an operation that happens along the task execution.

2. only at the end of the task execution, as signalled by the termination of the environment in which a task is
running on.

9.10.13 References

• RFC: https://www.redhat.com/archives/avocado-devel/2020-May/msg00015.html

• Early implementation: https://github.com/avocado-framework/avocado/pull/3765

• Requirement check prototype: https://github.com/avocado-framework/avocado/pull/4015

9.11 Other Resources

This is a collection of some other varied Avocado related sources on the web:

9.11.1 Presentations

• Testing Framework Internals (DevConf 2017)

• Auto Testing for AArch64 Virtualization (Linaro connect San Francisco 2017)

• libvirt integration and testing for enterprise KVM/ARM (Linaro Connect Budapest 2017)

• Automated Testing Framework (PyCon CZ 2016)

9.11. Other Resources 307

https://www.redhat.com/archives/avocado-devel/2020-May/msg00015.html
https://github.com/avocado-framework/avocado/pull/3765
https://github.com/avocado-framework/avocado/pull/4015
https://www.youtube.com/watch?v=--fxmmJ5SBA&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR
http://connect.linaro.org/resource/sfo17/sfo17-502/
http://connect.linaro.org/resource/bud17/bud17-213/
https://www.youtube.com/watch?v=eTR-LvW80pM&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR&index=2

avocado Documentation, Release 88.1

• Avocado and Jenkins (DevConf 2016)

• Avocado: Next Gen Testing Toolbox (DevConf 2015)

• Avocado workshop (DevConf 2015) mindmap with all commands/content and a partial video

• Avocado: Open Source Testing Made Easy (LinuxCon 2015)

9.11.2 Public test repositories

• Avocado Misc Tests

• Cockpit tests

• Modularity framework tests (uses custom docker image)

• OpenPOWER Host OS and Guest Virtual Machine (VM) stability tests

9.12 Avocado’s Configuration Reference

This is current Avocado Configuration reference. You can adjust the values by two ways:

• Configuration file options;

• Command-line options (when available)

Some options that are used often are available for your convenience also at the command-line. This list has all
options registered with Avocado so far.

Note: Please, keep in mind that we are in constant evolution and doing a huge improvements on how to configure
Avocado, some options here can be changed in the near future.

9.12.1 assets.fetch.ignore_errors

always return success for the fetch command.

• Default: False

• Type: <class ‘bool’>

9.12.2 assets.fetch.references

Path to avocado instrumented test

• Default: []

• Type: <class ‘list’>

9.12.3 assets.list.days

How old (in days) should Avocado look for assets?

• Default: None

• Type: <class ‘int’>

308 Chapter 9. Build and Quality Status

https://www.youtube.com/watch?v=XJ7IWQflM9g&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR&index=4
https://www.youtube.com/watch?v=xMXS7NB4WSs&index=5&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR
https://www.mindmeister.com/504616310/avocado-workshop
https://www.mindmeister.com/504616310/avocado-workshop
https://www.youtube.com/watch?v=tdEg07BfdBw&index=3&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR
https://github.com/avocado-framework-tests/avocado-misc-tests
https://github.com/cockpit-project/cockpit/tree/master/test/avocado
https://github.com/fedora-modularity/meta-test-family
https://github.com/open-power-host-os/

avocado Documentation, Release 88.1

9.12.4 assets.list.overall_limit

Filter will be based on a overall system limit threshold in bytes (with assets orded by last access) or with a suffix unit.
Valid suffixes are: b,k,m,g,t

• Default: None

• Type: <class ‘str’>

9.12.5 assets.list.size_filter

Apply action based on a size filter (comparison operator + value) in bytes. Ex ‘>20’, ‘<=200’. Supported operators:
==, <, >, <=, >=

• Default: None

• Type: <class ‘str’>

9.12.6 assets.purge.days

How old (in days) should Avocado look for assets?

• Default: None

• Type: <class ‘int’>

9.12.7 assets.purge.overall_limit

Filter will be based on a overall system limit threshold in bytes (with assets orded by last access) or with a suffix unit.
Valid suffixes are: b,k,m,g,t

• Default: None

• Type: <class ‘str’>

9.12.8 assets.purge.size_filter

Apply action based on a size filter (comparison operator + value) in bytes. Ex ‘>20’, ‘<=200’. Supported operators:
==, <, >, <=, >=

• Default: None

• Type: <class ‘str’>

9.12.9 assets.register.name

Unique name to associate with this asset.

• Default: None

• Type: <class ‘str’>

9.12. Avocado’s Configuration Reference 309

avocado Documentation, Release 88.1

9.12.10 assets.register.sha1_hash

SHA1 hash of this asset.

• Default: None

• Type: <class ‘str’>

9.12.11 assets.register.url

Path to asset that you would like to register manually.

• Default: None

• Type: <class ‘str’>

9.12.12 config.datadir

Shows the data directories currently being used by Avocado

• Default: False

• Type: <class ‘bool’>

9.12.13 core.input_encoding

The encoding used by default on all data input

• Default: utf-8

• Type: <class ‘str’>

9.12.14 core.paginator

Turn the paginator on. Useful when output is too long.

• Default: False

• Type: <class ‘bool’>

9.12.15 core.show

List of comma separated builtin logs, or logging streams optionally followed by LEVEL (DEBUG,INFO,. . .). Builtin
streams are: “app”: application output; “test”: test output; “debug”: tracebacks and other debugging info; “early”:
early logging of other streams, including test (very verbose); “all”: all builtin streams; “none”: disables regular output
(leaving only errors enabled). By default: ‘app’

• Default: {‘app’}

• Type: <function register_core_options.<locals>.<lambda> at 0x7faca32625f0>

310 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.16 core.verbose

Some commands can produce more information. This option will enable the verbosity when applicable.

• Default: False

• Type: <class ‘bool’>

9.12.17 datadir.paths.base_dir

Base directory for Avocado tests and auxiliary data

• Default: /var/lib/avocado

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.18 datadir.paths.cache_dirs

Cache directories to be used by the avocado test

• Default: [‘/home/docs/avocado/data/cache’]

• Type: <class ‘list’>

9.12.19 datadir.paths.data_dir

Data directory for Avocado

• Default: /var/lib/avocado/data

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.20 datadir.paths.logs_dir

Logs directory for Avocado

• Default: /home/docs/avocado/job-results

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.21 datadir.paths.test_dir

Test directory for Avocado tests

• Default: /usr/share/doc/avocado/tests

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.22 diff.create_reports

Create temporary files with job reports to be used by other diff tools

• Default: False

• Type: <class ‘bool’>

9.12. Avocado’s Configuration Reference 311

avocado Documentation, Release 88.1

9.12.23 diff.filter

Comma separated filter of diff sections: (no)cmdline,(no)time,(no)variants,(no)results, (no)config,(no)sysinfo (de-
faults to all enabled).

• Default: [‘cmdline’, ‘time’, ‘variants’, ‘results’, ‘config’, ‘sysinfo’]

• Type: <function Diff._validate_filters at 0x7fac9bfb4cb0>

9.12.24 diff.html

Enable HTML output to the FILE where the result should be written.

• Default: None

• Type: <class ‘str’>

9.12.25 diff.jobids

A job reference, identified by a (partial) unique ID (SHA1) or test results directory.

• Default: []

• Type: <class ‘list’>

9.12.26 diff.open_browser

Generate and open a HTML report in your preferred browser. If no –html file is provided, create a temporary file.

• Default: False

• Type: <class ‘bool’>

9.12.27 diff.strip_id

Strip the “id” from “id-name;variant” when comparing test results.

• Default: False

• Type: <class ‘bool’>

9.12.28 distro.distro_def_arch

Primary architecture that the distro targets

• Default:

• Type: <class ‘str’>

9.12.29 distro.distro_def_create

Cretes a distro definition file based on the path given.

• Default: False

• Type: <class ‘bool’>

312 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.30 distro.distro_def_name

Distribution short name

• Default:

• Type: <class ‘str’>

9.12.31 distro.distro_def_path

Top level directory of the distro installation files

• Default:

• Type: <class ‘str’>

9.12.32 distro.distro_def_release

Distribution release version number

• Default:

• Type: <class ‘str’>

9.12.33 distro.distro_def_type

Distro type (one of: rpm, deb)

• Default:

• Type: <class ‘str’>

9.12.34 distro.distro_def_version

Distribution major version name

• Default:

• Type: <class ‘str’>

9.12.35 filter.by_tags.include_empty

Include all tests without tags during filtering. This effectively means they will be kept in the test suite found previously
to filtering.

• Default: False

• Type: <class ‘bool’>

9.12. Avocado’s Configuration Reference 313

avocado Documentation, Release 88.1

9.12.36 filter.by_tags.include_empty_key

Include all tests that do not have a matching key in its key:val tags. This effectively means those tests will be kept in
the test suite found previously to filtering.

• Default: False

• Type: <class ‘bool’>

9.12.37 filter.by_tags.tags

Filter tests based on tags

• Default: []

• Type: <class ‘list’>

9.12.38 job.output.loglevel

Sets the base log level of the output generated by the job, which is also the base loging level for the –show command
line option. Any of the Python logging levels names are allowed here. Examples: DEBUG, INFO, WARNING,
ERROR, CRITICAL. For more information refer to: https://docs.python.org/3/library/logging.html#levels

• Default: DEBUG

• Type: <class ‘str’>

9.12.39 job.output.testlogs.logfiles

The specific log files that will be shown for tests whose exit status match the ones defined in the
“job.output.testlogs.statuses” configuration.

• Default: [‘debug.log’]

• Type: <class ‘list’>

9.12.40 job.output.testlogs.statuses

Status that will trigger the output of a test’s logs after the job ends. Valid statuses: SKIP, ERROR, FAIL, WARN,
PASS, INTERRUPTED, CANCEL

• Default: []

• Type: <class ‘list’>

9.12.41 job.replay.source_job_id

Replays a job, identified by: complete or partial Job ID, “latest” for the latest job, the job results path.

• Default: latest

• Type: <class ‘str’>

314 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/logging.html#levels

avocado Documentation, Release 88.1

9.12.42 job.run.result.html.enabled

Enables default HTML result in the job results directory. File will be named “results.html”.

• Default: True

• Type: <class ‘bool’>

9.12.43 job.run.result.html.open_browser

Open the generated report on your preferred browser. This works even if –html was not explicitly passed, since an
HTML report is always generated on the job results dir.

• Default: False

• Type: <class ‘bool’>

9.12.44 job.run.result.html.output

Enable HTML output to the FILE where the result should be written. The value - (output to stdout) is not supported
since not all HTML resources can be embedded into a single file (page resources will be copied to the output file dir)

• Default: None

• Type: <class ‘str’>

9.12.45 job.run.result.json.enabled

Enables default JSON result in the job results directory. File will be named “results.json”.

• Default: True

• Type: <class ‘bool’>

9.12.46 job.run.result.json.output

Enable JSON result format and write it to FILE. Use “-” to redirect to the standard output.

• Default: None

• Type: <class ‘str’>

9.12.47 job.run.result.tap.enabled

Enables default TAP result in the job results directory. File will be named “results.tap”

• Default: True

• Type: <class ‘bool’>

9.12. Avocado’s Configuration Reference 315

avocado Documentation, Release 88.1

9.12.48 job.run.result.tap.include_logs

Include test logs as comments in TAP output.

• Default: False

• Type: <class ‘bool’>

9.12.49 job.run.result.tap.output

Enable TAP result output and write it to FILE. Use “-” to redirect to standard output.

• Default: None

• Type: <class ‘str’>

9.12.50 job.run.result.xunit.enabled

Enables default xUnit result in the job results directory. File will be named “results.xml”.

• Default: True

• Type: <class ‘bool’>

9.12.51 job.run.result.xunit.job_name

Override the reported job name. By default uses the Avocado job name which is always unique. This is useful for
reporting in Jenkins as it only evaluates first-failure from jobs of the same name.

• Default: None

• Type: <class ‘str’>

9.12.52 job.run.result.xunit.max_test_log_chars

Limit the attached job log to given number of characters (k/m/g suffix allowed)

• Default: 100000

• Type: <function XUnitInit.initialize.<locals>.<lambda> at 0x7fac9dea6320>

9.12.53 job.run.result.xunit.output

Enable xUnit result format and write it to FILE. Use “-” to redirect to the standard output.

• Default: None

• Type: <class ‘str’>

9.12.54 job.run.store_logging_stream

Store given logging STREAMs in “$JOB_RESULTS_DIR/$STREAM.$LEVEL.”

• Default: []

• Type: <class ‘list’>

316 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.55 job.run.timeout

Set the maximum amount of time (in SECONDS) that tests are allowed to execute. Values <= zero means “no timeout”.
You can also use suffixes, like: s (seconds), m (minutes), h (hours).

• Default: 0

• Type: <function time_to_seconds at 0x7fac9e229950>

9.12.56 jobs.get.output_files.destination

Destination path

• Default: None

• Type: <class ‘str’>

9.12.57 jobs.get.output_files.job_id

JOB id

• Default: None

• Type: <class ‘str’>

9.12.58 jobs.show.job_id

JOB id

• Default: latest

• Type: <class ‘str’>

9.12.59 json.variants.load

Load the Variants from a JSON serialized file

• Default: None

• Type: <class ‘str’>

9.12.60 list.external_runner

Path to an specific test runner that allows the use of its own tests. This should be used for running tests that do not
conform to Avocado’s SIMPLE test interface and can not run standalone. Note: the use of –external-runner overwrites
the –loaders to ‘external_runner’

• Default: None

• Type: <class ‘str’>

9.12. Avocado’s Configuration Reference 317

avocado Documentation, Release 88.1

9.12.61 list.external_runner_chdir

Change directory before executing tests. This option may be necessary because of requirements and/or limitations of
the external test runner. If the external runner requires to be run from its own base directory, use ‘runner’ here. If the
external runner runs tests based on files and requires to be run from the directory where those files are located, use
‘test’ here and specify the test directory with the option ‘–external-runner-testdir’.

• Default: None

• Type: <class ‘str’>

9.12.62 list.external_runner_testdir

Where test files understood by the external test runner are located in the filesystem. Obviously this assumes and only
applies to external test runners that run tests from files

• Default: None

• Type: <class ‘str’>

9.12.63 list.loaders

Overrides the priority of the test loaders. You can specify either @loader_name or TEST_TYPE. By default it tries all
available loaders according to priority set in settings->plugins.loaders.

• Default: [‘file’, ‘@DEFAULT’]

• Type: <class ‘list’>

9.12.64 list.recipes.write_to_directory

Writes runnable recipe files to a directory. Valid only when using –resolver.

• Default: None

• Type: <class ‘str’>

9.12.65 list.references

List of test references (aliases or paths). If empty, Avocado will list tests on the configured test source, (see “avocado
config –datadir”) Also, if there are other test loader plugins active, tests from those plugins might also show up
(behavior may vary among plugins)

• Default: []

• Type: <class ‘list’>

9.12.66 list.resolver

What is the method used to detect tests? If –resolver used, Avocado will use the Next Runner Resolver method. If not
the legacy one will be used.

• Default: False

• Type: <class ‘bool’>

318 Chapter 9. Build and Quality Status

mailto:'@DEFAULT

avocado Documentation, Release 88.1

9.12.67 list.write_to_json_file

Writes output to a json file.

• Default: None

• Type: <class ‘str’>

9.12.68 nrunner.max_parallel_tasks

Number of maximum number tasks running in parallel. You can disable parallel execution by setting this to 1. Defaults
to the amount of CPUs on this machine.

• Default: 2

• Type: <class ‘int’>

9.12.69 nrunner.shuffle

Shuffle the tasks to be executed

• Default: False

• Type: <class ‘bool’>

9.12.70 nrunner.spawner

Spawn tasks in a specific spawner. Available spawners: ‘process’ and ‘podman’

• Default: process

• Type: <class ‘str’>

9.12.71 nrunner.status_server_buffer_size

Buffer size that status server uses. This should generally not be a concern to most users, but it can be tunned in case a
runner generates very large status messages, which is common if a test generates a lot of output. Default is 33554432
(32MiB)

• Default: 33554432

• Type: <class ‘int’>

9.12.72 nrunner.status_server_listen

URI for listing the status server. Usually a “HOST:PORT” string

• Default: 127.0.0.1:8888

• Type: <class ‘str’>

9.12. Avocado’s Configuration Reference 319

avocado Documentation, Release 88.1

9.12.73 nrunner.status_server_uri

URI for connecting to the status server, usually a “HOST:PORT” string. Use this if your status server is in another
host, or different port

• Default: 127.0.0.1:8888

• Type: <class ‘str’>

9.12.74 plugins.cli.cmd.order

Execution order for “plugins.cli.cmd” plugins

• Default: []

• Type: <class ‘list’>

9.12.75 plugins.cli.order

Execution order for “plugins.cli” plugins

• Default: []

• Type: <class ‘list’>

9.12.76 plugins.disable

Plugins that will not be loaded and executed

• Default: []

• Type: <class ‘list’>

9.12.77 plugins.init.order

Execution order for “plugins.init” plugins

• Default: []

• Type: <class ‘list’>

9.12.78 plugins.job.prepost.order

Execution order for “plugins.job.prepost” plugins

• Default: []

• Type: <class ‘list’>

9.12.79 plugins.jobscripts.post

Directory with scripts to be executed after a job is run

• Default: /etc/avocado/scripts/job/post.d/

• Type: <function prepend_base_path at 0x7fac9f6575f0>

320 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.80 plugins.jobscripts.pre

Directory with scripts to be executed before a job is run

• Default: /etc/avocado/scripts/job/pre.d/

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.81 plugins.jobscripts.warn_non_existing_dir

Warn if configured (or default) directory does not exist

• Default: False

• Type: <class ‘bool’>

9.12.82 plugins.jobscripts.warn_non_zero_status

Warn if any script run return non-zero status

• Default: True

• Type: <class ‘bool’>

9.12.83 plugins.resolver.order

Execution order for “plugins.resolver” plugins

• Default: []

• Type: <class ‘list’>

9.12.84 plugins.result.order

Execution order for “plugins.result” plugins

• Default: []

• Type: <class ‘list’>

9.12.85 plugins.result_events.order

Execution order for “plugins.result_events” plugins

• Default: []

• Type: <class ‘list’>

9.12.86 plugins.result_upload.cmd

Specify the command to upload results

• Default: None

• Type: <class ‘str’>

9.12. Avocado’s Configuration Reference 321

avocado Documentation, Release 88.1

9.12.87 plugins.result_upload.url

Specify the result upload url

• Default: None

• Type: <class ‘str’>

9.12.88 plugins.resultsdb.api_url

Specify the resultsdb API url

• Default: None

• Type: <class ‘str’>

9.12.89 plugins.resultsdb.logs_url

Specify the URL where the logs are published

• Default: None

• Type: <class ‘str’>

9.12.90 plugins.resultsdb.note_size_limit

Maximum note size limit

• Default: 0

• Type: <class ‘int’>

9.12.91 plugins.runnable.runner.order

Execution order for “plugins.runnable.runner” plugins

• Default: []

• Type: <class ‘list’>

9.12.92 plugins.runner.order

Execution order for “plugins.runner” plugins

• Default: []

• Type: <class ‘list’>

9.12.93 plugins.skip_broken_plugin_notification

Suppress notification about broken plugins in the app standard error. Add the name of each broken plugin you want to
suppress the notification in the list. (e.g. “avocado_result_html”)

• Default: []

• Type: <class ‘list’>

322 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.94 plugins.spawner.order

Execution order for “plugins.spawner” plugins

• Default: []

• Type: <class ‘list’>

9.12.95 plugins.varianter.order

Execution order for “plugins.varianter” plugins

• Default: []

• Type: <class ‘list’>

9.12.96 run.cit.combination_order

Order of combinations. Maximum number is 6

• Default: 2

• Type: <class ‘int’>

9.12.97 run.cit.parameter_file

Paths to a parameter file

• Default: None

• Type: <class ‘str’>

9.12.98 run.dict_variants

Load the Variants from Python dictionaries

• Default: []

• Type: <class ‘list’>

9.12.99 run.dry_run.enabled

Instead of running the test only list them and log their params.

• Default: False

• Type: <class ‘bool’>

9.12.100 run.dry_run.no_cleanup

Do not automatically clean up temporary directories used by dry-run

• Default: False

• Type: <class ‘bool’>

9.12. Avocado’s Configuration Reference 323

avocado Documentation, Release 88.1

9.12.101 run.execution_order

Defines the order of iterating through test suite and test variants

• Default: variants-per-test

• Type: <class ‘str’>

9.12.102 run.external_runner

Path to an specific test runner that allows the use of its own tests. This should be used for running tests that do not
conform to Avocado’s SIMPLE test interface and can not run standalone. Note: the use of –external-runner overwrites
the –loaders to ‘external_runner’

• Default: None

• Type: <class ‘str’>

9.12.103 run.external_runner_chdir

Change directory before executing tests. This option may be necessary because of requirements and/or limitations of
the external test runner. If the external runner requires to be run from its own base directory, use ‘runner’ here. If the
external runner runs tests based on files and requires to be run from the directory where those files are located, use
‘test’ here and specify the test directory with the option ‘–external-runner-testdir’.

• Default: None

• Type: <class ‘str’>

9.12.104 run.external_runner_testdir

Where test files understood by the external test runner are located in the filesystem. Obviously this assumes and only
applies to external test runners that run tests from files

• Default: None

• Type: <class ‘str’>

9.12.105 run.failfast

Enable the job interruption on first failed test.

• Default: False

• Type: <class ‘bool’>

9.12.106 run.ignore_missing_references

Force the job execution, even if some of the test references are not resolved to tests. “on” and “off” will be deprecated
soon.

• Default: False

• Type: <class ‘bool’>

324 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.107 run.job_category

Categorizes this within a directory with the same name, by creating a link to the job result directory

• Default: None

• Type: <class ‘str’>

9.12.108 run.journal.enabled

Records test status changes (for use with avocado-journal-replay and avocado-server)

• Default: False

• Type: <class ‘bool’>

9.12.109 run.keep_tmp

Keep job temporary files (useful for avocado debugging).

• Default: False

• Type: <class ‘bool’>

9.12.110 run.loaders

Overrides the priority of the test loaders. You can specify either @loader_name or TEST_TYPE. By default it tries all
available loaders according to priority set in settings->plugins.loaders.

• Default: [‘file’, ‘@DEFAULT’]

• Type: <class ‘list’>

9.12.111 run.log_test_data_directories

Logs the possible data directories for each test. This is helpful when writing new tests and not being sure where to put
data files. Look for “Test data directories” in your test log

• Default: False

• Type: <class ‘bool’>

9.12.112 run.output_check

Disables test output (stdout/stderr) check. If this option is given, no output will be checked, even if there are reference
files present for the test.

• Default: True

• Type: <class ‘bool’>

9.12. Avocado’s Configuration Reference 325

mailto:'@DEFAULT

avocado Documentation, Release 88.1

9.12.113 run.output_check_record

Record the output produced by each test (from stdout and stderr) into both the current executing result and into
reference files. Reference files are used on subsequent runs to determine if the test produced the expected output or
not, and the current executing result is used to check against a previously recorded reference file. Valid values: “none”
(to explicitly disable all recording) “stdout” (to record standard output only), “stderr” (to record standard error only),
“both” (to record standard output and error in separate files), “combined” (for standard output and error in a single
file). “all” is also a valid but deprecated option that is a synonym of “both”.

• Default: None

• Type: <class ‘str’>

9.12.114 run.pict_binary

Where to find the binary version of the pict tool. Tip: download it from “https://github.com/Microsoft/pict” and run
make to build it

• Default: None

• Type: <class ‘str’>

9.12.115 run.pict_combinations_order

Order of combinations. Maximum number is specific to parameter file content

• Default: 2

• Type: <class ‘int’>

9.12.116 run.pict_parameter_file

Paths to a pict parameter file

• Default: None

• Type: <class ‘str’>

9.12.117 run.pict_parameter_path

Default path for parameters generated on the Pict based variants

• Default: /run

• Type: <class ‘str’>

9.12.118 run.references

List of test references (aliases or paths)

• Default: []

• Type: <class ‘list’>

326 Chapter 9. Build and Quality Status

https://github.com/Microsoft/pict

avocado Documentation, Release 88.1

9.12.119 run.replay.ignore

Ignore variants and/or configuration from the source job.

• Default: []

• Type: <function Replay._valid_ignore at 0x7fac9c512e60>

9.12.120 run.replay.job_id

Replay a job identified by its (partial) hash id. Use “–replay” latest to replay the latest job.

• Default: None

• Type: <class ‘str’>

9.12.121 run.replay.resume

Resume an interrupted job

• Default: False

• Type: <class ‘bool’>

9.12.122 run.replay.test_status

Filter tests to replay by test status.

• Default: []

• Type: <function Replay._valid_status at 0x7fac9c512dd0>

9.12.123 run.results.archive

Archive (ZIP) files generated by tests

• Default: False

• Type: <class ‘bool’>

9.12.124 run.results_dir

Forces to use of an alternate job results directory.

• Default: None

• Type: <class ‘str’>

9.12.125 run.test_parameters

Parameter name and value to pass to all tests. This is only applicable when not using a varianter plugin. This option
format must be given in the NAME=VALUE format, and may be given any number of times, or per parameter.

• Default: []

• Type: <function Run._test_parameter at 0x7fac9dee2f80>

9.12. Avocado’s Configuration Reference 327

avocado Documentation, Release 88.1

9.12.126 run.test_runner

Selects the runner implementation from one of the installed and active implementations. You can run “avocado plu-
gins” and find the list of valid runners under the “Plugins that run test suites on a job (runners) section. Defaults to
“runner”, which is the conventional and traditional runner.

• Default: runner

• Type: <class ‘str’>

9.12.127 run.unique_job_id

Forces the use of a particular job ID. Used internally when interacting with an avocado server. You should not use this
option unless you know exactly what you’re doing

• Default: None

• Type: <class ‘str’>

9.12.128 run.wrapper.wrappers

Use a script to wrap executables run by a test. The wrapper is either a path to a script (AKA a global wrapper) or a
path to a script followed by colon symbol (:), plus a shell like glob to the target EXECUTABLE. Multiple wrapper
options are allowed, but only one global wrapper can be defined.

• Default: []

• Type: <class ‘list’>

9.12.129 runner.exectest.exitcodes.skip

Use a custom exit code list to consider a test as skipped. This is only used by exec-test runners. Default is [].

• Default: []

• Type: <class ‘list’>

9.12.130 runner.output.color

Whether to force colored output to non-tty outputs (e.g. log files). Allowed values: auto, always, never

• Default: auto

• Type: <class ‘str’>

9.12.131 runner.output.colored

Whether to display colored output in terminals that support it

• Default: True

• Type: <class ‘bool’>

328 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.132 runner.output.utf8

Use UTF8 encoding (True or False)

• Default: True

• Type: <class ‘bool’>

9.12.133 runner.timeout.after_interrupted

The amount of time to give to the test process after it it has been interrupted (such as with CTRL+C)

• Default: 60

• Type: <class ‘int’>

9.12.134 runner.timeout.process_alive

The amount of time to wait after a test has reported status but the test process has not finished

• Default: 60

• Type: <class ‘int’>

9.12.135 runner.timeout.process_died

The amount of to wait for a test status after the process has been noticed to be dead

• Default: 10

• Type: <class ‘int’>

9.12.136 simpletests.status.failure_fields

Fields to include in the presentation of SIMPLE test failures. Accepted values: status, stdout, stderr.

• Default: [‘status’, ‘stdout’, ‘stderr’]

• Type: <class ‘list’>

9.12.137 simpletests.status.skip_location

Location to search the regular expression on. Accepted values: all, stdout, stderr.

• Default: all

• Type: <class ‘str’>

9.12.138 simpletests.status.skip_regex

Python regular expression that will make the test status SKIP when matched.

• Default: ^SKIP$

• Type: <class ‘str’>

9.12. Avocado’s Configuration Reference 329

avocado Documentation, Release 88.1

9.12.139 simpletests.status.warn_location

Location to search the regular expression on. Accepted values: all, stdout, stderr.

• Default: all

• Type: <class ‘str’>

9.12.140 simpletests.status.warn_regex

Python regular expression that will make the test status WARN when matched.

• Default: ^WARN$

• Type: <class ‘str’>

9.12.141 spawner.podman.bin

Path to the podman binary

• Default: /usr/bin/podman

• Type: <class ‘str’>

9.12.142 spawner.podman.image

Image name to use when creating the container

• Default: fedora:31

• Type: <class ‘str’>

9.12.143 sysinfo.collect.commands_timeout

Overall timeout to collect commands, when <=0no timeout is enforced

• Default: -1

• Type: <class ‘int’>

9.12.144 sysinfo.collect.enabled

Enable or disable sysinfo information. Like hardware details, profiles, etc.

• Default: True

• Type: <class ‘bool’>

9.12.145 sysinfo.collect.installed_packages

Whether to take a list of installed packages previous to avocado jobs

• Default: False

• Type: <class ‘bool’>

330 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.146 sysinfo.collect.locale

Force LANG for sysinfo collection

• Default: C

• Type: <class ‘str’>

9.12.147 sysinfo.collect.optimize

Optimize sysinfo collected so that duplicates between pre and post re not stored in post

• Default: False

• Type: <class ‘bool’>

9.12.148 sysinfo.collect.per_test

Enable sysinfo collection per-test

• Default: False

• Type: <class ‘bool’>

9.12.149 sysinfo.collect.profiler

Whether to run certain commands in bg to give extra job debug information

• Default: False

• Type: <class ‘bool’>

9.12.150 sysinfo.collect.sysinfodir

Directory where Avocado will dump sysinfo data. If one is not given explicitly, it will default to a directory named
“sysinfo-” followed by a timestamp in the current working directory.

• Default: None

• Type: <class ‘str’>

9.12.151 sysinfo.collectibles.commands

File with list of commands that will be executed and have their output collected

• Default: /home/docs/checkouts/readthedocs.org/user_builds/avocado-framework/envs/88.1/lib/python3.7/site-
packages/avocado_framework-88.1-py3.7.egg/avocado/etc/avocado/sysinfo/commands

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12. Avocado’s Configuration Reference 331

avocado Documentation, Release 88.1

9.12.152 sysinfo.collectibles.fail_commands

File with list of commands that will be executed and have their output collected, in case of failed test

• Default: /home/docs/checkouts/readthedocs.org/user_builds/avocado-framework/envs/88.1/lib/python3.7/site-
packages/avocado_framework-88.1-py3.7.egg/avocado/etc/avocado/sysinfo/fail_commands

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.153 sysinfo.collectibles.fail_files

File with list of files that will be collected verbatim, in case of failed test

• Default: /home/docs/checkouts/readthedocs.org/user_builds/avocado-framework/envs/88.1/lib/python3.7/site-
packages/avocado_framework-88.1-py3.7.egg/avocado/etc/avocado/sysinfo/fail_files

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.154 sysinfo.collectibles.files

File with list of files that will be collected verbatim

• Default: /home/docs/checkouts/readthedocs.org/user_builds/avocado-framework/envs/88.1/lib/python3.7/site-
packages/avocado_framework-88.1-py3.7.egg/avocado/etc/avocado/sysinfo/files

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.155 sysinfo.collectibles.profilers

File with list of commands that will run alongside the job/test

• Default: /home/docs/checkouts/readthedocs.org/user_builds/avocado-framework/envs/88.1/lib/python3.7/site-
packages/avocado_framework-88.1-py3.7.egg/avocado/etc/avocado/sysinfo/profilers

• Type: <function prepend_base_path at 0x7fac9f6575f0>

9.12.156 task.timeout.running

The amount of time a test has to complete in seconds.

• Default: None

• Type: <class ‘int’>

9.12.157 variants.cit.combination_order

Order of combinations. Maximum number is 6

• Default: 2

• Type: <class ‘int’>

332 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.158 variants.cit.parameter_file

Paths to a parameter file

• Default: None

• Type: <class ‘str’>

9.12.159 variants.contents

[obsoleted by –variants] Shows the node content (variables)

• Default: False

• Type: <class ‘bool’>

9.12.160 variants.debug

Use debug implementation to gather more information.

• Default: False

• Type: <class ‘bool’>

9.12.161 variants.inherit

[obsoleted by –summary] Show the inherited values

• Default: False

• Type: <class ‘bool’>

9.12.162 variants.json_variants_dump

Dump the Variants to a JSON serialized file

• Default: None

• Type: <class ‘str’>

9.12.163 variants.pict_binary

Where to find the binary version of the pict tool. Tip: download it from “https://github.com/Microsoft/pict” and run
make to build it

• Default: None

• Type: <class ‘str’>

9.12.164 variants.pict_combinations_order

Order of combinations. Maximum number is specific to parameter file content

• Default: 2

• Type: <class ‘int’>

9.12. Avocado’s Configuration Reference 333

https://github.com/Microsoft/pict

avocado Documentation, Release 88.1

9.12.165 variants.pict_parameter_file

Paths to a pict parameter file

• Default: None

• Type: <class ‘str’>

9.12.166 variants.pict_parameter_path

Default path for parameters generated on the Pict based variants

• Default: /run

• Type: <class ‘str’>

9.12.167 variants.summary

Verbosity of the variants summary. (positive integer - 0, 1, . . . - or none, brief, normal, verbose, full, max)

• Default: 0

• Type: <function map_verbosity_level at 0x7fac9bfc8a70>

9.12.168 variants.tree

[obsoleted by –summary] Shows the multiplex tree structure

• Default: False

• Type: <class ‘bool’>

9.12.169 variants.variants

Verbosity of the list of variants. (positive integer - 0, 1, . . . - or none, brief, normal, verbose, full, max)

• Default: 1

• Type: <function map_verbosity_level at 0x7fac9bfc8a70>

9.12.170 vmimage.get.arch

Image architecture

• Default: None

• Type: <class ‘str’>

9.12.171 vmimage.get.distro

Name of image distribution

• Default: None

• Type: <class ‘str’>

334 Chapter 9. Build and Quality Status

avocado Documentation, Release 88.1

9.12.172 vmimage.get.version

Image version

• Default: None

• Type: <class ‘str’>

9.12.173 yaml_to_mux.files

Location of one or more Avocado multiplex (.yaml) FILE(s) (order dependent)

• Default: []

• Type: <class ‘list’>

9.12.174 yaml_to_mux.filter_only

Filter only path(s) from multiplexing

• Default: []

• Type: <class ‘list’>

9.12.175 yaml_to_mux.filter_out

Filter out path(s) from multiplexing

• Default: []

• Type: <class ‘str’>

9.12.176 yaml_to_mux.inject

Inject [path:]key:node values into the final multiplex tree.

• Default: []

• Type: <class ‘list’>

9.12.177 yaml_to_mux.parameter_paths

List of default paths used to determine path priority when querying for parameters

• Default: [‘/run/*’]

• Type: <class ‘list’>

9.12. Avocado’s Configuration Reference 335

avocado Documentation, Release 88.1

336 Chapter 9. Build and Quality Status

CHAPTER 10

Test API

10.1 Test APIs

At the most basic level, there’s the Test APIs which you should use when writing tests in Python and planning to make
use of any other utility library.

The Test APIs can be found in the avocado main module and its most important member is the avocado.Test
class. By conforming to the avocado.Test API, that is, by inheriting from it, you can use the full set of utility
libraries.

The Test APIs are guaranteed to be stable across a single major version of Avocado. That means that a test written for
a given version of Avocado should not break on later minor versions because of Test API changes.

This is the bare mininum set of APIs that users should use, and can rely on, while writing tests.

10.1.1 Module contents

class avocado.Test(methodName=’test’, name=None, params=None, base_logdir=None, con-
fig=None, runner_queue=None, tags=None)

Bases: unittest.case.TestCase, avocado.core.test.TestData

Base implementation for the test class.

You’ll inherit from this to write your own tests. Typically you’ll want to implement setUp(), test*() and tear-
Down() methods on your own tests.

Initializes the test.

Parameters

• methodName – Name of the main method to run. For the sake of compatibility with the
original unittest class, you should not set this.

• name (avocado.core.test.TestID) – Pretty name of the test name. For normal
tests, written with the avocado API, this should not be set. This is reserved for internal
Avocado use, such as when running random executables as tests.

337

avocado Documentation, Release 88.1

• base_logdir – Directory where test logs should go. If None provided a temporary di-
rectory will be created.

• config (dict) – the job configuration, usually set by command line options and argument
parsing

basedir
The directory where this test (when backed by a file) is located at

cache_dirs
Returns a list of cache directories as set in config file.

static cancel(message=None)
Cancels the test.

This method is expected to be called from the test method, not anywhere else, since by definition, we can
only cancel a test that is currently under execution. If you call this method outside the test method, avocado
will mark your test status as ERROR, and instruct you to fix your test in the error message.

Parameters message (str) – an optional message that will be recorded in the logs

Warning message This parameter will changed name to “msg” in the next LTS release because
of lint W0221

static error(message=None)
Errors the currently running test.

After calling this method a test will be terminated and have its status as ERROR.

Parameters message (str) – an optional message that will be recorded in the logs

Warning message This parameter will changed name to “msg” in the next LTS release because
of lint W0221

fail(message=None)
Fails the currently running test.

After calling this method a test will be terminated and have its status as FAIL.

Parameters message (str) – an optional message that will be recorded in the logs

Warning message This parameter will changed name to “msg” in the next LTS release because
of lint W0221

fail_class

fail_reason

fetch_asset(name, asset_hash=None, algorithm=None, locations=None, expire=None,
find_only=False, cancel_on_missing=False)

Method o call the utils.asset in order to fetch and asset file supporting hash check, caching and multiple
locations.

Parameters

• name – the asset filename or URL

• asset_hash – asset hash (optional)

• algorithm – hash algorithm (optional, defaults to avocado.utils.asset.
DEFAULT_HASH_ALGORITHM)

• locations – list of URLs from where the asset can be fetched (optional)

• expire – time for the asset to expire

338 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• find_only – When True, fetch_asset only looks for the asset in the cache, avoiding the
download/move action. Defaults to False.

• cancel_on_missing – whether the test should be canceled if the asset was not found
in the cache or if fetch could not add the asset to the cache. Defaults to False.

Raises OSError – when it fails to fetch the asset or file is not in the cache and can-
cel_on_missing is False.

Returns asset file local path.

filename
Returns the name of the file (path) that holds the current test

get_state()
Serialize selected attributes representing the test state

Returns a dictionary containing relevant test state data

Return type dict

log
The enhanced test log

logdir
Path to this test’s logging dir

logfile
Path to this test’s main debug.log file

name
Returns the Test ID, which includes the test name

Return type TestID

outputdir
Directory available to test writers to attach files to the results

params
Parameters of this test (AvocadoParam instance)

phase
The current phase of the test execution

Possible (string) values are: INIT, SETUP, TEST, TEARDOWN and FINISHED

report_state()
Send the current test state to the test runner process

run_avocado()
Wraps the run method, for execution inside the avocado runner.

Result Unused param, compatibility with unittest.TestCase.

runner_queue
The communication channel between test and test runner

running
Whether this test is currently being executed

set_runner_queue(runner_queue)
Override the runner_queue

status
The result status of this test

10.1. Test APIs 339

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/unittest.html#unittest.TestCase

avocado Documentation, Release 88.1

tags
The tags associated with this test

tearDown()
Hook method for deconstructing the test fixture after testing it.

teststmpdir
Returns the path of the temporary directory that will stay the same for all tests in a given Job.

time_elapsed = -1
duration of the test execution (always recalculated from time_end - time_start

time_end = -1
(unix) time when the test finished (could be forced from test)

time_start = -1
(unix) time when the test started (could be forced from test)

timeout = None
Test timeout (the timeout from params takes precedence)

traceback

whiteboard = ''
Arbitrary string which will be stored in $logdir/whiteboard location when the test finishes.

workdir
This property returns a writable directory that exists during the entire test execution, but will be cleaned
up once the test finishes.

It can be used on tasks such as decompressing source tarballs, building software, etc.

avocado.fail_on(exceptions=None)
Fail the test when decorated function produces exception of the specified type.

Parameters exceptions – Tuple or single exception to be assumed as test FAIL [Exception].

Note self.error, self.cancel and self.fail remain intact.

Note to allow simple usage param ‘exceptions’ must not be callable.

avocado.cancel_on(exceptions=None)
Cancel the test when decorated function produces exception of the specified type.

Parameters exceptions – Tuple or single exception to be assumed as test CANCEL [Exception].

Note self.error, self.cancel and self.fail remain intact.

Note to allow simple usage param ‘exceptions’ must not be callable.

avocado.skip(message=None)
Decorator to skip a test.

Parameters message (str) – the message given when the test is skipped

avocado.skipIf(condition, message=None)
Decorator to skip a test if a condition is True.

Parameters

• condition (bool or callable) – a condition that will be evaluated as either True
or False, if it’s a callable, it will be called with the class instance as a parameter

• message (str) – the message given when the test is skipped

340 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.skipUnless(condition, message=None)
Decorator to skip a test if a condition is False.

Parameters

• condition (bool or callable) – a condition that will be evaluated as either True
or False, if it’s a callable, it will be called with the class instance as a parameter

• message (str) – the message given when the test is skipped

exception avocado.TestError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was not fully executed and an error happened.

This is the sort of exception you raise if the test was partially executed and could not complete due to a setup,
configuration, or another fatal condition.

status = 'ERROR'

exception avocado.TestFail
Bases: avocado.core.exceptions.TestBaseException, AssertionError

Indicates that the test failed.

TestFail inherits from AssertionError in order to keep compatibility with vanilla python unittests (they only
consider failures the ones deriving from AssertionError).

status = 'FAIL'

exception avocado.TestCancel
Bases: avocado.core.exceptions.TestBaseException

Indicates that a test was canceled.

Should be thrown when the cancel() test method is used.

status = 'CANCEL'

10.2 Internal (Core) APIs

Internal APIs that may be of interest to Avocado hackers.

Everything under avocado.core is part of the application’s infrastructure and should not be used by tests.

Extensions and Plugins can use the core libraries, but API stability is not guaranteed at any level.

10.2.1 Subpackages

avocado.core.requirements package

Subpackages

avocado.core.requirements.cache package

Subpackages

avocado.core.requirements.cache.backends package

10.2. Internal (Core) APIs 341

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AssertionError

avocado Documentation, Release 88.1

Submodules

avocado.core.requirements.cache.backends.sqlite module

Test requirements module.

avocado.core.requirements.cache.backends.sqlite.CACHE_DATABASE_PATH = '/home/docs/avocado/data/cache/requirements.sqlite'
The location of the requirements cache database

avocado.core.requirements.cache.backends.sqlite.SCHEMA = ['CREATE TABLE IF NOT EXISTS requirement_type (requirement_type TEXT UNIQUE)', 'CREATE TABLE IF NOT EXISTS environment_type (environment_type TEXT UNIQUE)', 'CREATE TABLE IF NOT EXISTS environment (environment_type TEXT,environment TEXT,FOREIGN KEY(environment_type) REFERENCES environment_type(environment_type))', 'CREATE UNIQUE INDEX IF NOT EXISTS environment_idx ON environment (environment, environment_type)', 'CREATE TABLE IF NOT EXISTS requirement (environment_type TEXT,environment TEXT,requirement_type TEXT,requirement TEXT,FOREIGN KEY(environment_type) REFERENCES environment(environment_type),FOREIGN KEY(environment) REFERENCES environment(environment),FOREIGN KEY(requirement_type) REFERENCES requirement_type(requirement_type))', 'CREATE UNIQUE INDEX IF NOT EXISTS requirement_idx ON requirement (environment_type, environment, requirement_type, requirement)']
The definition of the database schema

avocado.core.requirements.cache.backends.sqlite.get_requirement(environment_type,
environment,
require-
ment_type,
requirement)

avocado.core.requirements.cache.backends.sqlite.set_requirement(environment_type,
environment,
require-
ment_type,
requirement)

Module contents

Module contents

Submodules

avocado.core.requirements.resolver module

class avocado.core.requirements.resolver.RequirementsResolver
Bases: object

description = 'Requirements resolver for tests with requirements'

name = 'requirements'

static resolve(runnable)

Module contents

avocado.core.runners package

Submodules

avocado.core.runners.avocado_instrumented module

class avocado.core.runners.avocado_instrumented.AvocadoInstrumentedTestRunner(runnable)
Bases: avocado.core.nrunner.BaseRunner

Runner for Avocado INSTRUMENTED tests

342 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Runnable attributes usage:

• uri: path to a test file, combined with an Avocado.Test inherited class name and method. The test
file path and class and method names should be separated by a “:”. One example of a valid uri is
“mytest.py:Class.test_method”.

• args: not used

DEFAULT_TIMEOUT = 86400

run()
Runner main method

Yields dictionary as output, containing status as well as relevant information concerning the results.

class avocado.core.runners.avocado_instrumented.RunnerApp(echo=<built-in function
print>, prog=None, de-
scription=None)

Bases: avocado.core.nrunner.BaseRunnerApp

PROG_DESCRIPTION = 'nrunner application for avocado-instrumented tests'

PROG_NAME = 'avocado-runner-avocado-instrumented'

RUNNABLE_KINDS_CAPABLE = {'avocado-instrumented': <class 'avocado.core.runners.avocado_instrumented.AvocadoInstrumentedTestRunner'>}

class avocado.core.runners.avocado_instrumented.RunnerLogHandler(queue, mes-
sage_type)

Bases: logging.Handler

Runner logger which will put every log to the runner queue

Parameters

• queue (multiprocessing.SimpleQueue) – queue for the runner messages

• message_type (string) – type of the log

emit(record)
Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so raises a NotImplementedError.

class avocado.core.runners.avocado_instrumented.StreamToQueue(queue, mes-
sage_type)

Bases: object

Runner Stream which will transfer every to the runner queue

Parameters

• queue (multiprocessing.SimpleQueue) – queue for the runner messages

• message_type (string) – type of the log

flush()

write(buf)

avocado.core.runners.avocado_instrumented.main()

avocado.core.runners.requirement_package module

class avocado.core.runners.requirement_package.RequirementPackageRunner(runnable)
Bases: avocado.core.nrunner.BaseRunner

10.2. Internal (Core) APIs 343

https://docs.python.org/3/library/logging.html#logging.Handler
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.SimpleQueue
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.SimpleQueue

avocado Documentation, Release 88.1

Runner for requirements of type package

This runner handles, the installation, verification and removal of packages using the avocado-software-manager.

Runnable attributes usage:

• kind: ‘requirement-package’

• uri: not used

• args: not used

• kwargs:

– name: the package name (required)

– action: one of ‘install’, ‘check’, or ‘remove’ (optional, defaults to ‘install’)

run()
Runner main method

Yields dictionary as output, containing status as well as relevant information concerning the results.

class avocado.core.runners.requirement_package.RunnerApp(echo=<built-in function
print>, prog=None, de-
scription=None)

Bases: avocado.core.nrunner.BaseRunnerApp

PROG_DESCRIPTION = 'nrunner application for requirements of type package'

PROG_NAME = 'avocado-runner-requirement-package'

RUNNABLE_KINDS_CAPABLE = {'requirement-package': <class 'avocado.core.runners.requirement_package.RequirementPackageRunner'>}

avocado.core.runners.requirement_package.main()

avocado.core.runners.tap module

class avocado.core.runners.tap.RunnerApp(echo=<built-in function print>, prog=None, de-
scription=None)

Bases: avocado.core.nrunner.BaseRunnerApp

PROG_DESCRIPTION = 'nrunner application for executable tests that produce TAP'

PROG_NAME = 'avocado-runner-tap'

RUNNABLE_KINDS_CAPABLE = {'tap': <class 'avocado.core.runners.tap.TAPRunner'>}

class avocado.core.runners.tap.TAPRunner(runnable)
Bases: avocado.core.nrunner.ExecRunner

Runner for standalone executables treated as TAP

When creating the Runnable, use the following attributes:

• kind: should be ‘tap’;

• uri: path to a binary to be executed as another process. This must provides a TAP output.

• args: any runnable argument will be given on the command line to the binary given by path

• kwargs: you can specify multiple key=val as kwargs. This will be used as environment variables to the
process.

Example:

344 Chapter 10. Test API

avocado Documentation, Release 88.1

runnable = Runnable(kind=’tap’, uri=’tests/foo.sh’, ‘bar’, # arg 1 DEBUG=’false’) # kwargs 1
(environment)

avocado.core.runners.tap.main()

Module contents

avocado.core.spawners package

Submodules

avocado.core.spawners.common module

class avocado.core.spawners.common.SpawnMethod
Bases: enum.Enum

The method employed to spawn a runnable or task.

ANY = <object object>
Spawns with any method available, that is, it doesn’t declare or require a specific spawn method

PYTHON_CLASS = <object object>
Spawns by running executing Python code, that is, having access to a runnable or task instance, it calls its
run() method.

STANDALONE_EXECUTABLE = <object object>
Spawns by running a command, that is having either a path to an executable or a list of arguments, it calls
a function that will execute that command (such as with os.system())

class avocado.core.spawners.common.SpawnerMixin(config=None)
Bases: object

Common utilities for Spawner implementations.

METHODS = []

static bytes_from_file(filename)
Read bytes from a files in binary mode.

This is a helpful method to read local files bytes efficiently.

If the spawner that you are implementing needs access to local file, feel free to use this method.

static stream_output(job_id, task_id)
Returns output files streams in binary mode from a task.

This method will find for output files generated by a task and will return a generator with tuples, each one
containing a filename and bytes.

You need to provide in your spawner a stream_output() method if this one is not suitable for your spawner.
i.e: if the spawner is trying to access a remote output file.

avocado.core.spawners.exceptions module

exception avocado.core.spawners.exceptions.SpawnerException
Bases: Exception

10.2. Internal (Core) APIs 345

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception

avocado Documentation, Release 88.1

avocado.core.spawners.mock module

class avocado.core.spawners.mock.MockRandomAliveSpawner
Bases: avocado.core.spawners.mock.MockSpawner

A mocking spawner that simulates randomness about tasks being alive.

is_task_alive(runtime_task)
Determines if a task is alive or not.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

class avocado.core.spawners.mock.MockSpawner
Bases: avocado.core.plugin_interfaces.Spawner

A mocking spawner that performs no real operation.

Tasks asked to be spawned by this spawner will initially reported to be alive, and on the next check, will report
not being alive.

METHODS = [<SpawnMethod.PYTHON_CLASS: <object object>>, <SpawnMethod.STANDALONE_EXECUTABLE: <object object>>]

static check_task_requirements(runtime_task)
Checks if the requirements described within a task are available.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

is_task_alive(runtime_task)
Determines if a task is alive or not.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

spawn_task(runtime_task)
Spawns a task return whether the spawning was successful.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

wait_task(runtime_task)
Waits for a task to finish.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

Module contents

avocado.core.status package

Submodules

avocado.core.status.repo module

exception avocado.core.status.repo.StatusMsgMissingDataError
Bases: Exception

Status message does not contain the required data.

346 Chapter 10. Test API

https://docs.python.org/3/library/exceptions.html#Exception

avocado Documentation, Release 88.1

class avocado.core.status.repo.StatusRepo
Bases: object

Maintains tasks’ status related data and provides aggregated info.

get_all_task_data(task_id)
Returns all data on a given task, by its ID.

get_latest_task_data(task_id)
Returns the latest data on a given task, by its ID.

get_task_data(task_id, index)
Returns the data on the index of a given task, by its ID.

get_task_status(task_id)

process_message(message)

process_raw_message(raw_message)

result_stats

status_journal_summary

avocado.core.status.server module

class avocado.core.status.server.StatusServer(uri, repo)
Bases: object

Server that listens for status messages and updates a StatusRepo.

Initializes a new StatusServer.

Parameters

• uri (str) – either a “host:port” string or a path to a UNIX socket

• repo (avocado.core.status.repo.StatusRepo) – the repository to use to pro-
cess received status messages

cb(reader, _)

close()

create_server()

serve_forever()

avocado.core.status.utils module

exception avocado.core.status.utils.StatusMsgInvalidJSONError
Bases: Exception

Status message does not contain valid JSON.

avocado.core.status.utils.json_base64_decode(dct)
base64 decode object hook for custom JSON encoding.

avocado.core.status.utils.json_loads(data)
Loads and decodes JSON, with added base64 decoding.

Parameters data – either bytes or a string. If bytes, will be decoded using the current default
encoding.

10.2. Internal (Core) APIs 347

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

avocado Documentation, Release 88.1

Raises

Returns decoded Python objects

Module contents

avocado.core.task package

Submodules

avocado.core.task.runtime module

class avocado.core.task.runtime.RuntimeTask(task)
Bases: object

Task with extra status information on its life cycle status.

The avocado.core.nrunner.Task class contains information that is necessary to describe its persistence
and execution by itself.

This class wraps a avocado.core.nrunner.Task, with extra information about its execution by a
spawner within a state machine.

Instantiates a new RuntimeTask.

Parameters task (avocado.core.nrunner.Task) – The task to keep additional informa-
tion about

execution_timeout = None
Timeout limit for the completion of the task execution

spawner_handle = None
A handle that may be set by a spawner, and that may be spawner implementation specific, to keep track
the task execution. This may be a PID, a container ID, a FQDN+PID etc.

spawning_result = None
The result of the spawning of a Task

status = None
Additional descriptive information about the task status

task = None
The avocado.core.nrunner.Task

avocado.core.task.statemachine module

class avocado.core.task.statemachine.TaskStateMachine(tasks, status_repo)
Bases: object

Represents all phases that a task can go through its life.

complete

finished

lock

ready

requested

348 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

started

triaging

class avocado.core.task.statemachine.Worker(state_machine, spawner,
max_triaging=None, max_running=None,
task_timeout=None)

Bases: object

bootstrap()
Reads from requested, moves into triaging.

monitor()
Reads from started, moves into finished.

run()
Pushes Tasks forward and makes them do something with their lives.

start()
Reads from ready, moves into either: started or finished.

triage()
Reads from triaging, moves into either: ready or finished.

Module contents

10.2.2 Submodules

10.2.3 avocado.core.app module

The core Avocado application.

class avocado.core.app.AvocadoApp
Bases: object

Avocado application.

run()

10.2.4 avocado.core.data_dir module

Library used to let avocado tests find important paths in the system.

The general reasoning to find paths is:

• When running in tree, don’t honor avocado.conf. Also, we get to run/display the example tests shipped in tree.

• When avocado.conf is in /etc/avocado, or ~/.config/avocado, then honor the values there as much as possible. If
they point to a location where we can’t write to, use the next best location available.

• The next best location is the default system wide one.

• The next best location is the default user specific one.

avocado.core.data_dir.clean_tmp_files()
Try to clean the tmp directory by removing it.

This is a useful function for avocado entry points looking to clean after tests/jobs are done. If OSError is raised,
silently ignore the error.

10.2. Internal (Core) APIs 349

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

avocado.core.data_dir.create_job_logs_dir(base_dir=None, unique_id=None)
Create a log directory for a job, or a stand alone execution of a test.

Parameters

• base_dir – Base log directory, if None, use value from configuration.

• unique_id – The unique identification. If None, create one.

Return type str

avocado.core.data_dir.get_base_dir()
Get the most appropriate base dir.

The base dir is the parent location for most of the avocado other important directories.

Examples:

• Log directory

• Data directory

• Tests directory

avocado.core.data_dir.get_cache_dirs()
Returns the list of cache dirs, according to configuration and convention.

This will be deprecated. Please use settings.as_dict() or self.config.

avocado.core.data_dir.get_data_dir()
Get the most appropriate data dir location.

The data dir is the location where any data necessary to job and test operations are located.

Examples:

• ISO files

• GPG files

• VM images

• Reference bitmaps

avocado.core.data_dir.get_datafile_path(*args)
Get a path relative to the data dir.

Parameters args – Arguments passed to os.path.join. Ex (‘images’, ‘jeos.qcow2’)

avocado.core.data_dir.get_job_results_dir(job_ref, logs_dir=None)
Get the job results directory from a job reference.

Parameters

• job_ref – job reference, which can be: * an valid path to the job results directory. In this
case it is checked if ‘id’ file exists * the path to ‘id’ file * the job id, which can be ‘latest’ *
an partial job id

• logs_dir – path to base logs directory (optional), otherwise it uses the value from settings.

avocado.core.data_dir.get_logs_dir()
Get the most appropriate log dir location.

The log dir is where we store job/test logs in general.

avocado.core.data_dir.get_test_dir()
Get the most appropriate test location.

350 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

The test location is where we store tests written with the avocado API.

The heuristics used to determine the test dir are: 1) If an explicit test dir is set in the configuration system, it is
used. 2) If user is running Avocado from its source code tree, the example test dir is used. 3) System wide test
dir is used. 4) User default test dir (~/avocado/tests) is used.

avocado.core.data_dir.get_tmp_dir(basedir=None)
Get the most appropriate tmp dir location.

The tmp dir is where artifacts produced by the test are kept.

Examples:

• Copies of a test suite source code

• Compiled test suite source code

10.2.5 avocado.core.decorators module

avocado.core.decorators.cancel_on(exceptions=None)
Cancel the test when decorated function produces exception of the specified type.

Parameters exceptions – Tuple or single exception to be assumed as test CANCEL [Exception].

Note self.error, self.cancel and self.fail remain intact.

Note to allow simple usage param ‘exceptions’ must not be callable.

avocado.core.decorators.deco_factory(behavior, signal)
Decorator factory.

Returns a decorator used to signal the test when specified exception is raised. :param behavior: expected test
result behavior. :param signal: delegating exception.

avocado.core.decorators.fail_on(exceptions=None)
Fail the test when decorated function produces exception of the specified type.

Parameters exceptions – Tuple or single exception to be assumed as test FAIL [Exception].

Note self.error, self.cancel and self.fail remain intact.

Note to allow simple usage param ‘exceptions’ must not be callable.

avocado.core.decorators.skip(message=None)
Decorator to skip a test.

Parameters message (str) – the message given when the test is skipped

avocado.core.decorators.skipIf(condition, message=None)
Decorator to skip a test if a condition is True.

Parameters

• condition (bool or callable) – a condition that will be evaluated as either True
or False, if it’s a callable, it will be called with the class instance as a parameter

• message (str) – the message given when the test is skipped

avocado.core.decorators.skipUnless(condition, message=None)
Decorator to skip a test if a condition is False.

Parameters

• condition (bool or callable) – a condition that will be evaluated as either True
or False, if it’s a callable, it will be called with the class instance as a parameter

10.2. Internal (Core) APIs 351

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

avocado Documentation, Release 88.1

• message (str) – the message given when the test is skipped

10.2.6 avocado.core.dispatcher module

Extensions/plugins dispatchers

Besides the dispatchers listed here, there’s also a lower level dispatcher that these depend upon: avocado.core.
settings_dispatcher.SettingsDispatcher

class avocado.core.dispatcher.CLICmdDispatcher
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

Calls extensions on configure/run

Automatically adds all the extension with entry points registered under ‘avocado.plugins.cli.cmd’

class avocado.core.dispatcher.CLIDispatcher
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

Calls extensions on configure/run

Automatically adds all the extension with entry points registered under ‘avocado.plugins.cli’

class avocado.core.dispatcher.InitDispatcher
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

class avocado.core.dispatcher.JobPrePostDispatcher
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

Calls extensions before Job execution

Automatically adds all the extension with entry points registered under ‘avocado.plugins.job.prepost’

class avocado.core.dispatcher.ResultDispatcher
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

class avocado.core.dispatcher.ResultEventsDispatcher(config)
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

class avocado.core.dispatcher.RunnerDispatcher
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

class avocado.core.dispatcher.SpawnerDispatcher(config=None)
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

class avocado.core.dispatcher.VarianterDispatcher
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

map_method_with_return(method_name, *args, **kwargs)
The same as map_method but additionally reports the list of returned values and optionally deepcopies the
passed arguments

Parameters

• method_name – Name of the method to be called on each ext

• args – Arguments to be passed to all called functions

• kwargs – Key-word arguments to be passed to all called functions if “deepcopy” ==
True is present in kwargs the args and kwargs are deepcopied before passing it to each
called function.

map_method_with_return_copy(method_name, *args, **kwargs)
The same as map_method_with_return, but use copy.deepcopy on each passed arg

352 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

10.2.7 avocado.core.enabled_extension_manager module

Extension manager with disable/ordering support

class avocado.core.enabled_extension_manager.EnabledExtensionManager(namespace,
in-
voke_kwds=None)

Bases: avocado.core.extension_manager.ExtensionManager

enabled(extension)
Checks configuration for explicit mention of plugin in a disable list

If configuration section or key doesn’t exist, it means no plugin is disabled.

10.2.8 avocado.core.exceptions module

Exception classes, useful for tests, and other parts of the framework code.

exception avocado.core.exceptions.JobBaseException
Bases: Exception

The parent of all job exceptions.

You should be never raising this, but just in case, we’ll set its status’ as FAIL.

status = 'FAIL'

exception avocado.core.exceptions.JobError
Bases: avocado.core.exceptions.JobBaseException

A generic error happened during a job execution.

status = 'ERROR'

exception avocado.core.exceptions.JobTestSuiteEmptyError
Bases: avocado.core.exceptions.JobTestSuiteError

Error raised when the creation of a test suite results in an empty suite

status = 'ERROR'

exception avocado.core.exceptions.JobTestSuiteError
Bases: avocado.core.exceptions.JobBaseException

Generic error happened during the creation of a job’s test suite

status = 'ERROR'

exception avocado.core.exceptions.JobTestSuiteReferenceResolutionError
Bases: avocado.core.exceptions.JobTestSuiteError

Test References did not produce a valid reference by any resolver

status = 'ERROR'

exception avocado.core.exceptions.OptionValidationError
Bases: Exception

An invalid option was passed to the test runner

status = 'ERROR'

10.2. Internal (Core) APIs 353

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

avocado Documentation, Release 88.1

exception avocado.core.exceptions.TestAbortError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was prematurely aborted.

status = 'ERROR'

exception avocado.core.exceptions.TestBaseException
Bases: Exception

The parent of all test exceptions.

You should be never raising this, but just in case, we’ll set its status’ as FAIL.

status = 'FAIL'

exception avocado.core.exceptions.TestCancel
Bases: avocado.core.exceptions.TestBaseException

Indicates that a test was canceled.

Should be thrown when the cancel() test method is used.

status = 'CANCEL'

exception avocado.core.exceptions.TestError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was not fully executed and an error happened.

This is the sort of exception you raise if the test was partially executed and could not complete due to a setup,
configuration, or another fatal condition.

status = 'ERROR'

exception avocado.core.exceptions.TestFail
Bases: avocado.core.exceptions.TestBaseException, AssertionError

Indicates that the test failed.

TestFail inherits from AssertionError in order to keep compatibility with vanilla python unittests (they only
consider failures the ones deriving from AssertionError).

status = 'FAIL'

exception avocado.core.exceptions.TestInterruptedError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was interrupted by the user (Ctrl+C)

status = 'INTERRUPTED'

exception avocado.core.exceptions.TestNotFoundError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was not found in the test directory.

status = 'ERROR'

exception avocado.core.exceptions.TestSetupFail
Bases: avocado.core.exceptions.TestBaseException

Indicates an error during a setup or cleanup procedure.

status = 'ERROR'

354 Chapter 10. Test API

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#AssertionError

avocado Documentation, Release 88.1

exception avocado.core.exceptions.TestSkipError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test is skipped.

Should be thrown when various conditions are such that the test is inappropriate. For example, inappropriate
architecture, wrong OS version, program being tested does not have the expected capability (older version).

status = 'SKIP'

exception avocado.core.exceptions.TestTimeoutInterrupted
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test did not finish before the timeout specified.

status = 'INTERRUPTED'

exception avocado.core.exceptions.TestWarn
Bases: avocado.core.exceptions.TestBaseException

Indicates that bad things (may) have happened, but not an explicit failure.

status = 'WARN'

10.2.9 avocado.core.exit_codes module

Avocado exit codes.

These codes are returned on the command line and may be used by applications that interface (that is, run) the Avocado
command line application.

Besides main status about the execution of the command line application, these exit status may also give extra, although
limited, information about test statuses.

avocado.core.exit_codes.AVOCADO_ALL_OK = 0
Both job and tests PASSed

avocado.core.exit_codes.AVOCADO_FAIL = 4
Something else went wrong and avocado failed (or crashed). Commonly used on command line validation
errors.

avocado.core.exit_codes.AVOCADO_GENERIC_CRASH = -1
Avocado generic crash

avocado.core.exit_codes.AVOCADO_JOB_FAIL = 2
Something went wrong with an Avocado Job execution, usually by an explicit avocado.core.
exceptions.JobError exception.

avocado.core.exit_codes.AVOCADO_JOB_INTERRUPTED = 8
The job was explicitly interrupted. Usually this means that a user hit CTRL+C while the job was still running.

avocado.core.exit_codes.AVOCADO_TESTS_FAIL = 1
Job went fine, but some tests FAILed or ERRORed

10.2.10 avocado.core.extension_manager module

Base extension manager

This is a mix of stevedore-like APIs and behavior, with Avocado’s own look and feel.

10.2. Internal (Core) APIs 355

avocado Documentation, Release 88.1

class avocado.core.extension_manager.Extension(name, entry_point, plugin, obj)
Bases: object

This is a verbatim copy from the stevedore.extension class with the same name

class avocado.core.extension_manager.ExtensionManager(namespace, in-
voke_kwds=None)

Bases: object

NAMESPACE_PREFIX = 'avocado.plugins.'
Default namespace prefix for Avocado extensions

enabled(extension)
Checks if a plugin is enabled

Sub classes can change this implementation to determine their own criteria.

fully_qualified_name(extension)
Returns the Avocado fully qualified plugin name

Parameters extension (Extension) – an Extension instance

map_method(method_name, *args)
Maps method_name on each extension in case the extension has the attr

Parameters

• method_name – Name of the method to be called on each ext

• args – Arguments to be passed to all called functions

map_method_with_return(method_name, *args, **kwargs)
The same as map_method but additionally reports the list of returned values and optionally deepcopies the
passed arguments

Parameters

• method_name – Name of the method to be called on each ext

• args – Arguments to be passed to all called functions

• kwargs – Key-word arguments to be passed to all called functions if “deepcopy” ==
True is present in kwargs the args and kwargs are deepcopied before passing it to each
called function.

names()
Returns the names of the discovered extensions

This differs from stevedore.extension.ExtensionManager.names() in that it returns
names in a predictable order, by using standard sorted().

plugin_type()
Subset of entry points namespace for this dispatcher

Given an entry point avocado.plugins.foo, plugin type is foo. If entry point does not conform to the
Avocado standard prefix, it’s returned unchanged.

settings_section()
Returns the config section name for the plugin type handled by itself

10.2.11 avocado.core.job module

Job module - describes a sequence of automated test operations.

356 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#sorted

avocado Documentation, Release 88.1

class avocado.core.job.Job(config=None, test_suites=None)
Bases: object

A Job is a set of operations performed on a test machine.

Most of the time, we are interested in simply running tests, along with setup operations and event recording.

A job has multiple test suites attached to it. Please keep in mind that when creating jobs from the constructor
(Job()), we are assuming that you would like to have control of the test suites and you are going to build your
own TestSuites.

If you would like any help to create the job’s test_suites from the config provided, please use Job.from_config()
method and we are going to do our best to create the test suites.

So, basically, as described we have two “main ways” to create a job:

1. Automatic discovery, using from_config() method:

job = Job.from_config(job_config=job_config,
suites_configs=[suite_cfg1, suite_cfg2])

2. Manual or Custom discovery, using the constructor:

job = Job(config=config,
test_suites=[suite1, suite2, suite3])

Creates an instance of Job class.

Note that config and test_suites are optional, if not passed you need to change this before running your tests.
Otherwise nothing will run. If you need any help to create the test_suites from the config, then use the
Job.from_config() method.

Parameters

• config (dict) – the job configuration, usually set by command line options and argument
parsing

• test_suites (list) – A list with TestSuite objects. If is None the job will have an
empty list and you can add suites after init accessing job.test_suites.

cleanup()
Cleanup the temporary job handlers (dirs, global setting, . . .)

create_test_suite()

classmethod from_config(job_config, suites_configs=None)
Helper method to create a job from config dicts.

This is different from the Job() initialization because here we are assuming that you need some help to
build the test suites. Avocado will try to resolve tests based on the configuration information instead of
assuming pre populated test suites.

Keep in mind that here we are going to replace the suite.name with a counter.

If you need create a custom Job with your own TestSuites, please use the Job() constructor instead of this
method.

Parameters

• job_config (dict) – A config dict to be used on this job and also as a ‘global’ config
for each test suite.

10.2. Internal (Core) APIs 357

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

• suites_configs (list) – A list of specific config dict to be used on each test suite.
Each suite config will be merged with the job_config dict. If None is passed then this job
will have only one test_suite with the same config as job_config.

get_failed_tests()
Gets the tests with status ‘FAIL’ and ‘ERROR’ after the Job ended.

Returns List of failed tests

logdir = None
The log directory for this job, also known as the job results directory. If it’s set to None, it means that the
job results directory has not yet been created.

post_tests()
Run the post tests execution hooks

By default this runs the plugins that implement the avocado.core.plugin_interfaces.
JobPostTests interface.

pre_tests()
Run the pre tests execution hooks

By default this runs the plugins that implement the avocado.core.plugin_interfaces.
JobPreTests interface.

render_results()
Render test results that depend on all tests having finished.

By default this runs the plugins that implement the avocado.core.plugin_interfaces.Result
interface.

result_events_dispatcher

run()
Runs all job phases, returning the test execution results.

This method is supposed to be the simplified interface for jobs, that is, they run all phases of a job.

Returns Integer with overall job status. See avocado.core.exit_codes for more infor-
mation.

run_tests()
The actual test execution phase

setup()
Setup the temporary job handlers (dirs, global setting, . . .)

size
Job size is the sum of all test suites sizes.

test_results_path

test_suite
This is the first test suite of this job (deprecated).

Please, use test_suites instead.

time_elapsed = None
The total amount of time the job took from start to finish, or -1 if it has not been started by means of the
run() method

time_end = None
The time at which the job has finished or -1 if it has not been started by means of the run() method.

358 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#list

avocado Documentation, Release 88.1

time_start = None
The time at which the job has started or -1 if it has not been started by means of the run() method.

timeout

unique_id

avocado.core.job.register_job_options()
Register the few core options that the support the job operation.

10.2.12 avocado.core.job_id module

avocado.core.job_id.create_unique_job_id()
Create a 40 digit hex number to be used as a job ID string. (similar to SHA1)

Returns 40 digit hex number string

Return type str

10.2.13 avocado.core.jobdata module

Record/retrieve job information

avocado.core.jobdata.get_variants_path(resultsdir)
Retrieves the variants path from the results directory.

avocado.core.jobdata.record(job, cmdline=None)
Records all required job information.

avocado.core.jobdata.retrieve_cmdline(resultsdir)
Retrieves the job command line from the results directory.

avocado.core.jobdata.retrieve_config(resultsdir)
Retrieves the job settings from the results directory.

avocado.core.jobdata.retrieve_job_config(resultsdir)
Retrieves the job config from the results directory.

avocado.core.jobdata.retrieve_pwd(resultsdir)
Retrieves the job pwd from the results directory.

avocado.core.jobdata.retrieve_references(resultsdir)
Retrieves the job test references from the results directory.

10.2.14 avocado.core.loader module

Test loader module.

class avocado.core.loader.AccessDeniedPath
Bases: object

Dummy object to represent reference pointing to a inaccessible path

class avocado.core.loader.BrokenSymlink
Bases: object

Dummy object to represent reference pointing to a BrokenSymlink path

10.2. Internal (Core) APIs 359

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

class avocado.core.loader.DiscoverMode
Bases: enum.Enum

An enumeration.

ALL = <object object>
All tests (including broken ones)

AVAILABLE = <object object>
Available tests (for listing purposes)

DEFAULT = <object object>
Show default tests (for execution)

class avocado.core.loader.ExternalLoader(config, extra_params)
Bases: avocado.core.loader.TestLoader

External-runner loader class

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)

Parameters

• reference – arguments passed to the external_runner

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns list of matching tests

static get_decorator_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: decorator function}

static get_type_label_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: ‘TEST_LABEL_STRING’}

name = 'external'

class avocado.core.loader.FileLoader(config, extra_params)
Bases: avocado.core.loader.SimpleFileLoader

Test loader class.

NOT_TEST_STR = 'Not an INSTRUMENTED (avocado.Test based), PyUNITTEST (unittest.TestCase based) or SIMPLE (executable) test'

static get_decorator_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: decorator function}

static get_type_label_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: ‘TEST_LABEL_STRING’}

name = 'file'

exception avocado.core.loader.InvalidLoaderPlugin
Bases: avocado.core.loader.LoaderError

Invalid loader plugin

360 Chapter 10. Test API

https://docs.python.org/3/library/enum.html#enum.Enum

avocado Documentation, Release 88.1

exception avocado.core.loader.LoaderError
Bases: Exception

Loader exception

exception avocado.core.loader.LoaderUnhandledReferenceError(unhandled_references,
plugins)

Bases: avocado.core.loader.LoaderError

Test References not handled by any resolver

class avocado.core.loader.MissingTest
Bases: object

Class representing reference which failed to be discovered

class avocado.core.loader.NotATest
Bases: object

Class representing something that is not a test

class avocado.core.loader.SimpleFileLoader(config, extra_params)
Bases: avocado.core.loader.TestLoader

Test loader class.

NOT_TEST_STR = 'Not a supported test'

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from a directory.

Recursively walk in a directory and find tests params. The tests are returned in alphabetic order.

Afterwards when “allowed_test_types” is supplied it verifies if all found tests are of the allowed type. If
not return None (even on partial match).

Parameters

• reference – the directory path to inspect.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns list of matching tests

static get_decorator_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: decorator function}

static get_type_label_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: ‘TEST_LABEL_STRING’}

name = 'file'

class avocado.core.loader.TapLoader(config, extra_params)
Bases: avocado.core.loader.SimpleFileLoader

Test Anything Protocol loader class

static get_decorator_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: decorator function}

static get_type_label_mapping()
Get label mapping for display in test listing.

10.2. Internal (Core) APIs 361

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Returns Dict {TestClass: ‘TEST_LABEL_STRING’}

name = 'tap'

class avocado.core.loader.TestLoader(config, extra_params)
Bases: object

Base for test loader classes

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from an reference.

Parameters

• reference (str) – the reference to be inspected.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns a list of test matching the reference as params.

static get_decorator_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: decorator function}

get_extra_listing()

get_full_decorator_mapping()
Allows extending the decorator-mapping after the object is initialized

get_full_type_label_mapping()
Allows extending the type-label-mapping after the object is initialized

static get_type_label_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: ‘TEST_LABEL_STRING’}

name = None

class avocado.core.loader.TestLoaderProxy
Bases: object

clear_plugins()

discover(references, which_tests=<DiscoverMode.DEFAULT: <object object>>, force=None)
Discover (possible) tests from test references.

Parameters

• references (builtin.list) – a list of tests references; if [] use plugin defaults

• which_tests (DiscoverMode) – Limit tests to be displayed

• force – don’t raise an exception when some test references are not resolved to tests.

Returns A list of test factories (tuples (TestClass, test_params))

get_base_keywords()

get_decorator_mapping()

get_extra_listing()

get_type_label_mapping()

load_plugins(config)

362 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

static load_test(test_factory)
Load test from the test factory.

Parameters test_factory (tuple) – a pair of test class and parameters.

Returns an instance of avocado.core.test.Test.

register_plugin(plugin)

avocado.core.loader.add_loader_options(parser, section=’run’)

10.2.15 avocado.core.main module

avocado.core.main.get_crash_dir()

avocado.core.main.handle_exception(*exc_info)

avocado.core.main.main()

10.2.16 avocado.core.messages module

class avocado.core.messages.BaseMessageHandler
Bases: object

Base interface for resolving runner messages.

This is the interface a job uses to deal with messages from runners.

handle(message, task, job)
Handle message from runner.

Parameters

• message (dict) – message from runner.

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

process_message(message, task, job)
It transmits the message to the right handler.

Parameters

• message (dict) – message from runner

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

class avocado.core.messages.BaseRunningMessageHandler
Bases: avocado.core.messages.BaseMessageHandler

Base interface for resolving running messages.

class avocado.core.messages.FinishMessageHandler
Bases: avocado.core.messages.BaseMessageHandler

Handler for finished message.

It will report the test status and triggers the ‘end_test’ event.

This is triggered when the runner ends the test.

10.2. Internal (Core) APIs 363

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

The finished message properties: param status: ‘finished’ param result: test result type result: avo-
cado.core.teststatus.STATUSES param time: end time of the test type time: float

example: {‘status’: ‘finished’, ‘result’: ‘pass’, ‘time’: 16444.819830573}

handle(message, task, job)
Handle message from runner.

Parameters

• message (dict) – message from runner.

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

class avocado.core.messages.LogMessageHandler
Bases: avocado.core.messages.BaseRunningMessageHandler

Handler for log message.

It will save the log to the debug.log file in the task directory.

The log message properties: param status: ‘running’ param type: ‘log’ param log: log message type log: string
param time: Time stamp of the message type time: float

example: {‘status’: ‘running’, ‘type’: ‘log’, ‘log’: ‘log message’, ‘time’: 18405.55351474}

handle(message, task, job)
Logs a textual message to a file.

This assumes that the log message will not contain a newline, and thus one is explicitly added here.

TODO: consider moving the responsibility of formatting to the producer of all log messages to allow
for transparent handling of both text and binary logs.

class avocado.core.messages.MessageHandler
Bases: avocado.core.messages.BaseMessageHandler

Entry point for handling messages.

process_message(message, task, job)
It transmits the message to the right handler.

Parameters

• message (dict) – message from runner

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

class avocado.core.messages.RunningMessageHandler
Bases: avocado.core.messages.BaseMessageHandler

Entry point for handling running messages.

process_message(message, task, job)
It transmits the message to the right handler.

Parameters

• message (dict) – message from runner

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

364 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

class avocado.core.messages.StartMessageHandler
Bases: avocado.core.messages.BaseMessageHandler

Handler for started message.

It will create the test base directories and triggers the ‘start_test’ event.

This is triggered when the runner starts the test.

The started message properties: param status: ‘started’ param time: start time of the test type time: float

example: {‘status’: ‘started’, ‘time’: 16444.819830573}

handle(message, task, job)
Handle message from runner.

Parameters

• message (dict) – message from runner.

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

class avocado.core.messages.StderrMessageHandler
Bases: avocado.core.messages.BaseRunningMessageHandler

Handler for stderr message.

It will save the stderr to the stderr file in the task directory.

The log message properties: param status: ‘running’ param type: ‘stderr’ param log: stderr message type log:
string param time: Time stamp of the message type time: float

example: {‘status’: ‘running’, ‘type’: ‘stderr’, ‘log’: ‘stderr message’, ‘time’: 18405.55351474}

handle(message, task, job)
Handle message from runner.

Parameters

• message (dict) – message from runner.

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

class avocado.core.messages.StdoutMessageHandler
Bases: avocado.core.messages.BaseRunningMessageHandler

Handler for stdout message.

It will save the stdout to the stdout file in the task directory.

The log message properties: param status: ‘running’ param type: ‘stdout’ param log: stdout message type log:
string param time: Time stamp of the message type time: float

example: {‘status’: ‘running’, ‘type’: ‘stdout’, ‘log’: ‘stdout message’, ‘time’: 18405.55351474}

handle(message, task, job)
Handle message from runner.

Parameters

• message (dict) – message from runner.

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

10.2. Internal (Core) APIs 365

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

class avocado.core.messages.WhiteboardMessageHandler
Bases: avocado.core.messages.BaseRunningMessageHandler

Handler for whiteboard message.

It will save the stderr to the whiteboard file in the task directory.

The log message properties: param status: ‘running’ param type: ‘whiteboard’ param log: whiteboard message
type log: string param time: Time stamp of the message type time: float

example: {‘status’: ‘running’, ‘type’: ‘whiteboard’, ‘log’: ‘whiteboard message’, ‘time’: 18405.55351474}

handle(message, task, job)
Handle message from runner.

Parameters

• message (dict) – message from runner.

• task (avocado.core.nrunner.Task) – runtime_task which message is related to

• job (avocado.core.job.Job) – job which task is related to

10.2.17 avocado.core.nrunner module

class avocado.core.nrunner.BaseRunner(runnable)
Bases: abc.ABC

Base interface for a Runner

static prepare_status(status_type, additional_info=None)
Prepare a status dict with some basic information.

This will add the keyword ‘status’ and ‘time’ to all status.

Param status_type: The type of event (‘started’, ‘running’, ‘finished’)

Param addional_info: Any additional information that you would like to add to the dict. This
must be a dict.

Return type dict

run()
Runner main method

Yields dictionary as output, containing status as well as relevant information concerning the results.

class avocado.core.nrunner.BaseRunnerApp(echo=<built-in function print>, prog=None, de-
scription=None)

Bases: object

Helper base class for common runner application behavior

CMD_RUNNABLE_RUN_ARGS = ((('-k', '--kind'), {'type': <class 'str'>, 'help': 'Kind of runnable', 'required': True}), (('-u', '--uri'), {'type': <class 'str'>, 'default': None, 'help': 'URI of runnable'}), (('-c', '--config'), {'type': <class 'str'>, 'default': '{}', 'help': 'A config JSON data'}), (('-a', '--arg'), {'action': 'append', 'default': [], 'help': 'Simple arguments to runnable'}), (('kwargs',), {'default': [], 'type': <function _parse_key_val>, 'nargs': '*', 'metavar': 'KEY_VAL', 'help': 'Keyword (key=val) arguments to runnable'}))
The command line arguments to the “runnable-run” command

CMD_RUNNABLE_RUN_RECIPE_ARGS = ((('recipe',), {'type': <class 'str'>, 'help': 'Path to the runnable recipe file'}),)

CMD_STATUS_SERVER_ARGS = ((('uri',), {'type': <class 'str'>, 'help': 'URI to bind a status server to'}),)

CMD_TASK_RUN_ARGS = ((('-i', '--identifier'), {'type': <class 'str'>, 'required': True, 'help': 'Task unique identifier'}), (('-s', '--status-uri'), {'action': 'append', 'default': None, 'help': 'URIs of status services to report to'}), (('-k', '--kind'), {'type': <class 'str'>, 'help': 'Kind of runnable', 'required': True}), (('-u', '--uri'), {'type': <class 'str'>, 'default': None, 'help': 'URI of runnable'}), (('-c', '--config'), {'type': <class 'str'>, 'default': '{}', 'help': 'A config JSON data'}), (('-a', '--arg'), {'action': 'append', 'default': [], 'help': 'Simple arguments to runnable'}), (('kwargs',), {'default': [], 'type': <function _parse_key_val>, 'nargs': '*', 'metavar': 'KEY_VAL', 'help': 'Keyword (key=val) arguments to runnable'}))

CMD_TASK_RUN_RECIPE_ARGS = ((('recipe',), {'type': <class 'str'>, 'help': 'Path to the task recipe file'}),)

PROG_DESCRIPTION = ''
The description of the command line application given to the command line parser

366 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

PROG_NAME = ''
The name of the command line application given to the command line parser

RUNNABLE_KINDS_CAPABLE = {}
The types of runnables that this runner can handle. Dictionary key is a name, and value is a class that
inherits from BaseRunner

command_capabilities(_)
Outputs capabilities, including runnables and commands

The output is intended to be consumed by upper layers of Avocado, such as the Job layer selecting the
right runner script to handle a runnable of a given kind, or identifying if a runner script has a given feature
(as implemented by a command).

command_runnable_run(args)
Runs a runnable definition from arguments

This defines a Runnable instance purely from the command line arguments, then selects a suitable Runner,
and runs it.

Parameters args (dict) – parsed command line arguments turned into a dictionary

command_runnable_run_recipe(args)
Runs a runnable definition from a recipe

Parameters args (dict) – parsed command line arguments turned into a dictionary

command_task_run(args)
Runs a task from arguments

Parameters args (dict) – parsed command line arguments turned into a dictionary

command_task_run_recipe(args)
Runs a task from a recipe

Parameters args (dict) – parsed command line arguments turned into a dictionary

get_capabilities()
Returns the runner capabilities, including runnables and commands

This can be used by higher level tools, such as the entity spawning runners, to know which runner can be
used to handle each runnable type.

Return type dict

get_commands()
Return the command names, as seen on the command line application

For every method whose name starts with “command”, and the name of the command follows, with un-
derscores replaced by dashes. So, a method named “command_foo_bar”, will be a command available on
the command line as “foo-bar”.

Return type list

get_runner_from_runnable(runnable)
Returns a runner that is suitable to run the given runnable

Return type instance of class inheriting from BaseRunner

Raises ValueError if runnable is now supported

run()
Runs the application by finding a suitable command method to call

10.2. Internal (Core) APIs 367

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

avocado Documentation, Release 88.1

class avocado.core.nrunner.ExecRunner(runnable)
Bases: avocado.core.nrunner.BaseRunner

Runner for standalone executables with or without arguments

Runnable attributes usage:

• uri: path to a binary to be executed as another process

• args: arguments to be given on the command line to the binary given by path

• kwargs: key=val to be set as environment variables to the process

run()
Runner main method

Yields dictionary as output, containing status as well as relevant information concerning the results.

class avocado.core.nrunner.ExecTestRunner(runnable)
Bases: avocado.core.nrunner.ExecRunner

Runner for standalone executables treated as tests

This is similar in concept to the Avocado “SIMPLE” test type, in which an executable returning 0 means that a
test passed, and anything else means that a test failed.

Runnable attributes usage is identical to ExecRunner

class avocado.core.nrunner.NoOpRunner(runnable)
Bases: avocado.core.nrunner.BaseRunner

Sample runner that performs no action before reporting FINISHED status

Runnable attributes usage:

• uri: not used

• args: not used

run()
Runner main method

Yields dictionary as output, containing status as well as relevant information concerning the results.

class avocado.core.nrunner.PythonUnittestRunner(runnable)
Bases: avocado.core.nrunner.BaseRunner

Runner for Python unittests

The runnable uri is used as the test name that the native unittest TestLoader will use to find the test. A native
unittest test runner (TextTestRunner) will be used to execute the test.

Runnable attributes usage:

• uri: a “dotted name” that can be given to Python standard library’s unittest.TestLoader.
loadTestsFromName() method. While it’s not enforced, it’s highly recommended that this is “a
test method within a test case class” within a test module. Example is: “module.Class.test_method”.

• args: not used

• kwargs: not used

run()
Runner main method

Yields dictionary as output, containing status as well as relevant information concerning the results.

368 Chapter 10. Test API

https://docs.python.org/3/library/unittest.html#unittest.TestLoader.loadTestsFromName
https://docs.python.org/3/library/unittest.html#unittest.TestLoader.loadTestsFromName

avocado Documentation, Release 88.1

avocado.core.nrunner.RUNNERS_REGISTRY_PYTHON_CLASS = {'exec': <class 'avocado.core.nrunner.ExecRunner'>, 'exec-test': <class 'avocado.core.nrunner.ExecTestRunner'>, 'noop': <class 'avocado.core.nrunner.NoOpRunner'>, 'python-unittest': <class 'avocado.core.nrunner.PythonUnittestRunner'>}
All known runner Python classes. This is a dictionary keyed by a runnable kind, and value is a class that inherits
from BaseRunner. Suitable for spawners compatible with SpawnMethod.PYTHON_CLASS

avocado.core.nrunner.RUNNERS_REGISTRY_STANDALONE_EXECUTABLE = {}
All known runner commands, capable of being used by a SpawnMethod.STANDALONE_EXECUTABLE com-
patible spawners

avocado.core.nrunner.RUNNER_RUN_CHECK_INTERVAL = 0.01
The amount of time (in seconds) between each internal status check

avocado.core.nrunner.RUNNER_RUN_STATUS_INTERVAL = 0.5
The amount of time (in seconds) between a status report from a runner that performs its work asynchronously

class avocado.core.nrunner.Runnable(kind, uri, *args, config=None, **kwargs)
Bases: object

Describes an entity that be executed in the context of a task

A instance of BaseRunner is the entity that will actually execute a runnable.

classmethod from_args(args)
Returns a runnable from arguments

classmethod from_recipe(recipe_path)
Returns a runnable from a runnable recipe file

Parameters recipe_path – Path to a recipe file

Return type instance of Runnable

get_command_args()
Returns the command arguments that adhere to the runner interface

This is useful for building ‘runnable-run’ and ‘task-run’ commands that can be executed on a command
line interface.

Returns the arguments that can be used on an avocado-runner command

Return type list

get_dict()
Returns a dictionary representation for the current runnable

This is usually the format that will be converted to a format that can be serialized to disk, such as JSON.

Return type collections.OrderedDict

get_json()
Returns a JSON representation

Return type str

get_serializable_tags()

is_kind_supported_by_runner_command(runner_command)
Checks if a runner command that seems a good fit declares support.

pick_runner_class(runners_registry=None)
Selects a runner class from the registry based on kind.

This is related to the SpawnMethod.PYTHON_CLASS

Parameters

10.2. Internal (Core) APIs 369

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• runners_registry – a registry with previously registered runner classes, keyed by
runnable kind

• runners_registry – dict

Returns a class that inherits from BaseRunner

Raises ValueError if kind there’s no runner from kind of runnable

pick_runner_class_from_entry_point()
Selects a runner class from entry points based on kind.

This is related to the SpawnMethod.PYTHON_CLASS. This complements the
RUNNERS_REGISTRY_PYTHON_CLASS on systems that have setuptools available.

Returns a class that inherits from BaseRunner or None

pick_runner_command(runners_registry=None)
Selects a runner command based on the runner.

And when finding a suitable runner, keeps found runners in registry.

This utility function will look at the given task and try to find a matching runner. The matching run-
ner probe results are kept in a registry (that is modified by this function) so that further executions take
advantage of previous probes.

This is related to the SpawnMethod.STANDALONE_EXECUTABLE

Parameters

• runners_registry – a registry with previously found (and not found) runners keyed
by runnable kind

• runners_registry – dict

Returns command line arguments to execute the runner

Return type list of str or None

write_json(recipe_path)
Writes a file with a JSON representation (also known as a recipe)

class avocado.core.nrunner.RunnerApp(echo=<built-in function print>, prog=None, descrip-
tion=None)

Bases: avocado.core.nrunner.BaseRunnerApp

PROG_DESCRIPTION = 'nrunner base application'

PROG_NAME = 'avocado-runner'

RUNNABLE_KINDS_CAPABLE = {'exec': <class 'avocado.core.nrunner.ExecRunner'>, 'exec-test': <class 'avocado.core.nrunner.ExecTestRunner'>, 'noop': <class 'avocado.core.nrunner.NoOpRunner'>, 'python-unittest': <class 'avocado.core.nrunner.PythonUnittestRunner'>}

class avocado.core.nrunner.StatusEncoder(*, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separa-
tors=None, default=None)

Bases: json.encoder.JSONEncoder

Constructor for JSONEncoder, with sensible defaults.

If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If
skipkeys is True, such items are simply skipped.

If ensure_ascii is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped.
If ensure_ascii is false, the output can contain non-ASCII characters.

370 Chapter 10. Test API

https://docs.python.org/3/library/constants.html#None

avocado Documentation, Release 88.1

If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references
during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such
check takes place.

If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON
specification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will
be a ValueError to encode such floats.

If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to
ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with
that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (’, ‘, ‘: ‘) if indent is
None and (‘,’, ‘: ‘) otherwise. To get the most compact JSON representation, you should specify (‘,’, ‘:’) to
eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a
JSON encodable version of the object or raise a TypeError.

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

class avocado.core.nrunner.Task(runnable, identifier=None, status_uris=None,
known_runners=None, category=’test’)

Bases: object

Wraps the execution of a runnable

While a runnable describes what to be run, and gets run by a runner, a task should be a unique entity to track its
state, that is, whether it is pending, is running or has finished.

Instantiates a new Task.

Parameters

• runnable (avocado.core.nrunner.Runnable) – the “description” of what the
task should run.

• identifier – any identifier that is guaranteed to be unique within the context of a Job.
A recommended value is a avocado.core.test_id.TestID instance when a task
represents a test, because besides the uniqueness aspect, it’s also descriptive. If an identifier
is not given, an automatically generated one will be set.

• status_uri (list) – the URIs for the status servers that this task should send updates
to.

• known_runners (dict) – a mapping of runnable kinds to runners.

10.2. Internal (Core) APIs 371

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

• category (str) – category of this task. Defaults to ‘test’.

are_requirements_available(runners_registry=None)
Verifies if requirements needed to run this task are available.

This currently checks the runner command only, but can be expanded once the handling of other types of
requirements are implemented. See BP002.

category = None
Category of the task. If the category is not “test”, it will not be accounted for on a Job’s test results.

classmethod from_recipe(task_path, known_runners)
Creates a task (which contains a runnable) from a task recipe file

Parameters

• task_path – Path to a recipe file

• known_runners – Dictionary with runner names and implementations

Return type instance of Task

get_command_args()
Returns the command arguments that adhere to the runner interface

This is useful for building ‘task-run’ commands that can be executed on a command line interface.

Returns the arguments that can be used on an avocado-runner command

Return type list

run()

setup_output_dir()

class avocado.core.nrunner.TaskStatusService(uri)
Bases: object

Implementation of interface that a task can use to post status updates

TODO: make the interface generic and this just one of the implementations

close()

post(status)

avocado.core.nrunner.check_runnables_runner_requirements(runnables, run-
ners_registry=None)

Checks if runnables have runner requirements fulfilled

Parameters

• runnables – the tasks whose runner requirements will be checked

• runners_registry (dict) – a registry with previously found (and
not found) runners keyed by a task’s runnable kind. Defaults to
RUNNERS_REGISTRY_STANDALONE_EXECUTABLE

Returns two list of tasks in a tuple, with the first being the tasks that pass the requirements check
and the second the tasks that fail the requirements check

Return type tuple of (list, list)

avocado.core.nrunner.json_dumps(data)

avocado.core.nrunner.main(app_class=<class ’avocado.core.nrunner.RunnerApp’>)

372 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

avocado Documentation, Release 88.1

10.2.18 avocado.core.output module

Manages output and logging in avocado applications.

class avocado.core.output.FilterInfoAndLess(name=”)
Bases: logging.Filter

Initialize a filter.

Initialize with the name of the logger which, together with its children, will have its events allowed through the
filter. If no name is specified, allow every event.

filter(record)
Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for yes. If deemed appropriate, the record
may be modified in-place.

class avocado.core.output.FilterWarnAndMore(name=”)
Bases: logging.Filter

Initialize a filter.

Initialize with the name of the logger which, together with its children, will have its events allowed through the
filter. If no name is specified, allow every event.

filter(record)
Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for yes. If deemed appropriate, the record
may be modified in-place.

avocado.core.output.LOG_JOB = <Logger avocado.test (WARNING)>
Pre-defined Avocado job/test logger

avocado.core.output.LOG_UI = <Logger avocado.app (WARNING)>
Pre-defined Avocado human UI logger

class avocado.core.output.LoggingFile(prefixes=None, level=10, loggers=None)
Bases: object

File-like object that will receive messages pass them to logging.

Constructor. Sets prefixes and which loggers are going to be used.

Parameters

• prefixes – Prefix per logger to be prefixed to each line.

• level – Log level to be used when writing messages.

• loggers – Loggers into which write should be issued. (list)

add_logger(logger, prefix=”)

flush()

static isatty()

rm_logger(logger)

write(data)
” Splits the line to individual lines and forwards them into loggers with expected prefixes. It includes the
tailing newline <lf> as well as the last partial message. Do configure your logging to not to add newline
<lf> automatically. :param data - Raw data (a string) that will be processed.

10.2. Internal (Core) APIs 373

https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

class avocado.core.output.MemStreamHandler(stream=None)
Bases: logging.StreamHandler

Handler that stores all records in self.log (shared in all instances)

Initialize the handler.

If stream is not specified, sys.stderr is used.

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

flush()
This is in-mem object, it does not require flushing

log = []

class avocado.core.output.Paginator
Bases: object

Paginator that uses less to display contents on the terminal.

Contains cleanup handling for when user presses ‘q’ (to quit less).

close()

flush()

write(msg)

class avocado.core.output.ProgressStreamHandler(stream=None)
Bases: logging.StreamHandler

Handler class that allows users to skip new lines on each emission.

Initialize the handler.

If stream is not specified, sys.stderr is used.

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

avocado.core.output.STD_OUTPUT = <avocado.core.output.StdOutput object>
Allows modifying the sys.stdout/sys.stderr

class avocado.core.output.StdOutput
Bases: object

Class to modify sys.stdout/sys.stderr

close()
Enable original sys.stdout/sys.stderr and cleanup

configured
Determines if a configuration of any sort has been performed

374 Chapter 10. Test API

https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

enable_outputs()
Enable sys.stdout/sys.stderr (either with 2 streams or with paginator)

enable_paginator()
Enable paginator

enable_stderr()
Enable sys.stderr and disable sys.stdout

fake_outputs()
Replace sys.stdout/sys.stderr with in-memory-objects

print_records()
Prints all stored messages as they occurred into streams they were produced for.

records = []
List of records of stored output when stdout/stderr is disabled

avocado.core.output.TERM_SUPPORT = <avocado.core.output.TermSupport object>
Transparently handles colored terminal, when one is used

avocado.core.output.TEST_STATUS_DECORATOR_MAPPING = {'CANCEL': <bound method TermSupport.skip_str of <avocado.core.output.TermSupport object>>, 'ERROR': <bound method TermSupport.error_str of <avocado.core.output.TermSupport object>>, 'FAIL': <bound method TermSupport.fail_str of <avocado.core.output.TermSupport object>>, 'INTERRUPTED': <bound method TermSupport.interrupt_str of <avocado.core.output.TermSupport object>>, 'PASS': <bound method TermSupport.pass_str of <avocado.core.output.TermSupport object>>, 'SKIP': <bound method TermSupport.skip_str of <avocado.core.output.TermSupport object>>, 'WARN': <bound method TermSupport.warn_str of <avocado.core.output.TermSupport object>>}
A collection of mapping from test status to formatting functions to be used consistently across the various
plugins

avocado.core.output.TEST_STATUS_MAPPING = {'CANCEL': '', 'ERROR': '', 'FAIL': '', 'INTERRUPTED': '', 'PASS': '', 'SKIP': '', 'WARN': ''}
A collection of mapping from test statuses to colors to be used consistently across the various plugins

class avocado.core.output.TermSupport
Bases: object

COLOR_BLUE = '\x1b[94m'

COLOR_DARKGREY = '\x1b[90m'

COLOR_GREEN = '\x1b[92m'

COLOR_RED = '\x1b[91m'

COLOR_YELLOW = '\x1b[93m'

CONTROL_END = '\x1b[0m'

ESCAPE_CODES = ['\x1b[94m', '\x1b[92m', '\x1b[93m', '\x1b[91m', '\x1b[90m', '\x1b[0m', '\x1b[1D', '\x1b[1C']
Class to help applications to colorize their outputs for terminals.

This will probe the current terminal and colorize output only if the stdout is in a tty or the terminal type is
recognized.

MOVE_BACK = '\x1b[1D'

MOVE_FORWARD = '\x1b[1C'

disable()
Disable colors from the strings output by this class.

error_str(msg=’ERROR’, move=’\x1b[1D’)
Print a error string (red colored).

If the output does not support colors, just return the original string.

fail_header_str(msg)
Print a fail header string (red colored).

If the output does not support colors, just return the original string.

10.2. Internal (Core) APIs 375

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

fail_str(msg=’FAIL’, move=’\x1b[1D’)
Print a fail string (red colored).

If the output does not support colors, just return the original string.

header_str(msg)
Print a header string (blue colored).

If the output does not support colors, just return the original string.

healthy_str(msg)
Print a healthy string (green colored).

If the output does not support colors, just return the original string.

interrupt_str(msg=’INTERRUPT’, move=’\x1b[1D’)
Print an interrupt string (red colored).

If the output does not support colors, just return the original string.

partial_str(msg)
Print a string that denotes partial progress (yellow colored).

If the output does not support colors, just return the original string.

pass_str(msg=’PASS’, move=’\x1b[1D’)
Print a pass string (green colored).

If the output does not support colors, just return the original string.

skip_str(msg=’SKIP’, move=’\x1b[1D’)
Print a skip string (yellow colored).

If the output does not support colors, just return the original string.

warn_header_str(msg)
Print a warning header string (yellow colored).

If the output does not support colors, just return the original string.

warn_str(msg=’WARN’, move=’\x1b[1D’)
Print an warning string (yellow colored).

If the output does not support colors, just return the original string.

class avocado.core.output.Throbber
Bases: object

Produces a spinner used to notify progress in the application UI.

MOVES = ['', '', '', '']

STEPS = ['-', '\\', '|', '/']

render()

avocado.core.output.add_log_handler(logger, klass=<class ’logging.StreamHandler’>,
stream=<_io.TextIOWrapper name=’<stdout>’
mode=’w’ encoding=’UTF-8’>, level=20,
fmt=’%(name)s: %(message)s’)

Add handler to a logger.

Parameters

• logger_name – the name of a logging.Logger instance, that is, the parameter to
logging.getLogger()

376 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.getLogger

avocado Documentation, Release 88.1

• klass – Handler class (defaults to logging.StreamHandler)

• stream – Logging stream, to be passed as an argument to klass (defaults to sys.
stdout)

• level – Log level (defaults to INFO‘)

• fmt – Logging format (defaults to %(name)s: %(message)s)

avocado.core.output.del_last_configuration()

avocado.core.output.disable_log_handler(logger)

avocado.core.output.early_start()
Replace all outputs with in-memory handlers

avocado.core.output.log_plugin_failures(failures)
Log in the application UI failures to load a set of plugins

Parameters failures – a list of load failures, usually coming from a avocado.core.
dispatcher.Dispatcher attribute load_failures

avocado.core.output.reconfigure(args)
Adjust logging handlers accordingly to app args and re-log messages.

10.2.19 avocado.core.parameters module

Module related to test parameters

class avocado.core.parameters.AvocadoParam(leaves, name)
Bases: object

This is a single slice params. It can contain multiple leaves and tries to find matching results.

Parameters

• leaves – this slice’s leaves

• name – this slice’s name (identifier used in exceptions)

get_or_die(path, key)
Get a value or raise exception if not present :raise NoMatchError: When no matches :raise KeyError:
When value is not certain (multiple matches)

iteritems()
Very basic implementation which iterates through __ALL__ params, which generates lots of duplicate
entries due to inherited values.

str_leaves_variant
String with identifier and all params

class avocado.core.parameters.AvocadoParams(leaves, paths, logger_name=None)
Bases: object

Params object used to retrieve params from given path. It supports absolute and relative paths. For relative paths
one can define multiple paths to search for the value. It contains compatibility wrapper to act as the original
avocado Params, but by special usage you can utilize the new API. See get() docstring for details.

You can also iterate through all keys, but this can generate quite a lot of duplicate entries inherited from ancestor
nodes. It shouldn’t produce false values, though.

Parameters

• leaves – List of TreeNode leaves defining current variant

10.2. Internal (Core) APIs 377

https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

• paths – list of entry points

• logger_name (str) – the name of a logger to use to record attempts to get parameters

get(key, path=None, default=None)
Retrieve value associated with key from params :param key: Key you’re looking for :param path: names-
pace [‘*’] :param default: default value when not found :raise KeyError: In case of multiple different
values (params clash)

iteritems()
Iterate through all available params and yield origin, key and value of each unique value.

objects(key, path=None)
Return the names of objects defined using a given key.

Parameters key – The name of the key whose value lists the objects (e.g. ‘nics’).

exception avocado.core.parameters.NoMatchError
Bases: KeyError

10.2.20 avocado.core.parser module

Avocado application command line parsing.

class avocado.core.parser.ArgumentParser(prog=None, usage=None, descrip-
tion=None, epilog=None, par-
ents=[], formatter_class=<class ’arg-
parse.HelpFormatter’>, prefix_chars=’-
’, fromfile_prefix_chars=None, argu-
ment_default=None, conflict_handler=’error’,
add_help=True, allow_abbrev=True)

Bases: argparse.ArgumentParser

Class to override argparse functions

error(message: string)
Prints a usage message incorporating the message to stderr and exits.

If you override this in a subclass, it should not return – it should either exit or raise an exception.

class avocado.core.parser.FileOrStdoutAction(option_strings, dest, nargs=None,
const=None, default=None, type=None,
choices=None, required=False,
help=None, metavar=None)

Bases: argparse.Action

Controls claiming the right to write to the application standard output

class avocado.core.parser.HintParser(filename)
Bases: object

get_resolutions()
Return a list of resolutions based on the file definitions.

validate_kind_section(kind)
Validates a specific “kind section”.

This method will raise a settings.SettingsError if any problem is found on the file.

Parameters kind – a string with the specific section.

378 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Action
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

class avocado.core.parser.Parser
Bases: object

Class to Parse the command line arguments.

finish()
Finish the process of parsing arguments.

Side effect: set the final value on attribute config.

start()
Start to parsing arguments.

At the end of this method, the support for subparsers is activated. Side effect: update attribute args (the
namespace).

10.2.21 avocado.core.parser_common_args module

avocado.core.parser_common_args.add_tag_filter_args(parser)

10.2.22 avocado.core.plugin_interfaces module

class avocado.core.plugin_interfaces.CLI
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding options (non-commands) to the command line.

Plugins that want to add extra options to the core command line application or to sub commands should use the
‘avocado.plugins.cli’ namespace.

configure(parser)
Configures the command line parser with options specific to this plugin.

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.core.plugin_interfaces.CLICmd
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding new commands to the command line app.

Plugins that want to add extensions to the run command should use the ‘avocado.plugins.cli.cmd’ namespace.

configure(parser)
Lets the extension add command line options and do early configuration.

By default it will register its name as the command name and give its description as the help message.

description = None

name = None

run(config)
Entry point for actually running the command.

10.2. Internal (Core) APIs 379

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

class avocado.core.plugin_interfaces.Init
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for plugins that needs to initialize itself.

initialize()
Entry point for the plugin to perform its initialization.

class avocado.core.plugin_interfaces.JobPost
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions after a job runs.

Plugins that want to add actions to be run after a job runs, should use the ‘avocado.plugins.job.prepost’ names-
pace and implement the defined interface.

post(job)
Entry point for actually running the post job action.

class avocado.core.plugin_interfaces.JobPostTests
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions after a job runs tests.

Plugins using this interface will run at the a time equivalent to plugins using the JobPost interface, that is, at
avocado.core.job.Job.post_tests(). This is because JobPost based plugins will eventually be
modified to really run after the job has finished, and not after it has run tests.

post_tests(job)
Entry point for job running actions after the tests execution.

class avocado.core.plugin_interfaces.JobPre
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions before a job runs.

Plugins that want to add actions to be run before a job runs, should use the ‘avocado.plugins.job.prepost’ names-
pace and implement the defined interface.

pre(job)
Entry point for actually running the pre job action.

class avocado.core.plugin_interfaces.JobPreTests
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions before a job runs tests.

This interface looks similar to JobPre, but it’s intended to be called at a very specific place, that
is, between avocado.core.job.Job.create_test_suite() and avocado.core.job.Job.
run_tests().

pre_tests(job)
Entry point for job running actions before tests execution.

class avocado.core.plugin_interfaces.Plugin
Bases: abc.ABC

Base for all plugins.

class avocado.core.plugin_interfaces.Resolver
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for resolving test references into resolutions.

380 Chapter 10. Test API

https://docs.python.org/3/library/abc.html#abc.ABC

avocado Documentation, Release 88.1

resolve(reference)
Resolves the given reference into a reference resolution.

Parameters reference (str) – a specification that can eventually be resolved into a test (in
the form of a avocado.core.nrunner.Runnable)

Returns the result of the resolution process, containing the success, failure or error, along with
zero or more avocado.core.nrunner.Runnable objects

Return type avocado.core.resolver.ReferenceResolution

class avocado.core.plugin_interfaces.Result
Bases: avocado.core.plugin_interfaces.Plugin

render(result, job)
Entry point with method that renders the result.

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

class avocado.core.plugin_interfaces.ResultEvents
Bases: avocado.core.plugin_interfaces.JobPreTests, avocado.core.
plugin_interfaces.JobPostTests

Base plugin interface for event based (stream-able) results.

Plugins that want to add actions to be run after a job runs, should use the ‘avocado.plugins.result_events’ names-
pace and implement the defined interface.

end_test(result, state)
Event triggered when a test finishes running.

start_test(result, state)
Event triggered when a test starts running.

test_progress(progress=False)
Interface to notify progress (or not) of the running test.

class avocado.core.plugin_interfaces.Runner
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for test runners.

This is the interface a job uses to drive the tests execution via compliant test runners.

NOTE: This interface is not to be confused with the internal interface or idiosyncrasies of the The “nrunner”
and “runner” test runner.

run_suite(job, test_suite)
Run one or more tests and report with test result.

Parameters

• job – an instance of avocado.core.job.Job.

• test_suite – an instance of TestSuite with some tests to run.

Returns a set with types of test failures.

10.2. Internal (Core) APIs 381

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

class avocado.core.plugin_interfaces.Settings
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin to allow modifying settings.

Currently it only supports to extend/modify the default list of paths to config files.

adjust_settings_paths(paths)
Entry point where plugin can modify the list of configuration paths.

class avocado.core.plugin_interfaces.Spawner
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface spawners of tasks.

A spawner implementation will spawn a runner in its intended location, and isolation model. It’s supposed to be
generic enough that it can perform that in the local machine using a process as an isolation model, or in a virtual
machine, using the virtual machine itself as the isolation model.

static check_task_requirements(runtime_task)
Checks if the requirements described within a task are available.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

static is_task_alive(runtime_task)
Determines if a task is alive or not.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

spawn_task(runtime_task)
Spawns a task return whether the spawning was successful.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

wait_task(runtime_task)
Waits for a task to finish.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

class avocado.core.plugin_interfaces.Varianter
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for producing test variants.

to_str(summary, variants, **kwargs)
Return human readable representation.

The summary/variants accepts verbosity where 0 means silent and maximum is up to the plugin.

Parameters

• summary – How verbose summary to output (int)

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

382 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

10.2.23 avocado.core.references module

Test loader module.

avocado.core.references.reference_split(reference)
Splits a test reference into a path and additional info

This should be used dependent on the specific type of resolver. If a resolver is not expected to support multiple
test references inside a given file, then this is not suitable.

Returns (path, additional_info)

Type (str, str or None)

10.2.24 avocado.core.resolver module

Test resolver module.

class avocado.core.resolver.ReferenceResolution(reference, result, resolutions=None,
info=None, origin=None)

Bases: object

Represents one complete reference resolution

Note that the reference itself may result in many resolutions, or none.

Parameters

• reference (str) – a specification that can eventually be resolved into a test (in the form
of a avocado.core.nrunner.Runnable)

• result (ReferenceResolutionResult) – if the complete resolution was a success,
failure or error

• resolutions (list of avocado.core.nrunner.Runnable) – the runnable defini-
tions resulting from the resolution

• info (str) – free form information the resolver may add

• origin (str) – the name of the resolver that performed the resolution

class avocado.core.resolver.ReferenceResolutionAction
Bases: enum.Enum

An enumeration.

CONTINUE = <object object>
Continue to resolve the given reference

RETURN = <object object>
Stop trying to resolve the reference

class avocado.core.resolver.ReferenceResolutionResult
Bases: enum.Enum

An enumeration.

ERROR = <object object>
Internal error in the resolution process

NOTFOUND = <object object>
Given test reference was not properly resolved

10.2. Internal (Core) APIs 383

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum

avocado Documentation, Release 88.1

SUCCESS = <object object>
Given test reference was properly resolved

class avocado.core.resolver.Resolver
Bases: avocado.core.enabled_extension_manager.EnabledExtensionManager

Main test reference resolution utility.

This performs the actual resolution according to the active resolver plugins and a resolution policy.

DEFAULT_POLICY = {<ReferenceResolutionResult.SUCCESS: <object object>>: <ReferenceResolutionAction.RETURN: <object object>>, <ReferenceResolutionResult.NOTFOUND: <object object>>: <ReferenceResolutionAction.CONTINUE: <object object>>, <ReferenceResolutionResult.ERROR: <object object>>: <ReferenceResolutionAction.CONTINUE: <object object>>}

resolve(reference)

avocado.core.resolver.check_file(path, reference, suffix=’.py’, type_check=<function is-
file>, type_name=’regular file’, access_check=4, ac-
cess_name=’readable’)

avocado.core.resolver.resolve(references, hint=None, ignore_missing=True)

10.2.25 avocado.core.result module

Contains the Result class, used for result accounting.

class avocado.core.result.Result(job_unique_id, job_logfile)
Bases: object

Result class, holder for job (and its tests) result information.

Creates an instance of Result.

Parameters

• job_unique_id – the job’s unique ID, usually from avocado.core.job.Job.
unique_id

• job_logfile – the job’s unique ID, usually from avocado.core.job.Job.
logfile

check_test(state)
Called once for a test to check status and report.

Parameters test – A dict with test internal state

end_test(state)
Called when the given test has been run.

Parameters state (dict) – result of avocado.core.test.Test.get_state.

end_tests()
Called once after all tests are executed.

rate

start_test(state)
Called when the given test is about to run.

Parameters state (dict) – result of avocado.core.test.Test.get_state.

10.2.26 avocado.core.runner module

Test runner module.

384 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

class avocado.core.runner.TestStatus(job, queue)
Bases: object

Test status handler

Parameters

• job – Associated job

• queue – test message queue

early_status
Get early status

finish(proc, started, step, deadline, result_dispatcher)
Wait for the test process to finish and report status or error status if unable to obtain the status till deadline.

Parameters

• proc – The test’s process

• started – Time when the test started

• first – Delay before first check

• step – Step between checks for the status

• deadline – Test execution deadline

• result_dispatcher – Result dispatcher (for test_progress notifications)

wait_for_early_status(proc, timeout)
Wait until early_status is obtained :param proc: test process :param timeout: timeout for early_state :raise
exceptions.TestError: On timeout/error

avocado.core.runner.add_runner_failure(test_state, new_status, message)
Append runner failure to the overall test status.

Parameters

• test_state – Original test state (dict)

• new_status – New test status (PASS/FAIL/ERROR/INTERRUPTED/. . .)

• message – The error message

10.2.27 avocado.core.safeloader module

Safe (AST based) test loader module utilities

avocado.core.safeloader.DOCSTRING_DIRECTIVE_RE_RAW = '\\s*:avocado:[\\t]+(([a-zA-Z0-9]+?[a-zA-Z0-9_:,\\=\\-\\.]*)|(r[a-zA-Z0-9]+?[a-zA-Z0-9_:,\\=\\{\\}\\"\\-\\.\\/]*))\\s*$'
Gets the docstring directive value from a string. Used to tweak test behavior in various ways

class avocado.core.safeloader.PythonModule(path, module=’avocado’, klass=’Test’)
Bases: object

Representation of a Python module that might contain interesting classes

By default, it uses module and class names that matches Avocado instrumented tests, but it’s supposed to be
agnostic enough to be used for, say, Python unittests.

Instantiates a new PythonModule representation

Parameters

• path (str) – path to a Python source code file

10.2. Internal (Core) APIs 385

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• module (str) – the original module name from where the possibly interesting class must
have been imported from

• klass (str) – the possibly interesting class original name

add_imported_object(statement)
Keeps track of objects names and importable entities

imported_objects

is_matching_klass(klass)
Detect whether given class directly defines itself as <module>.<klass>

It can either be a <klass> that inherits from a test “symbol”, like:

`class FooTest(Test)`

Or from an <module>.<klass> symbol, like in:

`class FooTest(avocado.Test)`

Return type bool

iter_classes()
Iterate through classes and keep track of imported avocado statements

klass

klass_imports

mod

mod_imports

module

path

avocado.core.safeloader.check_docstring_directive(docstring, directive)
Checks if there’s a given directive in a given docstring

Return type bool

avocado.core.safeloader.find_avocado_tests(path)

avocado.core.safeloader.find_class_and_methods(path, method_pattern=None,
base_class=None)

Attempts to find methods names from a given Python source file

Parameters

• path (str) – path to a Python source code file

• method_pattern – compiled regex to match against method name

• base_class (str or None) – only consider classes that inherit from a given base
class (or classes that inherit from any class if None is given)

Returns an ordered dictionary with classes as keys and methods as values

Return type collections.OrderedDict

avocado.core.safeloader.find_python_tests(module_name, class_name, determine_match,
path)

Attempts to find Python tests from source files

A Python test in this context is a method within a specific type of class (or that inherits from a specific class).

Parameters

386 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict

avocado Documentation, Release 88.1

• module_name (str) – the name of the module from which a class should have come
from

• class_name (str) – the name of the class that is considered to contain test methods

• path (str) – path to a Python source code file

Returns tuple where first item is dict with class name and additional info such as method names and
tags; the second item is set of class names which look like Python tests but have been forcefully
disabled.

Return type tuple

avocado.core.safeloader.find_python_unittests(path)

avocado.core.safeloader.get_docstring_directives(docstring)
Returns the values of the avocado docstring directives

Parameters docstring (str) – the complete text used as documentation

Return type builtin.list

avocado.core.safeloader.get_docstring_directives_requirements(docstring)
Returns the test requirements from docstring patterns like :avocado: requirement={}.

Return type list

avocado.core.safeloader.get_docstring_directives_tags(docstring)
Returns the test categories based on a :avocado: tags=category docstring

Return type dict

avocado.core.safeloader.get_methods_info(statement_body, class_tags, class_requirements)
Returns information on an Avocado instrumented test method

avocado.core.safeloader.modules_imported_as(module)
Returns a mapping of imported module names whether using aliases or not

The goal of this utility function is to return the name of the import as used in the rest of the module, whether an
aliased import was used or not.

For code such as:

>>> import foo as bar

This function should return {“foo”: “bar”}

And for code such as:

>>> import foo

It should return {“foo”: “foo”}

Please note that only global level imports are looked at. If there are imports defined, say, inside functions or
class definitions, they will not be seen by this function.

Parameters module (_ast.Module) – module, as parsed by ast.parse()

Returns a mapping of names {<realname>: <alias>} of modules imported

Return type dict

avocado.core.safeloader.statement_import_as(statement)
Returns a mapping of imported module names whether using aliases or not

Parameters statement (ast.Import) – an AST import statement

10.2. Internal (Core) APIs 387

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/ast.html#ast.parse
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/ast.html#ast.Import

avocado Documentation, Release 88.1

Returns a mapping of names {<realname>: <alias>} of modules imported

Return type dict

10.2.28 avocado.core.settings module

This module is a new and experimental configuration handler.

This will handle both, command line args and configuration files. Settings() = configparser + argparser

Settings() is an attempt to implement part of BP001 and concentrate all default values in one place. This module will
read the Avocado configuration options from many sources, in the following order:

1. Default values: This is a “source code” defined. When plugins or core needs a settings, basically needs to call
settings.register_option() with default value as argument. Developers only need to register the default value
once, here when calling this methods.

2. User/System configuration files (/etc/avocado or ~/.avocado/): This is configured by the user, on a more “per-
manent way”.

3. Command-line options parsed in runtime. This is configured by the user, on a more “temporary way”;

exception avocado.core.settings.ConfigFileNotFound(path_list)
Bases: avocado.core.settings.SettingsError

Error thrown when the main settings file could not be found.

class avocado.core.settings.ConfigOption(namespace, help_msg, key_type=<class ’str’>,
default=None, parser=None, short_arg=None,
long_arg=None, positional_arg=False,
choices=None, nargs=None, metavar=None,
required=None, action=None)

Bases: object

action

add_argparser(parser, long_arg, short_arg=None, positional_arg=False, choices=None,
nargs=None, metavar=None, required=None, action=None)

Add an command-line argparser to this option.

arg_parse_args

argparse_type

key

metavar

name_or_tags

section

set_value(value, convert=False)

value

exception avocado.core.settings.DuplicatedNamespace
Bases: avocado.core.settings.SettingsError

Raised when a namespace is already registered.

exception avocado.core.settings.NamespaceNotRegistered
Bases: avocado.core.settings.SettingsError

Raised when a namespace is not registered.

388 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

class avocado.core.settings.Settings
Bases: object

Settings is the Avocado configuration handler.

It is a simple wrapper around configparser and argparse.

Also, one object of this class could be passed as config to plugins and modules.

Basically, if you are going to have options (configuration options), either via config file or via command line,
you should use this class. You don’t need to instantiate a new settings, just import and use register_option().

from avocado.core.settings import settings settings.register_option(. . .)

And when you needs get the current value, check on your configuration for the namespace (section.key) that
you registered. i.e:

value = config.get(‘a.section.with.subsections.key’)

Note: Please, do not use a default value when using get() here. If you are using an existing namespace, get will
always return a value, either the default value, or the value set by the user.

Please, note that most of methods and attributes here are private. Only public methods and attributes should be
used outside this module.

Constructor. Tries to find the main settings files and load them.

add_argparser_to_option(namespace, parser, long_arg=None, short_arg=None, posi-
tional_arg=False, choices=None, nargs=None, metavar=None,
required=None, action=None, allow_multiple=False)

Add a command-line argument parser to an existing option.

This method is useful to add a parser when the option is registered without any command-line argument
options. You should call the “register_option()” method for the namespace before calling this method.

Arguments

namespace [str] What is the namespace of the option (section.key)

parser [argparser parser] Since that you would like to have a command-line option, you should specify
what is the parser or parser group that we should add this option.

long_arg: [str] A long option for the command-line. i.e: –debug for debug.

short_arg [str] A short option for the command-line. i.e: -d for debug.

positional_arg [bool] If this option is an positional argument or not. Default is False.

choices [tuple] If you would like to limit the option to a few choices. i.e: (‘foo’, ‘bar’)

nargs [int or str] The number of command-line arguments that should be consumed. Could be a int, ‘?’,
‘*’ or ‘+’. For more information visit the argparser documentation.

metavar [str] String presenting available sub-commands in help, if None we will use the section+key as
metavar.

required [bool] If this is a required option or not when on command-line. Default is False.

action : The basic type of action to be taken when this argument is encountered at the command line. For
more information visit the argparser documentation.

allow_multiple : Whether the same option may be available on different parsers. This is useful when the
same option is available on different commands, such as “avocado run” or “avocado list”.

10.2. Internal (Core) APIs 389

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

as_dict(regex=None)
Return an dictionary with the current active settings.

This will return a dict with all parsed options (either via config file or via command-line). If regex is not
None, this method will filter the current config matching regex with the namespaces.

Parameters regex – A regular expression to be used on the filter.

as_full_dict()

as_json(regex=None)
Return a JSON with the current active settings.

This will return a JSON with all parsed options (either via config file or via command-line). If regex is not
None, it will be used to filter namespaces.

Parameters regex – A regular expression to be used on the filter.

static filter_config(config, regex)
Utility to filter a config by namespaces based on a regex.

Parameters

• config – dict object with namespaces and values

• regex – regular expression to use against the namespace

merge_with_arguments(arg_parse_config)
Merge the current settings with the command-line args.

After parsing argument options this method should be executed to have an unified settings.

Parameters arg_parse_config – argparse.config dictionary with all command-line parsed
arguments.

merge_with_configs()
Merge the current settings with the config file options.

After parsing config file options this method should be executed to have an unified settings.

process_config_path(path)
Update list of config paths and process the given path.

register_option(section, key, default, help_msg, key_type=<class ’str’>, parser=None,
positional_arg=False, short_arg=None, long_arg=None, choices=None,
nargs=None, metavar=None, required=False, action=None, al-
low_multiple=False)

Method used to register a configuration option inside Avocado.

This should be used to register a settings option (either config file option or command-line option). This is
the central point that plugins and core should use to register a new configuration option.

This method will take care of the ‘under the hood dirt’, registering the configparse option and, if desired,
the argparse too. Instead of using argparse and/or configparser, Avocado’s contributors should use this
method.

Using this method, you need to specify a “section”, “key”, “default” value and a “help_msg” always. This
will create a relative configuration file option for you.

For instance:

settings.register_option(section=’foo’, key=’bar’, default=’hello’, help_msg=’this is just a
test’)

This will register a ‘foo.bar’ namespace inside Avocado internals settings. And this could be now, be
changed by the users or system configuration option:

390 Chapter 10. Test API

avocado Documentation, Release 88.1

[foo] bar = a different message replacing ‘hello’

If you would like to provide also the flexibility to the user change the values via command-line, you should
pass the other arguments.

Arguments

section [str] The configuration file section that your option should be present. You can specify subsections
with dots. i.e: run.output.json

key [str] What is the key name of your option inside that section.

default [typeof(key_type)] The default value of an option. It sets the option value when the key is not
defined in any configuration files or via command-line. The default value should be “processed”. It
means the value should match the type of key_type. Due to some internal limitations, the Settings
module will not apply key_type to the default value.

help_msg [str] The help message that will be displayed at command-line (-h) and configuration file tem-
plate.

key_type [any method] What is the type of your option? Currently supported: int, list, str or a custom
method. Default is str.

parser [argparser parser] Since that you would like to have a command-line option, you should specify
what is the parser or parser group that we should add this option.

positional_arg [bool] If this option is an positional argument or not. Default is False.

short_arg [str] A short option for the command-line. i.e: -d for debug.

long_arg: [str] A long option for the command-line. i.e: –debug for debug.

choices [tuple] If you would like to limit the option to a few choices. i.e: (‘foo’, ‘bar’)

nargs [int or str] The number of command-line arguments that should be consumed. Could be a int, ‘?’,
‘*’ or ‘+’. For more information visit the argparser documentation.

metavar [str] String presenting available sub-commands in help, if None we will use the section+key as
metavar.

required [bool] If this is a required option or not when on command-line. Default is False.

action : The basic type of action to be taken when this argument is encountered at the command line. For
more information visit the argparser documentation.

allow_multiple : Whether the same option may be available on different parsers. This is useful when the
same option is available on different commands, such as “avocado run” or “avocado list”.

Note: Most of the arguments here (like parser, positional_arg, short_arg, long_arg, choices, nargs,
metavar, required and action) are only necessary if you would like to add a command-line option.

update_option(namespace, value, convert=False)
Convenient method to change the option’s value.

This will update the value on Avocado internals and if necessary the type conversion will be realized.

For instance, if an option was registered as bool and you call:

settings.register_option(namespace=’foo.bar’, value=’true’, convert=True)

This will be stored as True, because Avocado will get the ‘key_type’ registered and apply here for the
conversion.

10.2. Internal (Core) APIs 391

avocado Documentation, Release 88.1

This method is useful when getting values from config files where everything is stored as string and a
conversion is needed.

Arguments

namespace [str] Your section plus your key, separated by dots. The last part of the namespace is your
key. i.e: run.outputs.json.enabled (section is run.outputs.json and key is enabled)

value [any type] This is the new value to update.

convert [bool] If Avocado should try to convert the value and store it as the ‘key_type’ specified during
the register. Default is False.

exception avocado.core.settings.SettingsError
Bases: Exception

Base settings error.

avocado.core.settings.sorted_dict(dict_object)

10.2.29 avocado.core.settings_dispatcher module

Settings Dispatcher

This is a special case for the dispatchers that can be found in avocado.core.dispatcher. This one deals with
settings that will be read by the other dispatchers, while still being a dispatcher for configuration sources.

class avocado.core.settings_dispatcher.SettingsDispatcher
Bases: avocado.core.extension_manager.ExtensionManager

Dispatchers that allows plugins to modify settings

It’s not the standard “avocado.core.dispatcher” because that one depends on settings. This dispatcher is the
bare-stevedore dispatcher which is executed before settings is parsed.

10.2.30 avocado.core.streams module

avocado.core.streams.BUILTIN_STREAMS = {'app': 'application output', 'debug': 'tracebacks and other debugging info', 'early': 'early logging of other streams, including test (very verbose)', 'test': 'test output'}
Builtin special keywords to enable set of logging streams

avocado.core.streams.BUILTIN_STREAM_SETS = {'all': 'all builtin streams', 'none': 'disables regular output (leaving only errors enabled)'}
Groups of builtin streams

10.2.31 avocado.core.suite module

class avocado.core.suite.TestSuite(name, config=None, tests=None, job_config=None, reso-
lutions=None)

Bases: object

classmethod from_config(config, name=None, job_config=None)
Helper method to create a TestSuite from config dicts.

This is different from the TestSuite() initialization because here we are assuming that you need some help
to build the test suite. Avocado will try to resolve tests based on the configuration information instead of
assuming pre populated tests.

If you need to create a custom TestSuite, please use the TestSuite() constructor instead of this method.

Parameters

392 Chapter 10. Test API

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

• config (dict) – A config dict to be used on the desired test suite.

• name (str) – The name of the test suite. This is optional and default is a random uuid.

• job_config (dict) – The job config dict (a global config). Use this to avoid huge
configs per test suite. This is also optional.

references

run(job)
Run this test suite with the job context in mind.

Parameters job – A avocado.core.job.Job instance.

Return type set

runner

size
The overall length/size of this test suite.

stats
Return a statistics dict with the current tests.

status

tags_stats
Return a statistics dict with the current tests tags.

test_parameters
Placeholder for test parameters.

This is related to –test-parameters command line option or (run.test_parameters).

variants

exception avocado.core.suite.TestSuiteError
Bases: Exception

class avocado.core.suite.TestSuiteStatus
Bases: enum.Enum

An enumeration.

RESOLUTION_NOT_STARTED = <object object>

TESTS_FOUND = <object object>

TESTS_NOT_FOUND = <object object>

UNKNOWN = <object object>

avocado.core.suite.resolutions_to_runnables(resolutions, config)
Transforms resolver resolutions into runnables suitable for a suite

A resolver resolution (avocado.core.resolver.ReferenceResolution) contains information
about the resolution process (if it was successful or not) and in case of successful resolutions a list of reso-
lutions. It’s expected that the resolution contain one or more avocado.core.nrunner.Runnable.

This function sets the runnable specific configuration for each runnable. It also performs tag based filtering on
the runnables for possibly excluding some of the Runnables.

Parameters

• resolutions (list of avocado.core.resolver.ReferenceResolution) –
possible multiple resolutions for multiple references

10.2. Internal (Core) APIs 393

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/enum.html#enum.Enum

avocado Documentation, Release 88.1

• config (dict) – job configuration

Returns the resolutions converted to tasks

Return type list of avocado.core.nrunner.Task

10.2.32 avocado.core.sysinfo module

class avocado.core.sysinfo.Collectible(logf)
Bases: object

Abstract class for representing collectibles by sysinfo.

readline(logdir)
Read one line of the collectible object.

Parameters logdir – Path to a log directory.

class avocado.core.sysinfo.Command(cmd, logf=None, compress_log=False)
Bases: avocado.core.sysinfo.Collectible

Collectible command.

Parameters

• cmd – String with the command.

• logf – Basename of the file where output is logged (optional).

• compress_log – Whether to compress the output of the command.

run(logdir)
Execute the command as a subprocess and log its output in logdir.

Parameters logdir – Path to a log directory.

class avocado.core.sysinfo.Daemon(*args, **kwargs)
Bases: avocado.core.sysinfo.Command

Collectible daemon.

Parameters

• cmd – String with the daemon command.

• logf – Basename of the file where output is logged (optional).

• compress_log – Whether to compress the output of the command.

run(logdir)
Execute the daemon as a subprocess and log its output in logdir.

Parameters logdir – Path to a log directory.

stop()
Stop daemon execution.

class avocado.core.sysinfo.JournalctlWatcher(logf=None)
Bases: avocado.core.sysinfo.Collectible

Track the content of systemd journal into a compressed file.

Parameters logf – Basename of the file where output is logged (optional).

run(logdir)

394 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

class avocado.core.sysinfo.LogWatcher(path, logf=None)
Bases: avocado.core.sysinfo.Collectible

Keep track of the contents of a log file in another compressed file.

This object is normally used to track contents of the system log (/var/log/messages), and the outputs are gzipped
since they can be potentially large, helping to save space.

Parameters

• path – Path to the log file.

• logf – Basename of the file where output is logged (optional).

run(logdir)
Log all of the new data present in the log file.

class avocado.core.sysinfo.Logfile(path, logf=None)
Bases: avocado.core.sysinfo.Collectible

Collectible system file.

Parameters

• path – Path to the log file.

• logf – Basename of the file where output is logged (optional).

run(logdir)
Copy the log file to the appropriate log dir.

Parameters logdir – Log directory which the file is going to be copied to.

class avocado.core.sysinfo.SysInfo(basedir=None, log_packages=None, profiler=None)
Bases: object

Log different system properties at some key control points.

Includes support for a start and stop event, with daemons running in between. An event may be a job, a test, or
any other event with a beginning and end.

Set sysinfo collectibles.

Parameters

• basedir – Base log dir where sysinfo files will be located.

• log_packages – Whether to log system packages (optional because logging packages is
a costly operation). If not given explicitly, tries to look in the config files, and if not found,
defaults to False.

• profiler – Whether to use the profiler. If not given explicitly, tries to look in the config
files.

end(status=”)
Logging hook called whenever a job finishes.

start()
Log all collectibles at the start of the event.

avocado.core.sysinfo.collect_sysinfo(basedir)
Collect sysinfo to a base directory.

10.2. Internal (Core) APIs 395

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

10.2.33 avocado.core.tags module

Test tags utilities module

avocado.core.tags.filter_test_tags(test_suite, filter_by_tags, include_empty=False, in-
clude_empty_key=False)

Filter the existing (unfiltered) test suite based on tags

The filtering mechanism is agnostic to test type. It means that if users request filtering by tag and the specific
test type does not populate the test tags, it will be considered to have empty tags.

Parameters

• test_suite (dict) – the unfiltered test suite

• filter_by_tags (list of comma separated tags (['foo,bar',
'fast'])) – the list of tag sets to use as filters

• include_empty (bool) – if true tests without tags will not be filtered out

• include_empty_key (bool) – if true tests “keys” on key:val tags will be included in
the filtered results

avocado.core.tags.filter_test_tags_runnable(runnable, filter_by_tags, in-
clude_empty=False, in-
clude_empty_key=False)

Filter the existing (unfiltered) test suite based on tags

The filtering mechanism is agnostic to test type. It means that if users request filtering by tag and the specific
test type does not populate the test tags, it will be considered to have empty tags.

Parameters

• test_suite (dict) – the unfiltered test suite

• filter_by_tags (list of comma separated tags (['foo,bar',
'fast'])) – the list of tag sets to use as filters

• include_empty (bool) – if true tests without tags will not be filtered out

• include_empty_key (bool) – if true tests “keys” on key:val tags will be included in
the filtered results

10.2.34 avocado.core.tapparser module

class avocado.core.tapparser.TapParser(tap_io)
Bases: object

class Bailout(message)
Bases: tuple

Create new instance of Bailout(message,)

message
Alias for field number 0

class Error(message)
Bases: tuple

Create new instance of Error(message,)

message
Alias for field number 0

396 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

avocado Documentation, Release 88.1

class Plan(count, late, skipped, explanation)
Bases: tuple

Create new instance of Plan(count, late, skipped, explanation)

count
Alias for field number 0

explanation
Alias for field number 3

late
Alias for field number 1

skipped
Alias for field number 2

class Test(number, name, result, explanation)
Bases: tuple

Create new instance of Test(number, name, result, explanation)

explanation
Alias for field number 3

name
Alias for field number 1

number
Alias for field number 0

result
Alias for field number 2

class Version(version)
Bases: tuple

Create new instance of Version(version,)

version
Alias for field number 0

parse()

parse_test(ok, num, name, directive, explanation)

class avocado.core.tapparser.TestResult
Bases: enum.Enum

An enumeration.

FAIL = 'FAIL'

PASS = 'PASS'

SKIP = 'SKIP'

XFAIL = 'XFAIL'

XPASS = 'XPASS'

10.2.35 avocado.core.test module

Contains the base test implementation, used as a base for the actual framework tests.

10.2. Internal (Core) APIs 397

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/enum.html#enum.Enum

avocado Documentation, Release 88.1

avocado.core.test.COMMON_TMPDIR_NAME = 'AVOCADO_TESTS_COMMON_TMPDIR'
Environment variable used to store the location of a temporary directory which is preserved across all tests
execution (usually in one job)

class avocado.core.test.DryRunTest(*args, **kwargs)
Bases: avocado.core.test.MockingTest

Fake test which logs itself and reports as CANCEL

filename
Returns the name of the file (path) that holds the current test

setUp()
Hook method for setting up the test fixture before exercising it.

class avocado.core.test.ExternalRunnerSpec(runner, chdir=None, test_dir=None)
Bases: object

Defines the basic options used by ExternalRunner

class avocado.core.test.ExternalRunnerTest(name, params=None, base_logdir=None,
config=None, external_runner=None, exter-
nal_runner_argument=None)

Bases: avocado.core.test.SimpleTest

filename
Returns the name of the file (path) that holds the current test

test()
Run the test and postprocess the results

class avocado.core.test.MockingTest(*args, **kwargs)
Bases: avocado.core.test.Test

Class intended as generic substitute for avocado tests which will not be executed for some reason. This class is
expected to be overridden by specific reason-oriented sub-classes.

This class substitutes other classes. Let’s just ignore the remaining arguments and only set the ones supported
by avocado.Test

test()

class avocado.core.test.PythonUnittest(name, params=None, base_logdir=None,
config=None, test_dir=None,
python_unittest_module=None, tags=None)

Bases: avocado.core.test.ExternalRunnerTest

Python unittest test

test()
Run the test and postprocess the results

class avocado.core.test.RawFileHandler(filename, mode=’a’, encoding=None, delay=False)
Bases: logging.FileHandler

File Handler that doesn’t include arbitrary characters to the logged stream but still respects the formatter.

Open the specified file and use it as the stream for logging.

emit(record)
Modifying the original emit() to avoid including a new line in streams that should be logged in its purest
form, like in stdout/stderr recordings.

398 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/logging.handlers.html#logging.FileHandler

avocado Documentation, Release 88.1

class avocado.core.test.ReplaySkipTest(*args, **kwargs)
Bases: avocado.core.test.MockingTest

Skip test due to job replay filter.

This test is skipped due to a job replay filter. It will never have a chance to execute.

This class substitutes other classes. Let’s just ignore the remaining arguments and only set the ones supported
by avocado.Test

test()

class avocado.core.test.SimpleTest(name, params=None, base_logdir=None, config=None,
executable=None)

Bases: avocado.core.test.Test

Run an arbitrary command that returns either 0 (PASS) or !=0 (FAIL).

DATA_SOURCES = ['variant', 'file']

filename
Returns the name of the file (path) that holds the current test

test()
Run the test and postprocess the results

avocado.core.test.TEST_STATE_ATTRIBUTES = ('name', 'logdir', 'logfile', 'status', 'running', 'paused', 'time_start', 'time_elapsed', 'time_end', 'fail_reason', 'fail_class', 'traceback', 'tags', 'timeout', 'whiteboard', 'phase')
The list of test attributes that are used as the test state, which is given to the test runner via the queue they share

class avocado.core.test.TapTest(name, params=None, base_logdir=None, config=None, exe-
cutable=None)

Bases: avocado.core.test.SimpleTest

Run a test command as a TAP test.

class avocado.core.test.Test(methodName=’test’, name=None, params=None,
base_logdir=None, config=None, runner_queue=None,
tags=None)

Bases: unittest.case.TestCase, avocado.core.test.TestData

Base implementation for the test class.

You’ll inherit from this to write your own tests. Typically you’ll want to implement setUp(), test*() and tear-
Down() methods on your own tests.

Initializes the test.

Parameters

• methodName – Name of the main method to run. For the sake of compatibility with the
original unittest class, you should not set this.

• name (avocado.core.test.TestID) – Pretty name of the test name. For normal
tests, written with the avocado API, this should not be set. This is reserved for internal
Avocado use, such as when running random executables as tests.

• base_logdir – Directory where test logs should go. If None provided a temporary di-
rectory will be created.

• config (dict) – the job configuration, usually set by command line options and argument
parsing

basedir
The directory where this test (when backed by a file) is located at

10.2. Internal (Core) APIs 399

https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

cache_dirs
Returns a list of cache directories as set in config file.

static cancel(message=None)
Cancels the test.

This method is expected to be called from the test method, not anywhere else, since by definition, we can
only cancel a test that is currently under execution. If you call this method outside the test method, avocado
will mark your test status as ERROR, and instruct you to fix your test in the error message.

Parameters message (str) – an optional message that will be recorded in the logs

Warning message This parameter will changed name to “msg” in the next LTS release because
of lint W0221

static error(message=None)
Errors the currently running test.

After calling this method a test will be terminated and have its status as ERROR.

Parameters message (str) – an optional message that will be recorded in the logs

Warning message This parameter will changed name to “msg” in the next LTS release because
of lint W0221

fail(message=None)
Fails the currently running test.

After calling this method a test will be terminated and have its status as FAIL.

Parameters message (str) – an optional message that will be recorded in the logs

Warning message This parameter will changed name to “msg” in the next LTS release because
of lint W0221

fail_class

fail_reason

fetch_asset(name, asset_hash=None, algorithm=None, locations=None, expire=None,
find_only=False, cancel_on_missing=False)

Method o call the utils.asset in order to fetch and asset file supporting hash check, caching and multiple
locations.

Parameters

• name – the asset filename or URL

• asset_hash – asset hash (optional)

• algorithm – hash algorithm (optional, defaults to avocado.utils.asset.
DEFAULT_HASH_ALGORITHM)

• locations – list of URLs from where the asset can be fetched (optional)

• expire – time for the asset to expire

• find_only – When True, fetch_asset only looks for the asset in the cache, avoiding the
download/move action. Defaults to False.

• cancel_on_missing – whether the test should be canceled if the asset was not found
in the cache or if fetch could not add the asset to the cache. Defaults to False.

Raises OSError – when it fails to fetch the asset or file is not in the cache and can-
cel_on_missing is False.

Returns asset file local path.

400 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError

avocado Documentation, Release 88.1

filename
Returns the name of the file (path) that holds the current test

get_state()
Serialize selected attributes representing the test state

Returns a dictionary containing relevant test state data

Return type dict

log
The enhanced test log

logdir
Path to this test’s logging dir

logfile
Path to this test’s main debug.log file

name
Returns the Test ID, which includes the test name

Return type TestID

outputdir
Directory available to test writers to attach files to the results

params
Parameters of this test (AvocadoParam instance)

phase
The current phase of the test execution

Possible (string) values are: INIT, SETUP, TEST, TEARDOWN and FINISHED

report_state()
Send the current test state to the test runner process

run_avocado()
Wraps the run method, for execution inside the avocado runner.

Result Unused param, compatibility with unittest.TestCase.

runner_queue
The communication channel between test and test runner

running
Whether this test is currently being executed

set_runner_queue(runner_queue)
Override the runner_queue

status
The result status of this test

tags
The tags associated with this test

tearDown()
Hook method for deconstructing the test fixture after testing it.

teststmpdir
Returns the path of the temporary directory that will stay the same for all tests in a given Job.

10.2. Internal (Core) APIs 401

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/unittest.html#unittest.TestCase

avocado Documentation, Release 88.1

time_elapsed = -1
duration of the test execution (always recalculated from time_end - time_start

time_end = -1
(unix) time when the test finished (could be forced from test)

time_start = -1
(unix) time when the test started (could be forced from test)

timeout = None
Test timeout (the timeout from params takes precedence)

traceback

whiteboard = ''
Arbitrary string which will be stored in $logdir/whiteboard location when the test finishes.

workdir
This property returns a writable directory that exists during the entire test execution, but will be cleaned
up once the test finishes.

It can be used on tasks such as decompressing source tarballs, building software, etc.

class avocado.core.test.TestData
Bases: object

Class that adds the ability for tests to have access to data files

Writers of new test types can change the completely change the behavior and still be compatible by providing
an DATA_SOURCES attribute and a meth:get_data method.

DATA_SOURCES = ['variant', 'test', 'file']
Defines the name of data sources that this implementation makes available. Users may choose to pick data
file from a specific source.

get_data(filename, source=None, must_exist=True)
Retrieves the path to a given data file.

This implementation looks for data file in one of the sources defined by the DATA_SOURCES attribute.

Parameters

• filename (str) – the name of the data file to be retrieved

• source (str) – one of the defined data sources. If not set, all of the DATA_SOURCES
will be attempted in the order they are defined

• must_exist (bool) – whether the existence of a file is checked for

Return type str or None

class avocado.core.test.TestError(*args, **kwargs)
Bases: avocado.core.test.Test

Generic test error.

test()

class avocado.core.test.TimeOutSkipTest(*args, **kwargs)
Bases: avocado.core.test.MockingTest

Skip test due job timeout.

This test is skipped due a job timeout. It will never have a chance to execute.

402 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

avocado Documentation, Release 88.1

This class substitutes other classes. Let’s just ignore the remaining arguments and only set the ones supported
by avocado.Test

test()

10.2.36 avocado.core.test_id module

class avocado.core.test_id.TestID(uid, name, variant=None, no_digits=None)
Bases: object

Test ID construction and representation according to specification

This class wraps the representation of both Avocado’s Test ID specification and Avocado’s Test Name, which is
part of a Test ID.

Constructs a TestID instance

Parameters

• uid – unique test id (within the job)

• name – test name, as returned by the Avocado test resolver (AKA as test loader)

• variant (dict) – the variant applied to this Test ID

• no_digits – number of digits of the test uid

classmethod from_identifier(identifier)
It wraps an identifier by the TestID class.

Parameters identifier – Any identifier that is guaranteed to be unique

within the context of an avocado Job. :return: TestID with uid as string representation of identifier and
name “test”. :rtype avocado.core.test_id.TestID

str_filesystem
Test ID in a format suitable for use in file systems

The string returned should be safe to be used as a file or directory name. This file system version of the
test ID may have to shorten either the Test Name or the Variant ID.

The first component of a Test ID, the numeric unique test id, AKA “uid”, will be used as a an stable
identifier between the Test ID and the file or directory created based on the return value of this method. If
the filesystem can not even represent the “uid”, than an exception will be raised.

For Test ID “001-mytest;foo”, examples of shortened file system versions include “001-mytest;f” or “001-
myte;foo”.

Raises RuntimeError if the test ID cannot be converted to a filesystem representation.

10.2.37 avocado.core.teststatus module

Valid test statuses and whether they signal success (or failure).

avocado.core.teststatus.STATUSES = ['SKIP', 'ERROR', 'FAIL', 'WARN', 'PASS', 'INTERRUPTED', 'CANCEL']
Valid test statuses, if a returned status is not listed here, it should be handled as error condition.

avocado.core.teststatus.STATUSES_MAPPING = {'CANCEL': True, 'ERROR': False, 'FAIL': False, 'INTERRUPTED': False, 'PASS': True, 'SKIP': True, 'WARN': True}
Maps the different status strings in avocado to booleans.

10.2. Internal (Core) APIs 403

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

10.2.38 avocado.core.tree module

Tree data structure with nodes.

This tree structure (Tree drawing code) was inspired in the base tree data structure of the ETE 2 project:

http://pythonhosted.org/ete2/

A library for analysis of phylogenetics trees.

Explicit permission has been given by the copyright owner of ETE 2 Jaime Huerta-Cepas <jhcepas@gmail.com> to
take ideas/use snippets from his original base tree code and re-license under GPLv2+, given that GPLv3 and GPLv2
(used in some avocado files) are incompatible.

class avocado.core.tree.FilterSet
Bases: set

Set of filters in standardized form

add(item)
Add an element to a set.

This has no effect if the element is already present.

update(items)
Update a set with the union of itself and others.

class avocado.core.tree.TreeEnvironment
Bases: dict

TreeNode environment with values, origins and filters

copy()→ a shallow copy of D

to_text(sort=False)
Human readable representation

Parameters sort – Sorted to provide stable output

Return type str

class avocado.core.tree.TreeNode(name=”, value=None, parent=None, children=None)
Bases: object

Class for bounding nodes into tree-structure.

Parameters

• name (str) – a name for this node that will be used to define its path according to the name
of its parents

• value (dict) – a collection of keys and values that will be made into this node environ-
ment.

• parent (TreeNode) – the node that is directly above this one in the tree structure

• children (builtin.list) – the nodes that are directly beneath this one in the tree
structure

add_child(node)
Append node as child. Nodes with the same name gets merged into the existing position.

detach()
Detach this node from parent

404 Chapter 10. Test API

http://pythonhosted.org/ete2/
mailto:jhcepas@gmail.com
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

environment
Node environment (values + preceding envs)

fingerprint()
Reports string which represents the value of this node.

get_environment()
Get node environment (values + preceding envs)

get_leaves()
Get list of leaf nodes

get_node(path, create=False)

Parameters

• path – Path of the desired node (relative to this node)

• create – Create the node (and intermediary ones) when not present

Returns the node associated with this path

Raises ValueError – When path doesn’t exist and create not set

get_parents()
Get list of parent nodes

get_path(sep=’/’)
Get node path

get_root()
Get root of this tree

is_leaf
Is this a leaf node?

iter_children_preorder()
Iterate through children

iter_leaves()
Iterate through leaf nodes

iter_parents()
Iterate through parent nodes to root

merge(other)
Merges other node into this one without checking the name of the other node. New values are appended,
existing values overwritten and unaffected ones are kept. Then all other node children are added as children
(recursively they get either appended at the end or merged into existing node in the previous position.

parents
List of parent nodes

path
Node path

root
Root of this tree

set_environment_dirty()
Set the environment cache dirty. You should call this always when you query for the environment and then
change the value or structure. Otherwise you’ll get the old environment instead.

10.2. Internal (Core) APIs 405

https://docs.python.org/3/library/exceptions.html#ValueError

avocado Documentation, Release 88.1

class avocado.core.tree.TreeNodeEnvOnly(path, environment=None)
Bases: object

Minimal TreeNode-like class providing interface for AvocadoParams

Parameters

• path – Path of this node (must not end with ‘/’)

• environment – List of pair/key/value items

fingerprint()

get_environment()

get_path()

avocado.core.tree.tree_view(root, verbose=None, use_utf8=None)
Generate tree-view of the given node :param root: root node :param verbose: verbosity (0, 1, 2, 3) :param
use_utf8: Use utf-8 encoding (None=autodetect) :return: string representing this node’s tree structure

10.2.39 avocado.core.utils module

avocado.core.utils.get_avocado_git_version()

avocado.core.utils.prepend_base_path(value)

avocado.core.utils.system_wide_or_base_path(file_path)
Returns either a system wide path, or one relative to the base.

If “etc/avocado/avocado.conf” is given as input, it checks for the existence of “/etc/avocado/avocado.conf”. If
that path does not exist, then a path starting with the avocado’s Python’s distribution is returned. In that case it’d
return something like “/usr/lib/python3.9/site-packages/avocado/etc/avocado/avocado.conf”.

Parameters file_path (str) – a filesystem path that can either be absolute, or relative. If rel-
ative, the absolute equivalent (that is, by prefixing the filesystem root location) is checked for
existence. If it does not exist, a path relative to the Python’s distribution base path is returned.

Return type str

10.2.40 avocado.core.varianter module

Base classes for implementing the varianter interface

class avocado.core.varianter.FakeVariantDispatcher(state)
Bases: object

This object can act instead of VarianterDispatcher to report loaded variants.

map_method_with_return(method, *args, **kwargs)
Reports list containing one result of map_method on self

to_str(summary=0, variants=0, **kwargs)

class avocado.core.varianter.Varianter(debug=False, state=None)
Bases: object

This object takes care of producing test variants

Parameters

• debug – Store whether this instance should debug varianter

406 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

• state – Force-varianter state

Note it’s necessary to check whether variants debug is enable in order to provide the right results.

dump()
Dump the variants in loadable-state

This is lossy representation which takes all yielded variants and replaces the list of nodes with TreeN-
odeEnvOnly representations:

[{'path': path,
'variant_id': variant_id,
'variant': dump_tree_nodes(original_variant)},

{'path': [str, str, ...],
'variant_id': str,
'variant': [(str, [(str, str, object), ...])],

{'path': ['/run/*'],
'variant_id': 'cat-26c0'
'variant': [('/pig/cat',

[('/pig', 'ant', 'fox'),
('/pig/cat', 'dog', 'bee')])]}

...]

where dump_tree_nodes looks like:

[(node.path, environment_representation),
(node.path, [(path1, key1, value1), (path2, key2, value2), ...]),
('/pig/cat', [('/pig', 'ant', 'fox')])

Returns loadable Varianter representation

classmethod from_resultsdir(resultsdir)
Retrieves the job variants objects from the results directory.

This will return a list of variants since a Job can have multiple suites and the variants is per suite.

get_number_of_tests(test_suite)

Returns overall number of tests * number of variants

is_parsed()
Reports whether the varianter was already parsed

itertests()
Yields all variants of all plugins

The variant is defined as dictionary with at least:

• variant_id - name of the current variant

• variant - AvocadoParams-compatible variant (usually a list of TreeNodes but dict or simply
None are also possible values)

• paths - default path(s)

:yield variant

load(state)
Load the variants state

Current implementation supports loading from a list of loadable variants. It replaces the VariantDispatcher
with fake implementation which reports the loaded (and initialized) variants.

10.2. Internal (Core) APIs 407

avocado Documentation, Release 88.1

Parameters state – loadable Varianter representation

parse(config)
Apply options defined on the cmdline and initialize the plugins.

Parameters config (dict) – Configuration received from configuration files, command line
parser, etc.

to_str(summary=0, variants=0, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means do not display at all and maximum is up to the
plugin.

Parameters

• summary – How verbose summary to output (int)

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

avocado.core.varianter.dump_ivariants(ivariants)
Walks the iterable variants and dumps them into json-serializable object

avocado.core.varianter.generate_variant_id(variant)
Basic function to generate variant-id from a variant

Parameters variant – Avocado test variant (list of TreeNode-like objects)

Returns String compounded of ordered node names and a hash of all values.

avocado.core.varianter.is_empty_variant(variant)
Reports whether the variant contains any data

Parameters variant – Avocado test variant (list of TreeNode-like objects)

Returns True when the variant does not contain (any useful) data

avocado.core.varianter.variant_to_str(variant, verbosity, out_args=None, debug=False)
Reports human readable representation of a variant

Parameters

• variant – Valid variant (list of TreeNode-like objects)

• verbosity – Output verbosity where 0 means brief

• out_args – Extra output arguments (currently unused)

• debug – Whether the variant contains and should report debug info

Returns Human readable representation

10.2.41 avocado.core.version module

10.2.42 Module contents

avocado.core.initialize_plugin_infrastructure()

avocado.core.initialize_plugins()

avocado.core.register_core_options()

408 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

10.3 Utilities APIs

Avocado gives to you more than 40 python utility libraries (so far), that can be found under the avocado.utils.
You can use these libraries to avoid having to write necessary routines for your tests. These are very general in nature
and can help you speed up your test development.

The utility libraries may receive incompatible changes across minor versions, but these will be done in a staged fashion.
If a given change to an utility library can cause test breakage, it will first be documented and/or deprecated, and only
on the next subsequent minor version, it will actually be changed.

What this means is that upon updating to later minor versions of Avocado, you should look at the Avocado Release
Notes for changes that may impact your tests.

This is a set of utility APIs that Avocado provides as added value to test writers. It’s suppose to be generic, without
any knowledge of Avocado and reusable in different projects.

10.3.1 Subpackages

avocado.utils.external package

Submodules

avocado.utils.external.gdbmi_parser module

class avocado.utils.external.gdbmi_parser.AST(ast_type)
Bases: object

class avocado.utils.external.gdbmi_parser.GdbDynamicObject(dict_)
Bases: object

graft(dict_)

class avocado.utils.external.gdbmi_parser.GdbMiInterpreter(ast)
Bases: avocado.utils.external.spark.GenericASTTraversal

static n_list(node)

static n_record_list(node)

static n_result(node)

n_result_header(node)

static n_result_list(node)

static n_result_record(node)

n_stream_record(node)

static n_tuple(node)

static n_value_list(node)

class avocado.utils.external.gdbmi_parser.GdbMiParser
Bases: avocado.utils.external.spark.GenericASTBuilder

error(token, i=0, tokens=None)

nonterminal(token_type, args)

10.3. Utilities APIs 409

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

p_output(args)
output ::= record_list record_list ::= generic_record record_list ::= generic_record record_list
generic_record ::= result_record generic_record ::= stream_record result_record ::= result_header re-
sult_list nl result_record ::= result_header nl result_header ::= token result_type class result_header ::=
result_type class result_header ::= token = class result_header ::= = class stream_record ::= stream_type
c_string nl result_list ::= , result result_list result_list ::= , result result_list ::= , tuple result ::= variable =
value class ::= string variable ::= string value ::= const value ::= tuple value ::= list value_list ::= , value
value_list ::= , value value_list const ::= c_string tuple ::= { } tuple ::= { result } tuple ::= { result result_list
} list ::= [] list ::= [value] list ::= [value value_list] list ::= [result] list ::= [result result_list] list ::= {
value } list ::= { value value_list }

terminal(token)

class avocado.utils.external.gdbmi_parser.GdbMiRecord(record)
Bases: object

class avocado.utils.external.gdbmi_parser.GdbMiScanner(flags=0)
Bases: avocado.utils.external.gdbmi_parser.GdbMiScannerBase

t_token(s)
d+

class avocado.utils.external.gdbmi_parser.GdbMiScannerBase(flags=0)
Bases: avocado.utils.external.spark.GenericScanner

t_c_string(s)
“.*?(?<![\])”

t_default(s)
(. | n)+

t_nl(s)
n|rn

t_result_type(s)
*|+|^

t_stream_type(s)
@|&|~

t_string(s)
[w-]+

t_symbol(s)
,|{|\}|[|\]|=

t_whitespace(s)
[tfv]+

tokenize(data_input)

class avocado.utils.external.gdbmi_parser.Token(token_type, value=None)
Bases: object

class avocado.utils.external.gdbmi_parser.session
Bases: object

parse(tokens)

process(data_input)

scan(data_input)

410 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

avocado.utils.external.spark module

class avocado.utils.external.spark.GenericASTBuilder(AST, start)
Bases: avocado.utils.external.spark.GenericParser

buildASTNode(args, lhs)

nonterminal(token_type, args)

preprocess(rule, func)

static terminal(token)

class avocado.utils.external.spark.GenericASTMatcher(start, ast)
Bases: avocado.utils.external.spark.GenericParser

static foundMatch(args, func)

match(ast=None)

match_r(node)

preprocess(rule, func)

resolve(input_list)

class avocado.utils.external.spark.GenericASTTraversal(ast)
Bases: object

default(node)

postorder(node=None)

preorder(node=None)

static prune()

static typestring(node)

exception avocado.utils.external.spark.GenericASTTraversalPruningException
Bases: Exception

class avocado.utils.external.spark.GenericParser(start)
Bases: object

add(input_set, item, i=None, predecessor=None, causal=None)

addRule(doc, func, _preprocess=1)

ambiguity(rules)

augment(start)

buildTree(nt, item, tokens, k)

causal(key)

collectRules()

computeNull()

deriveEpsilon(nt)

static error(token)

finalState(tokens)

goto(state, sym)

10.3. Utilities APIs 411

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

gotoST(state, st)

gotoT(state, t)

isnullable(sym)

makeNewRules()

makeSet(token, sets, i)

makeSet_fast(token, sets, i)

makeState(state, sym)

makeState0()

parse(tokens)

predecessor(key, causal)

static preprocess(rule, func)

static resolve(input_list)

skip(hs, pos=0)

static typestring(token)

class avocado.utils.external.spark.GenericScanner(flags=0)
Bases: object

static error(s, pos)

makeRE(name)

reflect()

static t_default(s)
(. | n)+

tokenize(s)

Module contents

avocado.utils.network package

Submodules

avocado.utils.network.common module

avocado.utils.network.common.run_command(command, host, sudo=False)

avocado.utils.network.exceptions module

exception avocado.utils.network.exceptions.NWException
Bases: Exception

Base Exception Class for all exceptions

412 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception

avocado Documentation, Release 88.1

avocado.utils.network.hosts module

This module provides an useful API for hosts in a network.

class avocado.utils.network.hosts.Host(host)
Bases: object

This class represents a base Host and shouldn’t be instantiated.

Use one of the child classes (LocalHost or RemoteHost).

During the initialization of a child, all interfaces will be detected and available via interfaces attribute. This
could be accessed on LocalHost and RemoteHost instances.

So, for instance, you could have a local and a remote host:

remote = RemoteHost(host='foo', port=22,
username='foo', password='bar')

local = LocalHost()

You can iterate over the network interfaces of any host:

for i in remote.interfaces:
print(i.name, i.is_link_up())

get_default_route_interface()
Get a list of default routes interfaces

Returns list of interface names

get_interface_by_ipaddr(ipaddr)
Return an interface that has a specific ipaddr.

interfaces

class avocado.utils.network.hosts.LocalHost(host=’localhost’)
Bases: avocado.utils.network.hosts.Host

This class represents a local host and inherit from Host.

You should use this class when trying to get information about your localhost.

Example:

local = LocalHost()

class avocado.utils.network.hosts.RemoteHost(host, username, port=22, key=None, pass-
word=None)

Bases: avocado.utils.network.hosts.Host

This class represents a remote host and inherit from Host.

You must provide at least an username to establish a connection.

Example with password:

remote = RemoteHost(host=’192.168.0.1’, port=22, username=’foo’, password=’bar’)

You can also provide a key instead of a password.

10.3. Utilities APIs 413

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

avocado.utils.network.interfaces module

class avocado.utils.network.interfaces.NetworkInterface(if_name, host,
if_type=’Ethernet’)

Bases: object

This class represents a network card interface (NIC).

An “NetworkInterface” is attached to some host. This could be an instance of LocalHost or RemoteHost. If a
RemoteHost then all commands will be executed on a remote_session (host.remote_session). Otherwise will be
executed locally.

Here you will find a few methods to perform basic operations on a NIC.

add_ipaddr(ipaddr, netmask)
Add an IP Address (with netmask) to the interface.

This method will try to add a new ipaddr/netmask this interface, if fails it will raise a NWException.

You must have sudo permissions to run this method on a host.

Parameters

• ipaddr – IP Address

• netmask – Network mask

bring_down()
Shutdown the interface.

This will shutdown the interface link. Be careful, you might lost connection to the host.

You must have sudo permissions to run this method on a host.

bring_up()
“Wake-up the interface.

This will wake-up the interface link.

You must have sudo permissions to run this method on a host.

config_filename

get_hwaddr()
Get the Hardware Address (MAC) of this interface.

This method will try to get the address and if fails it will raise a NWException.

get_ipaddrs(version=4)
Get the IP addresses from a network interface.

Interfaces can hold multiple IP addresses. This method will return a list with all addresses on this interface.

Parameters version – Address Family Version (4 or 6). This must be a integer and default is
4.

Returns IP address as string.

get_link_state()
Method used to get the current link state of this interface.

This method will return ‘up’, ‘down’ or ‘unknown’, based on the network interface state. Or it will raise a
NWException if is unable to get the interface state.

414 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

get_mtu()
Return the current MTU value of this interface.

This method will try to get the current MTU value, if fails will raise a NWException.

is_admin_link_up()
Check the admin link state is up or not.

Returns True or False, True if network interface state is ‘UP’ otherwise will return False.

is_available()
Check if interface is available.

This method checks if the interface is available.

rtype: bool

is_link_up()
Check if the interface is up or not.

Returns True or False. True if admin link state and operational link state is up otherwise will
return False.

is_operational_link_up()
Check Operational link state is up or not.

Returns True or False. True if operational link state is LOWER_UP, otherwise will return False.

ping_check(peer_ip, count=2, options=None)
This method will try to ping a peer address (IPv4 or IPv6).

You should provide a IPv4 or IPV6 that would like to ping. This method will try to ping the peer and if
fails it will raise a NWException.

Parameters

• peer_ip – Peer IP address (IPv4 or IPv6)

• count – How many packets to send. Default is 2

• options – ping command options. Default is None

remove_cfg_file()
Remove any config files that is created as a part of the test

remove_ipaddr(ipaddr, netmask)
Removes an IP address from this interface.

This method will try to remove the address from this interface and if fails it will raise a NWException. Be
careful, you can lost connection.

You must have sudo permissions to run this method on a host.

remove_link()
Deletes virtual interface link.

This method will try to delete the virtual device link and the interface will no more be listed with ‘ip a’
and if fails it will raise a NWException. Be careful, you can lost connection.

You must have sudo permissions to run this method on a host.

restore_from_backup()
Revert interface file from backup.

This method checks if a backup version is available for given interface then it copies backup file to interface
file in /sysfs path.

10.3. Utilities APIs 415

avocado Documentation, Release 88.1

save(ipaddr, netmask)
Save current interface IP Address to the system configuration file.

If the ipaddr is valid (currently being used by the interface) this will try to save the current settings into
/etc/. This check is necessary to avoid inconsistency. Before save, you should add_ipaddr, first.

Currently, only RHEL, Fedora and SuSE are supported. And this will create a backup file of your current
configuration if found.

:param ipaddr : IP Address which need to configure for interface :param netmask: Network mask which is
associated to the provided IP

set_hwaddr(hwaddr)
Sets a Hardware Address (MAC Address) to the interface.

This method will try to set a new hwaddr to this interface, if fails it will raise a NWException.

You must have sudo permissions to run this method on a host.

Parameters hwaddr – Hardware Address (Mac Address)

set_mtu(mtu, timeout=30)
Sets a new MTU value to this interface.

This method will try to set a new MTU value to this interface, if fails it will raise a NWException. Also it
will wait until the Interface is up before returning or until timeout be reached.

You must have sudo permissions to run this method on a host.

Parameters

• mtu – mtu size that need to be set. This must be an int.

• timeout – how many seconds to wait until the interface is up again. Default is 30.

avocado.utils.network.ports module

Module with network related utility functions

avocado.utils.network.ports.FAMILIES = (<AddressFamily.AF_INET: 2>, <AddressFamily.AF_INET6: 10>)
Families taken into account in this class

avocado.utils.network.ports.PROTOCOLS = (<SocketKind.SOCK_STREAM: 1>, <SocketKind.SOCK_DGRAM: 2>)
Protocols taken into account in this class

class avocado.utils.network.ports.PortTracker
Bases: avocado.utils.data_structures.Borg

Tracks ports used in the host machine.

find_free_port(start_port=None)

register_port(port)

release_port(port)

avocado.utils.network.ports.find_free_port(start_port=1024, end_port=65535, ad-
dress=’localhost’, sequent=False)

Return a host free port in the range [start_port, end_port].

Parameters

• start_port – header of candidate port range, defaults to 1024

• end_port – ender of candidate port range, defaults to 65535

416 Chapter 10. Test API

avocado Documentation, Release 88.1

• address – Socket address to bind or connect

• sequent – Find port sequentially, random order if it’s False

Return type int or None if no free port found

avocado.utils.network.ports.find_free_ports(start_port, end_port, count, ad-
dress=’localhost’, sequent=False)

Return count of host free ports in the range [start_port, end_port].

Parameters

• start_port – header of candidate port range

• end_port – ender of candidate port range

• count – Initial number of ports known to be free in the range.

• address – Socket address to bind or connect

• sequent – Find port sequentially, random order if it’s False

avocado.utils.network.ports.is_port_free(port, address)
Return True if the given port is available for use.

Currently we only check for TCP/UDP connections on IPv4/6

Parameters

• port – Port number

• address – Socket address to bind or connect

Module contents

avocado.utils.software_manager package

Subpackages

avocado.utils.software_manager.backends package

Submodules

avocado.utils.software_manager.backends.apt module

class avocado.utils.software_manager.backends.apt.AptBackend
Bases: avocado.utils.software_manager.backends.dpkg.DpkgBackend

Implements the apt backend for software manager.

Set of operations for the apt package manager, commonly found on Debian and Debian based distributions, such
as Ubuntu Linux.

Initializes the base command and the debian package repository.

add_repo(repo)
Add an apt repository.

Parameters repo – Repository string. Example: ‘deb http://archive.ubuntu.com/ubuntu/ mav-
erick universe’

10.3. Utilities APIs 417

https://docs.python.org/3/library/functions.html#int
http://archive.ubuntu.com/ubuntu/

avocado Documentation, Release 88.1

build_dep(name)
Installed build-dependencies of a given package [name].

Parameters name – parameter package to install build-dependencies for.

Return True If packages are installed properly

get_source(name, path)
Download source for provided package. Returns the path with source placed.

Parameters name – parameter wildcard package to get the source for

Return path path of ready-to-build source

install(name)
Installs package [name].

Parameters name – Package name.

provides(name)
Return a list of packages that provide [name of package/file].

Parameters name – File name.

remove(name)
Remove package [name].

Parameters name – Package name.

remove_repo(repo)
Remove an apt repository.

Parameters repo – Repository string. Example: ‘deb http://archive.ubuntu.com/ubuntu/ mav-
erick universe’

upgrade(name=None)
Upgrade all packages of the system with eventual new versions.

Optionally, upgrade individual packages.

Parameters name (str) – optional parameter wildcard spec to upgrade

avocado.utils.software_manager.backends.base module

class avocado.utils.software_manager.backends.base.BaseBackend
Bases: object

This class implements all common methods among backends.

install_what_provides(path)
Installs package that provides [path].

Parameters path – Path to file.

avocado.utils.software_manager.backends.dnf module

class avocado.utils.software_manager.backends.dnf.DnfBackend
Bases: avocado.utils.software_manager.backends.yum.YumBackend

Implements the dnf backend for software manager.

DNF is the successor to yum in recent Fedora.

418 Chapter 10. Test API

http://archive.ubuntu.com/ubuntu/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Initializes the base command and the DNF package repository.

build_dep(name)
Install build-dependencies for package [name]

Parameters name – name of the package

Return True If build dependencies are installed properly

avocado.utils.software_manager.backends.dpkg module

class avocado.utils.software_manager.backends.dpkg.DpkgBackend
Bases: avocado.utils.software_manager.backends.base.BaseBackend

This class implements operations executed with the dpkg package manager.

dpkg is a lower level package manager, used by higher level managers such as apt and aptitude.

INSTALLED_OUTPUT = 'install ok installed'

PACKAGE_TYPE = 'deb'

check_installed(name)

static list_all()
List all packages available in the system.

list_files(package)
List files installed by package [package].

Parameters package – Package name.

Returns List of paths installed by package.

avocado.utils.software_manager.backends.rpm module

class avocado.utils.software_manager.backends.rpm.RpmBackend
Bases: avocado.utils.software_manager.backends.base.BaseBackend

This class implements operations executed with the rpm package manager.

rpm is a lower level package manager, used by higher level managers such as yum and zypper.

PACKAGE_TYPE = 'rpm'

SOFTWARE_COMPONENT_QRY = 'rpm %{NAME} %{VERSION} %{RELEASE} %{SIGMD5} %{ARCH}'

check_installed(name, version=None, arch=None)
Check if package [name] is installed.

Parameters

• name – Package name.

• version – Package version.

• arch – Package architecture.

find_rpm_packages(rpm_dir)
Extract product dependencies from a defined RPM directory and all its subdirectories.

Parameters rpm_dir (str) – directory to search in

Returns found RPM packages

10.3. Utilities APIs 419

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Return type [str]

list_all(software_components=True)
List all installed packages.

Parameters software_components – log in a format suitable for the SoftwareComponent
schema

static list_files(name)
List files installed on the system by package [name].

Parameters name – Package name.

perform_setup(packages, no_dependencies=False)
General RPM setup with automatic handling of dependencies based on install attempts.

Parameters packages ([str]) – the RPM packages to install in dependency-friendly order

Returns whether setup completed successfully

Return type bool

static prepare_source(spec_file, dest_path=None)
Rpmbuild the spec path and return build dir

Parameters spec_path – spec path to install

Return path build directory

static rpm_erase(package_name)
Erase an RPM package.

Parameters package_name (str) – name of the erased package

Returns whether file is erased properly

Return type bool

static rpm_install(file_path, no_dependencies=False, replace=False)
Install the rpm file [file_path] provided.

Parameters

• file_path (str) – file path of the installed package

• no_dependencies (bool) – whether to add “nodeps” flag

• replace (bool) – whether to replace existing package

Returns whether file is installed properly

Return type bool

static rpm_verify(package_name)
Verify an RPM package with an installed one.

Parameters package_name (str) – name of the verified package

Returns whether the verification was successful

Return type bool

420 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

avocado Documentation, Release 88.1

avocado.utils.software_manager.backends.yum module

class avocado.utils.software_manager.backends.yum.YumBackend(cmd=’yum’)
Bases: avocado.utils.software_manager.backends.rpm.RpmBackend

Implements the yum backend for software manager.

Set of operations for the yum package manager, commonly found on Yellow Dog Linux and Red Hat based
distributions, such as Fedora and Red Hat Enterprise Linux.

Initializes the base command and the yum package repository.

REPO_FILE_PATH = '/etc/yum.repos.d/avocado-managed.repo'
Path to the repository managed by Avocado

add_repo(url)
Adds package repository located on [url].

Parameters url – Universal Resource Locator of the repository.

static build_dep(name)
Install build-dependencies for package [name]

Parameters name – name of the package

Return True If build dependencies are installed properly

get_source(name, dest_path)
Downloads the source package and prepares it in the given dest_path to be ready to build.

Parameters

• name – name of the package

• dest_path – destination_path

Return final_dir path of ready-to-build directory

install(name)
Installs package [name]. Handles local installs.

provides(name)
Returns a list of packages that provides a given capability.

Parameters name – Capability name (eg, ‘foo’).

remove(name)
Removes package [name].

Parameters name – Package name (eg. ‘ipython’).

remove_repo(url)
Removes package repository located on [url].

Parameters url – Universal Resource Locator of the repository.

repo_config_parser

upgrade(name=None)
Upgrade all available packages.

Optionally, upgrade individual packages.

Parameters name (str) – optional parameter wildcard spec to upgrade

yum_base

10.3. Utilities APIs 421

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.utils.software_manager.backends.zypper module

class avocado.utils.software_manager.backends.zypper.ZypperBackend
Bases: avocado.utils.software_manager.backends.rpm.RpmBackend

Implements the zypper backend for software manager.

Set of operations for the zypper package manager, found on SUSE Linux.

Initializes the base command and the yum package repository.

add_repo(url)
Adds repository [url].

Parameters url – URL for the package repository.

build_dep(name)
Return True if build-dependencies are installed for provided package

Keyword argument: name – name of the package

get_source(name, dest_path)
Downloads the source package and prepares it in the given dest_path to be ready to build

Parameters

• name – name of the package

• dest_path – destination_path

Return final_dir path of ready-to-build directory

install(name)
Installs package [name]. Handles local installs.

Parameters name – Package Name.

provides(name)
Searches for what provides a given file.

Parameters name – File path.

remove(name)
Removes package [name].

remove_repo(url)
Removes repository [url].

Parameters url – URL for the package repository.

upgrade(name=None)
Upgrades all packages of the system.

Optionally, upgrade individual packages.

Parameters name (str) – Optional parameter wildcard spec to upgrade

Module contents

Submodules

422 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.utils.software_manager.distro_packages module

avocado.utils.software_manager.distro_packages.install_distro_packages(distro_pkg_map,
in-
ter-
ac-
tive=False)

Installs packages for the currently running distribution

This utility function checks if the currently running distro is a key in the distro_pkg_map dictionary, and if there
is a list of packages set as its value.

If these conditions match, the packages will be installed using the software manager interface, thus the native
packaging system if the currently running distro.

Parameters distro_pkg_map (dict) – mapping of distro name, as returned by
utils.get_os_vendor(), to a list of package names

Returns True if any packages were actually installed, False otherwise

avocado.utils.software_manager.inspector module

avocado.utils.software_manager.inspector.SUPPORTED_PACKAGE_MANAGERS = {'apt-get': <class 'avocado.utils.software_manager.backends.apt.AptBackend'>, 'dnf': <class 'avocado.utils.software_manager.backends.dnf.DnfBackend'>, 'yum': <class 'avocado.utils.software_manager.backends.yum.YumBackend'>, 'zypper': <class 'avocado.utils.software_manager.backends.zypper.ZypperBackend'>}
Mapping of package manager name to implementation class.

class avocado.utils.software_manager.inspector.SystemInspector
Bases: object

System inspector class.

This may grow up to include more complete reports of operating system and machine properties.

Probe system, and save information for future reference.

get_package_management()
Determine the supported package management systems present on the system. If more than one package
management system installed, try to find the best supported system.

avocado.utils.software_manager.main module

avocado.utils.software_manager.main.main()

avocado.utils.software_manager.manager module

class avocado.utils.software_manager.manager.SoftwareManager
Bases: object

Package management abstraction layer.

It supports a set of common package operations for testing purposes, and it uses the concept of a backend, a
helper class that implements the set of operations of a given package management tool.

Lazily instantiate the object

is_capable()
Checks if environment is capable by initializing the backend.

10.3. Utilities APIs 423

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Module contents

Software package management library.

This is an abstraction layer on top of the existing distributions high level package managers. It supports package
operations useful for testing purposes, and multiple high level package managers (here called backends).

avocado.utils.software_manager.install_distro_packages(distro_pkg_map, interac-
tive=False)

Installs packages for the currently running distribution

This utility function checks if the currently running distro is a key in the distro_pkg_map dictionary, and if there
is a list of packages set as its value.

If these conditions match, the packages will be installed using the software manager interface, thus the native
packaging system if the currently running distro.

Parameters distro_pkg_map (dict) – mapping of distro name, as returned by
utils.get_os_vendor(), to a list of package names

Returns True if any packages were actually installed, False otherwise

class avocado.utils.software_manager.SoftwareManager
Bases: object

Package management abstraction layer.

It supports a set of common package operations for testing purposes, and it uses the concept of a backend, a
helper class that implements the set of operations of a given package management tool.

Lazily instantiate the object

is_capable()
Checks if environment is capable by initializing the backend.

10.3.2 Submodules

10.3.3 avocado.utils.archive module

Module to help extract and create compressed archives.

exception avocado.utils.archive.ArchiveException
Bases: Exception

Base exception for all archive errors.

class avocado.utils.archive.ArchiveFile(filename, mode=’r’)
Bases: object

Class that represents an Archive file.

Archives are ZIP files or Tarballs.

Creates an instance of ArchiveFile.

Parameters

• filename – the archive file name.

• mode – file mode, r read, w write.

add(filename, arcname=None)
Add file to the archive.

424 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Parameters

• filename – file to archive.

• arcname – alternative name for the file in the archive.

close()
Close archive.

extract(path=’.’)
Extract all files from the archive.

Parameters path – destination path.

Returns the first member of the archive, a file or directory or None if the archive is empty

list()
List files to the standard output.

classmethod open(filename, mode=’r’)
Creates an instance of ArchiveFile.

Parameters

• filename – the archive file name.

• mode – file mode, r read, w write.

avocado.utils.archive.GZIP_MAGIC = b'\x1f\x8b'
The first two bytes that all gzip files start with

avocado.utils.archive.compress(filename, path)
Compress files in an archive.

Parameters

• filename – archive file name.

• path – origin directory path to files to compress. No individual files allowed.

avocado.utils.archive.create(filename, path)
Compress files in an archive.

Parameters

• filename – archive file name.

• path – origin directory path to files to compress. No individual files allowed.

avocado.utils.archive.extract(filename, path)
Extract files from an archive.

Parameters

• filename – archive file name.

• path – destination path to extract to.

avocado.utils.archive.gzip_uncompress(path, output_path)
Uncompress a gzipped file at path, to either a file or dir at output_path

avocado.utils.archive.is_archive(filename)
Test if a given file is an archive.

Parameters filename – file to test.

Returns True if it is an archive.

10.3. Utilities APIs 425

avocado Documentation, Release 88.1

avocado.utils.archive.is_gzip_file(path)
Checks if file given by path has contents that suggests gzip file

avocado.utils.archive.is_lzma_file(path)
Checks if file given by path has contents that suggests lzma file

avocado.utils.archive.lzma_uncompress(path, output_path=None, force=False)
Extracts a XZ compressed file to the same directory.

avocado.utils.archive.uncompress(filename, path)
Extract files from an archive.

Parameters

• filename – archive file name.

• path – destination path to extract to.

10.3.4 avocado.utils.asset module

Asset fetcher from multiple locations

class avocado.utils.asset.Asset(name=None, asset_hash=None, algorithm=None, lo-
cations=None, cache_dirs=None, expire=None, meta-
data=None)

Bases: object

Try to fetch/verify an asset file from multiple locations.

Initialize the Asset() class.

Parameters

• name – the asset filename. url is also supported. Default is ‘’.

• asset_hash – asset hash

• algorithm – hash algorithm

• locations – location(s) where the asset can be fetched from

• cache_dirs – list of cache directories

• expire – time in seconds for the asset to expire

• metadata – metadata which will be saved inside metadata file

asset_name

fetch()
Fetches the asset. First tries to find the asset on the provided cache_dirs list. Then tries to download the
asset from the locations list provided.

Raises OSError – When it fails to fetch the asset

Returns The path for the file on the cache directory.

Return type str

find_asset_file()
Search for the asset file in each one of the cache locations

Returns asset path, if it exists in the cache

Return type str

426 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Raises OSError

classmethod get_all_assets(cache_dirs, sort=True)
Returns all assets stored in all cache dirs.

classmethod get_asset_by_name(name, cache_dirs, expire=None, asset_hash=None)
This method will return a cached asset based on name if exists.

You don’t have to instantiate an object of Asset class. Just use this method.

To be improved soon: cache_dirs should be not necessary.

Parameters

• name – the asset filename used during registration.

• cache_dirs – list of directories to use during the search.

• expire – time in seconds for the asset to expire. Expired assets will not be returned.

• asset_hash – asset hash.

Returns asset path, if it exists in the cache.

Return type str

Raises OSError

classmethod get_assets_by_size(size_filter, cache_dirs)
Return a list of all assets in cache based on its size in MB.

Parameters size_filter – a string with a filter (comparison operator +

value). Ex “>20”, “<=200”. Supported operators: ==, <, >, <=, >=. :param cache_dirs: list of directories
to use during the search.

classmethod get_assets_unused_for_days(days, cache_dirs)
Return a list of all assets in cache based on the access time.

This will check if the file’s data wasn’t modified N days ago.

Parameters days – how many days ago will be the threshold. Ex: “10” will

return the assets files that was not accessed during the last 10 days. :param cache_dirs: list of directories
to use during the search.

get_metadata()
Returns metadata of the asset if it exists or None.

Returns metadata

Return type dict or None

name_scheme
This property will return the scheme part of the name if is an URL.

Otherwise, will return None.

name_url
This property will return the full url of the name if is an URL.

Otherwise, will return None.

static parse_name(name)
Returns a ParseResult object for the given name.

parsed_name
Returns a ParseResult object for the currently set name.

10.3. Utilities APIs 427

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

avocado Documentation, Release 88.1

classmethod read_hash_from_file(filename)
Read the CHECKSUM file and return the hash.

This method raises a FileNotFoundError if file is missing and assumes that filename is the CHECKSUM
filename.

Return type list with algorithm and hash

relative_dir

classmethod remove_asset_by_path(asset_path)
Remove an asset and its checksum.

To be fixed: Due the current implementation limitation, this method will not remove the metadata to avoid
removing other asset metadata.

Parameters asset_path – full path of the asset file.

classmethod remove_assets_by_overall_limit(limit, cache_dirs)
This will remove assets based on overall limit.

We are going to sort the assets based on the access time first. For instance it may be the case that a GitLab
cache limit is 4 GiB, in that case we can sort by last access, and remove all that exceeds 4 GiB (that is,
keep the last accessed 4 GiB worth of cached files).

Note: during the usage of this method, you should use bytes as limit.

Parameters

• limit – a integer limit in bytes.

• cache_dirs – list of directories to use during the search.

classmethod remove_assets_by_size(size_filter, cache_dirs)

classmethod remove_assets_by_unused_for_days(days, cache_dirs)

urls
Complete list of locations including name if is an URL.

avocado.utils.asset.DEFAULT_HASH_ALGORITHM = 'sha1'
The default hash algorithm to use on asset cache operations

exception avocado.utils.asset.UnsupportedProtocolError
Bases: OSError

Signals that the protocol of the asset URL is not supported

10.3.5 avocado.utils.astring module

Operations with strings (conversion and sanitation).

The unusual name aims to avoid causing name clashes with the stdlib module string. Even with the dot notation,
people may try to do things like

import string . . . from avocado.utils import string

And not notice until their code starts failing.

avocado.utils.astring.ENCODING = 'UTF-8'
On import evaluated value representing the system encoding based on system locales using locale.
getpreferredencoding(). Use this value wisely as some files are dumped in different encoding.

avocado.utils.astring.FS_UNSAFE_CHARS = '<>:"/\\|?*;'
String containing all fs-unfriendly chars (Windows-fat/Linux-ext3)

428 Chapter 10. Test API

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/locale.html#locale.getpreferredencoding
https://docs.python.org/3/library/locale.html#locale.getpreferredencoding

avocado Documentation, Release 88.1

avocado.utils.astring.bitlist_to_string(data)
Transform from bit list to ASCII string.

Parameters data – Bit list to be transformed

avocado.utils.astring.is_bytes(data)
Checks if the data given is a sequence of bytes

And not a “text” type, that can be of multi-byte characters. Also, this does NOT mean a bytearray type.

Parameters data – the instance to be checked if it falls under the definition of an array of bytes.

avocado.utils.astring.is_text(data)
Checks if the data given is a suitable for holding text

That is, if it can hold text that requires more than one byte for each character.

avocado.utils.astring.iter_tabular_output(matrix, header=None, strip=False)
Generator for a pretty, aligned string representation of a nxm matrix.

This representation can be used to print any tabular data, such as database results. It works by scanning the
lengths of each element in each column, and determining the format string dynamically.

Parameters

• matrix – Matrix representation (list with n rows of m elements).

• header – Optional tuple or list with header elements to be displayed.

• strip – Optionally remove trailing whitespace from each row.

avocado.utils.astring.shell_escape(command)
Escape special characters from a command so that it can be passed as a double quoted (” “) string in a (ba)sh
command.

Parameters command – the command string to escape.

Returns The escaped command string. The required englobing double quotes are NOT added and
so should be added at some point by the caller.

See also: http://www.tldp.org/LDP/abs/html/escapingsection.html

avocado.utils.astring.string_safe_encode(input_str)
People tend to mix unicode streams with encoded strings. This function tries to replace any input with a valid
utf-8 encoded ascii stream.

On Python 3, it’s a terrible idea to try to mess with encoding, so this function is limited to converting other types
into strings, such as numeric values that are often the members of a matrix.

Parameters input_str – possibly unsafe string or other object that can be turned into a string

Returns a utf-8 encoded ascii stream

avocado.utils.astring.string_to_bitlist(data)
Transform from ASCII string to bit list.

Parameters data – String to be transformed

avocado.utils.astring.string_to_safe_path(input_str)
Convert string to a valid file/dir name.

This takes a string that may contain characters that are not allowed on FAT (Windows) filesystems and/or ext3
(Linux) filesystems, and replaces them for safe (boring) underlines.

It limits the size of the path to be under 255 chars, and make hidden paths (starting with “.”) non-hidden by
making them start with “_”.

10.3. Utilities APIs 429

http://www.tldp.org/LDP/abs/html/escapingsection.html

avocado Documentation, Release 88.1

Parameters input_str – String to be converted

Returns String which is safe to pass as a file/dir name (on recent fs)

avocado.utils.astring.strip_console_codes(output, custom_codes=None)
Remove the Linux console escape and control sequences from the console output. Make the output readable
and can be used for result check. Now only remove some basic console codes using during boot up.

Parameters

• output (string) – The output from Linux console

• custom_codes – The codes added to the console codes which is not covered in the default
codes

Returns the string without any special codes

Return type string

avocado.utils.astring.tabular_output(matrix, header=None, strip=False)
Pretty, aligned string representation of a nxm matrix.

This representation can be used to print any tabular data, such as database results. It works by scanning the
lengths of each element in each column, and determining the format string dynamically.

Parameters

• matrix – Matrix representation (list with n rows of m elements).

• header – Optional tuple or list with header elements to be displayed.

• strip – Optionally remove trailing whitespace from each row.

Returns String with the tabular output, lines separated by unix line feeds.

Return type str

avocado.utils.astring.to_text(data, encoding=’UTF-8’, errors=’strict’)
Convert anything to text decoded text

When the data is bytes, it’s decoded. When it’s not of string types it’s re-formatted into text and returned.
Otherwise (it’s string) it’s returned unchanged.

Parameters

• data (either bytes or other data that will be returned
unchanged) – data to be transformed into text

• encoding – encoding of the data (only used when decoding is necessary)

• errors – how to handle encode/decode errors, see: https://docs.python.org/3/library/
codecs.html#error-handlers

10.3.6 avocado.utils.aurl module

URL related functions.

The strange name is to avoid accidental naming collisions in code.

avocado.utils.aurl.is_url(path)
Return True if path looks like an URL.

Parameters path – path to check.

Return type Boolean.

430 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/codecs.html#error-handlers
https://docs.python.org/3/library/codecs.html#error-handlers

avocado Documentation, Release 88.1

10.3.7 avocado.utils.build module

avocado.utils.build.configure(path, configure=None)
Configures the source tree for a subsequent build

Most source directories coming from official released tarballs will have a “configure” script, but source code
snapshots may have “autogen.sh” instead (which usually creates and runs a “configure” script itself). This
function will attempt to run the first one found (if a configure script name not given explicitly).

Parameters configure (str or None) – the name of the configure script (None for trying to
find one automatically)

Returns the configure script exit status, or None if no script was found and executed

avocado.utils.build.make(path, make=’make’, env=None, extra_args=”, ignore_status=None, al-
low_output_check=None, process_kwargs=None)

Run make, adding MAKEOPTS to the list of options.

Parameters

• make – what make command name to use.

• env – dictionary with environment variables to be set before calling make (e.g.: CFLAGS).

• extra – extra command line arguments to pass to make.

• allow_output_check (str) – Whether to log the command stream outputs (stdout and
stderr) of the make process in the test stream files. Valid values: ‘stdout’, for allowing only
standard output, ‘stderr’, to allow only standard error, ‘all’, to allow both standard output
and error, and ‘none’, to allow none to be recorded (default). The default here is ‘none’,
because usually we don’t want to use the compilation output as a reference in tests.

Returns exit status of the make process

avocado.utils.build.run_make(path, make=’make’, extra_args=”, process_kwargs=None)
Run make, adding MAKEOPTS to the list of options.

Parameters

• path – directory from where to run make

• make – what make command name to use.

• extra_args – extra command line arguments to pass to make.

• process_kwargs – Additional key word arguments to the underlying process running
the make.

Returns the make command result object

10.3.8 avocado.utils.cloudinit module

cloudinit configuration support

This module can be easily used with avocado.utils.vmimage, to configure operating system images via the
cloudinit tooling.

Please, keep in mind that if you would like to create/write in ISO images, you need pycdlib module installed in your
environment.

see http://cloudinit.readthedocs.io.

10.3. Utilities APIs 431

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
http://cloudinit.readthedocs.io

avocado Documentation, Release 88.1

avocado.utils.cloudinit.AUTHORIZED_KEY_TEMPLATE = '\nssh_authorized_keys:\n - {0}\n'
An authorized key configuration for the default user

Positional template variables are: ssh_authorized_keys

avocado.utils.cloudinit.METADATA_TEMPLATE = 'instance-id: {0}\nhostname: {1}\n'
The meta-data file template

Positional template variables are: instance-id, hostname

avocado.utils.cloudinit.PASSWORD_TEMPLATE = '\npassword: {0}\nchpasswd:\n expire: False\n'
A username configuration as per cloudinit/config/cc_set_passwords.py

Positional template variables are: password

avocado.utils.cloudinit.PHONE_HOME_TEMPLATE = '\nphone_home:\n url: http://{0}:{1}/$INSTANCE_ID/\n post: [instance_id]\n'
A phone home configuration that will post just the instance id

Positional template variables are: address, port

class avocado.utils.cloudinit.PhoneHomeServer(address, instance_id)
Bases: http.server.HTTPServer

Implements the phone home HTTP server.

Wait the phone home from a given instance.

Initialize the server.

Parameters

• address (tuple) – a hostname or IP address and port, in the same format given to socket
and other servers

• instance_id (str) – the identification for the instance that should be calling back, and
the condition for the wait to end

class avocado.utils.cloudinit.PhoneHomeServerHandler(request, client_address,
server)

Bases: http.server.BaseHTTPRequestHandler

Handles HTTP requests to the phone home server.

do_POST()
Handles an HTTP POST request.

Respond with status 200 if the instance phoned back.

log_message(format_, *args)
Logs an arbitrary message.

Note It currently disables any message logging.

avocado.utils.cloudinit.USERDATA_HEADER = '#cloud-config'
The header expected to be found at the beginning of the user-data file

avocado.utils.cloudinit.USERNAME_TEMPLATE = '\nssh_pwauth: True\n\nsystem_info:\n default_user:\n name: {0}\n'
A username configuration as per cloudinit/config/cc_set_passwords.py

Positional template variables : username

avocado.utils.cloudinit.iso(output_path, instance_id, username=None, password=None,
phone_home_host=None, phone_home_port=None, autho-
rized_key=None)

Generates an ISO image with cloudinit configuration

432 Chapter 10. Test API

https://docs.python.org/3/library/http.server.html#http.server.HTTPServer
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/http.server.html#http.server.BaseHTTPRequestHandler

avocado Documentation, Release 88.1

The content always include the cloudinit metadata, and optionally the userdata content. On the userdata file, it
may contain a username/password section (if both parameters are given) and/or a phone home section (if both
host and port are given).

Parameters

• output_path – the location of the resulting (to be created) ISO image containing the
cloudinit configuration

• instance_id – the ID of the cloud instance, a form of identification for the dynamically
created executing instances

• username – the username to be used when logging interactively on the instance

• password – the password to be used along with username when authenticating with the
login services on the instance

• phone_home_host – the address of the host the instance should contact once it has fin-
ished booting

• phone_home_port – the port acting as an HTTP phone home server that the instance
should contact once it has finished booting

• authorized_key (str) – a SSH public key to be added as an authorized key for the
default user, similar to “ssh-rsa . . . ”

Raises RuntimeError if the system can not create ISO images. On such a case, user is expected to
install supporting packages, such as pycdlib.

avocado.utils.cloudinit.wait_for_phone_home(address, instance_id)
Sets up a phone home server and waits for the given instance to call

This is a shorthand for setting up a server that will keep handling requests, until it has heard from the specific
instance requested.

Parameters

• address (tuple) – a hostname or IP address and port, in the same format given to socket
and other servers

• instance_id (str) – the identification for the instance that should be calling back, and
the condition for the wait to end

10.3.9 avocado.utils.configure_network module

Configure network when interface name and interface IP is available.

exception avocado.utils.configure_network.NWException
Bases: Exception

Base Exception Class for all exceptions

class avocado.utils.configure_network.PeerInfo(host, port=None, peer_user=None,
key=None, peer_password=None)

Bases: object

class for peer function

create a object for accesses remote machine

get_peer_interface(peer_ip)
get peer interface from peer ip

10.3. Utilities APIs 433

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

set_mtu_peer(peer_interface, mtu)
Set MTU size in peer interface

avocado.utils.configure_network.is_interface_link_up(interface)
Checks if the interface link is up :param interface: name of the interface :return: True if the interface’s link
comes up, False otherwise.

avocado.utils.configure_network.ping_check(interface, peer_ip, count, option=None,
flood=False)

Checks if the ping to peer works.

avocado.utils.configure_network.set_ip(ipaddr, netmask, interface, interface_type=None)
Gets interface name, IP, subnet mask and creates interface file based on distro.

avocado.utils.configure_network.set_mtu_host(interface, mtu)
Set MTU size in host interface

avocado.utils.configure_network.unset_ip(interface)
Gets interface name unassigns the IP to the interface

10.3.10 avocado.utils.cpu module

Get information from the current’s machine CPU.

exception avocado.utils.cpu.FamilyException
Bases: Exception

avocado.utils.cpu.VENDORS_MAP = {'amd': (b'AMD',), 'ibm': (b'POWER\\d', b'IBM/S390'), 'intel': (b'GenuineIntel',)}
Map vendor’s name with expected string in /proc/cpuinfo.

avocado.utils.cpu.cpu_has_flags(flags)
Check if a list of flags are available on current CPU info.

Parameters flags (list of str) – A list of cpu flags that must exists on the current CPU.

Returns True if all the flags were found or False if not

Return type bool

avocado.utils.cpu.cpu_online_list(*args, **kwargs)

avocado.utils.cpu.get_arch()
Work out which CPU architecture we’re running on.

avocado.utils.cpu.get_cpu_arch(*args, **kwargs)

avocado.utils.cpu.get_cpu_vendor_name(*args, **kwargs)

avocado.utils.cpu.get_cpufreq_governor(*args, **kwargs)

avocado.utils.cpu.get_cpuidle_state(*args, **kwargs)

avocado.utils.cpu.get_family()
Get family name of the cpu like Broadwell, Haswell, power8, power9.

avocado.utils.cpu.get_freq_governor()
Get current cpu frequency governor.

avocado.utils.cpu.get_idle_state()
Get current cpu idle values.

Returns Dict of cpuidle states values for all cpus

Return type dict

434 Chapter 10. Test API

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

avocado.utils.cpu.get_pid_cpus(pid)
Get all the cpus being used by the process according to pid informed.

Parameters pid (str) – process id

Returns A list include all cpus the process is using

Return type list

avocado.utils.cpu.get_vendor()
Get the current cpu vendor name.

Returns a key of VENDORS_MAP (e.g. ‘intel’) depending on the current CPU architecture. Return
None if it was unable to determine the vendor name.

Return type str or None

avocado.utils.cpu.get_version()
Get cpu version.

Returns cpu version of given machine e.g.:- ‘i5-5300U’ for Intel and ‘POWER9’ for IBM machines
in case of unknown/unsupported machines, return an empty string.

Return type str

avocado.utils.cpu.offline(cpu)
Offline given CPU.

avocado.utils.cpu.online(cpu)
Online given CPU.

avocado.utils.cpu.online_count()
Return Number of Online cpus in the system.

avocado.utils.cpu.online_cpus_count(*args, **kwargs)

avocado.utils.cpu.online_list()
Reports a list of indexes of the online cpus.

avocado.utils.cpu.set_cpufreq_governor(*args, **kwargs)

avocado.utils.cpu.set_cpuidle_state(*args, **kwargs)

avocado.utils.cpu.set_freq_governor(governor=’random’)
To change the given cpu frequency governor.

Parameters governor (str) – frequency governor profile name whereas random is default option
to choose random profile among available ones.

avocado.utils.cpu.set_idle_state(state_number=’all’, disable=True, setstate=None)
Set/Reset cpu idle states for all cpus.

Parameters

• state_number (str) – cpuidle state number, default: all all states

• disable (bool) – whether to disable/enable given cpu idle state, default is to disable.

• setstate (dict) – cpuidle state value, output of get_idle_state()

avocado.utils.cpu.total_count()
Return Number of Total cpus in the system including offline cpus.

avocado.utils.cpu.total_cpus_count(*args, **kwargs)

10.3. Utilities APIs 435

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

10.3.11 avocado.utils.crypto module

avocado.utils.crypto.hash_file(filename, size=None, algorithm=’md5’)
Calculate the hash value of filename.

If size is not None, limit to first size bytes. Throw exception if something is wrong with filename. Can be also
implemented with bash one-liner (assuming size%1024==0):

dd if=filename bs=1024 count=size/1024 | sha1sum -

Parameters

• filename – Path of the file that will have its hash calculated.

• algorithm – Method used to calculate the hash (default is md5).

• size – If provided, hash only the first size bytes of the file.

Returns Hash of the file, if something goes wrong, return None.

10.3.12 avocado.utils.data_factory module

Generate data useful for the avocado framework and tests themselves.

avocado.utils.data_factory.generate_random_string(length, ignore=’!"#$%&\’()*+, -
./:;<=>?@[\\]^_‘{|}~’, convert=”)

Generate a random string using alphanumeric characters.

Parameters

• length (int) – Length of the string that will be generated.

• ignore (str) – Characters that will not include in generated string.

• convert (str) – Characters that need to be escaped (prepend “”).

Returns The generated random string.

avocado.utils.data_factory.make_dir_and_populate(basedir=’/tmp’)
Create a directory in basedir and populate with a number of files.

The files just have random text contents.

Parameters basedir (str) – Base directory where directory should be generated.

Returns Path of the dir created and populated.

Return type str

10.3.13 avocado.utils.data_structures module

This module contains handy classes that can be used inside avocado core code or plugins.

class avocado.utils.data_structures.Borg
Bases: object

Multiple instances of this class will share the same state.

This is considered a better design pattern in Python than more popular patterns, such as the Singleton. Inspired
by Alex Martelli’s article mentioned below:

See http://www.aleax.it/5ep.html

436 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
http://www.aleax.it/5ep.html

avocado Documentation, Release 88.1

class avocado.utils.data_structures.CallbackRegister(name, log)
Bases: object

Registers pickable functions to be executed later.

Parameters name – Human readable identifier of this register

register(func, args, kwargs, once=False)
Register function/args to be called on self.destroy() :param func: Pickable function :param args: Pick-
able positional arguments :param kwargs: Pickable keyword arguments :param once: Add unique
(func,args,kwargs) combination only once

run()
Call all registered function

unregister(func, args, kwargs)
Unregister (func,args,kwargs) combination :param func: Pickable function :param args: Pickable posi-
tional arguments :param kwargs: Pickable keyword arguments

class avocado.utils.data_structures.DataSize(data)
Bases: object

Data Size object with builtin unit-converted attributes.

Parameters data (str) – Data size plus optional unit string. i.e. ‘10m’. No unit string means the
data size is in bytes.

MULTIPLIERS = {'b': 1, 'g': 1073741824, 'k': 1024, 'm': 1048576, 't': 1099511627776}

b

g

k

m

t

unit

value

exception avocado.utils.data_structures.InvalidDataSize
Bases: ValueError

Signals that the value given to DataSize is not valid.

class avocado.utils.data_structures.LazyProperty(f_get)
Bases: object

Lazily instantiated property.

Use this decorator when you want to set a property that will only be evaluated the first time it’s accessed.
Inspired by the discussion in the Stack Overflow thread below:

See http://stackoverflow.com/questions/15226721/

avocado.utils.data_structures.comma_separated_ranges_to_list(string)
Provides a list from comma separated ranges

Parameters string – string of comma separated range

Return list list of integer values in comma separated range

10.3. Utilities APIs 437

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
http://stackoverflow.com/questions/15226721/

avocado Documentation, Release 88.1

avocado.utils.data_structures.compare_matrices(matrix1, matrix2, threshold=0.05)
Compare 2 matrices nxm and return a matrix nxm with comparison data and stats. When the first columns
match, they are considered as header and included in the results intact.

Parameters

• matrix1 – Reference Matrix of floats; first column could be header.

• matrix2 – Matrix that will be compared; first column could be header

• threshold – Any difference greater than this percent threshold will be reported.

Returns Matrix with the difference in comparison, number of improvements, number of regressions,
total number of comparisons.

avocado.utils.data_structures.geometric_mean(values)
Evaluates the geometric mean for a list of numeric values. This implementation is slower but allows unlimited
number of values. :param values: List with values. :return: Single value representing the geometric mean for
the list values. :see: http://en.wikipedia.org/wiki/Geometric_mean

avocado.utils.data_structures.ordered_list_unique(object_list)
Returns an unique list of objects, with their original order preserved

avocado.utils.data_structures.time_to_seconds(time)
Convert time in minutes, hours and days to seconds. :param time: Time, optionally including the unit (i.e. ‘10d’)

10.3.14 avocado.utils.datadrainer module

data drainer

This module provides utility classes for draining data and dispatching it to different destinations. This is intended to be
used concurrently with other code, usually test code producing the output to be drained/processed. A thread is started
and maintained on behalf of the user.

class avocado.utils.datadrainer.BaseDrainer(source, stop_check=None, name=None)
Bases: abc.ABC

Base drainer, doesn’t provide complete functionality to be useful.

Parameters

• source – where to read data from, this is intentionally abstract

• stop_check (function) – callable that should determine if the drainer should quit. If
None is given, it will never stop.

• name (str) – instance name of the drainer, used for describing the name of the thread
maintained by this instance

static data_available()
Checks if source appears to have data to be drained

name = 'avocado.utils.datadrainer.BaseDrainer'

read()
Abstract method supposed to read from the data source

start()
Starts a thread to do the data draining

wait()
Waits on the thread completion

438 Chapter 10. Test API

http://en.wikipedia.org/wiki/Geometric_mean
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

write(data)
Abstract method supposed to write the read data to its destination

class avocado.utils.datadrainer.BufferFDDrainer(source, stop_check=None,
name=None)

Bases: avocado.utils.datadrainer.FDDrainer

Drains data from a file descriptor and stores it in an internal buffer

data
Returns the buffer data, as bytes

name = 'avocado.utils.datadrainer.BufferFDDrainer'

write(data)
Abstract method supposed to write the read data to its destination

class avocado.utils.datadrainer.FDDrainer(source, stop_check=None, name=None)
Bases: avocado.utils.datadrainer.BaseDrainer

Drainer whose source is a file descriptor

This drainer uses select to efficiently wait for data to be available on a file descriptor. If the file descriptor is
closed, the drainer responds by shutting itself down.

This drainer doesn’t provide a write() implementation, and is consequently not a complete implementation users
can pick and use.

Parameters

• source – where to read data from, this is intentionally abstract

• stop_check (function) – callable that should determine if the drainer should quit. If
None is given, it will never stop.

• name (str) – instance name of the drainer, used for describing the name of the thread
maintained by this instance

data_available()
Checks if source appears to have data to be drained

name = 'avocado.utils.datadrainer.FDDrainer'

read()
Abstract method supposed to read from the data source

write(data)
Abstract method supposed to write the read data to its destination

class avocado.utils.datadrainer.LineLogger(source, stop_check=None, name=None, log-
ger=None)

Bases: avocado.utils.datadrainer.FDDrainer

name = 'avocado.utils.datadrainer.LineLogger'

write(data)
Abstract method supposed to write the read data to its destination

10.3.15 avocado.utils.debug module

This file contains tools for (not only) Avocado developers.

10.3. Utilities APIs 439

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.utils.debug.log_calls(length=None, cls_name=None)
Use this as decorator to log the function call altogether with arguments. :param length: Max message length
:param cls_name: Optional class name prefix

avocado.utils.debug.log_calls_class(length=None)
Use this as decorator to log the function methods’ calls. :param length: Max message length

avocado.utils.debug.measure_duration(func)
Use this as decorator to measure duration of the function execution. The output is “Function $name: ($cur-
rent_duration, $accumulated_duration)”

10.3.16 avocado.utils.diff_validator module

Diff validator: Utility for testing file changes

Some typical use of this utility would be:

>>> import diff_validator
>>> change = diff_validator.Change()
>>> change.add_validated_files(["/etc/somerc"])
>>> change.append_expected_add("/etc/somerc", "this is a new line")
>>> change.append_expected_remove("/etc/somerc", "this line is removed")
>>> diff_validator.make_temp_file_copies(change.get_target_files())

After making changes through some in-test operation:

>>> changes = diff_validator.extract_changes(change.get_target_files())
>>> change_success = diff_validator.assert_change(changes, change.files_dict)

If test fails due to invalid change on the system:

>>> if not change_success:
>>> changes = diff_validator.assert_change_dict(changes, change.files_dict)
>>> raise DiffValidationError("Change is different than expected:
%s" % diff_validator.create_diff_report(changes))
>>> else:
>>> logging.info("Change made successfully")
>>> diff_validator.del_temp_file_copies(change.get_target_files())

class avocado.utils.diff_validator.Change
Bases: object

Class for tracking and validating file changes

Creates a change object.

add_validated_files(filenames)
Add file to change object.

Parameters filenames ([str]) – files to validate

append_expected_add(filename, line)
Append expected added line to a file.

Parameters

• filename (str) – file to append to

• line (str) – line to append to as an expected addition

440 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

append_expected_remove(filename, line)
Append removed added line to a file.

Parameters

• filename (str) – file to append to

• line (str) – line to append to as an expected removal

get_all_adds()
Return a list of the added lines for all validated files.

get_all_removes()
Return a list of the removed lines for all validated files.

get_target_files()
Get added files for change.

exception avocado.utils.diff_validator.DiffValidationError
Bases: Exception

avocado.utils.diff_validator.assert_change(actual_result, expected_result)
Condition wrapper of the upper method.

Parameters

• actual_result ({str, ([str], [str])}) – actual added and removed lines
with filepath keys and a tuple of ([added_line, . . .], [removed_line, . . .])

• expected_result ({str, ([str], [str])}) – expected added and removed
lines of type as the actual result

Returns whether changes were detected

Return type bool

avocado.utils.diff_validator.assert_change_dict(actual_result, expected_result)
Calculates unexpected line changes.

Parameters

• actual_result ({file_path, ([added_line, ..], [removed_line,
..])}) – actual added and removed lines

• expected_result ({file_path, ([added_line, ..],
[removed_line, ..])}) – expected added and removed lines

Returns detected differences as groups of lines with filepath keys and a tuple of (unexpected_adds,
not_present_adds, unexpected_removes, not_present_removes)

Return type {str, (str, str, str, str)}

avocado.utils.diff_validator.create_diff_report(change_diffs)
Pretty prints the output of the change_diffs variable.

Parameters change_diffs – detected differences as groups of lines with filepath keys and a
tuple of (unexpected_adds, not_present_adds, unexpected_removes, not_present_removes)

Type {str, (str, str, str, str)}

Returns print string of the line differences

Return type str

avocado.utils.diff_validator.del_temp_file_copies(file_paths)
Deletes all the provided files.

10.3. Utilities APIs 441

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Parameters file_paths ([str]) – deleted file paths (their temporary versions)

avocado.utils.diff_validator.extract_changes(file_paths, compared_file_paths=None)
Extracts diff information based on the new and temporarily saved old files.

Parameters

• file_paths ([str]) – original file paths (whose temporary versions will be retrieved)

• compared_file_paths ([str] or None) – custom file paths to use instead of the
temporary versions

Returns file paths with corresponding diff information key-value pairs

Return type {str, ([str], [str])}

avocado.utils.diff_validator.get_temp_file_path(file_path)
Generates a temporary filename.

Parameters file_path (str) – file path prefix

Returns appended file path

Return type str

avocado.utils.diff_validator.make_temp_file_copies(file_paths)
Creates temporary copies of the provided files.

Parameters file_paths ([str]) – file paths to be copied

avocado.utils.diff_validator.parse_unified_diff_output(lines)
Parses the unified diff output of two files.

Parameters lines ([str]) – diff lines

Returns pair of adds and removes, where each is a list of trimmed lines

Return type ([str], [str])

10.3.17 avocado.utils.disk module

Disk utilities

exception avocado.utils.disk.DiskError
Bases: Exception

Generic DiskError

avocado.utils.disk.create_loop_device(size, blocksize=4096, directory=’./’)
Creates a loop device of size and blocksize specified.

Parameters

• size (int) – Size of loop device, in bytes

• blocksize (int) – block size of loop device, in bytes. Defaults to 4096

• directory (str) – Directory where the backing file will be created. Defaults to current
directory.

Returns loop device name

Return type str

avocado.utils.disk.delete_loop_device(device)
Deletes the specified loop device.

442 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Parameters device (str) – device to be deleted

Returns True if deleted.

Return type bool

avocado.utils.disk.freespace(path)

avocado.utils.disk.get_available_filesystems()
Return a list of all available filesystem types

Returns a list of filesystem types

Return type list of str

avocado.utils.disk.get_disk_blocksize(path)
Return the disk block size, in bytes

avocado.utils.disk.get_disks()
Returns the physical “hard drives” available on this system

This is a simple wrapper around lsblk and will return all the top level physical (non-virtual) devices return by it.

TODO: this is currently Linux specific. Support for other platforms is desirable and may be implemented in the
future.

Returns a list of paths to the physical disks on the system

Return type list of str

avocado.utils.disk.get_filesystem_type(mount_point=’/’)
Returns the type of the filesystem of mount point informed. The default mount point considered when none is
informed is the root “/” mount point.

Parameters mount_point (str) – mount point to asses the filesystem type. Default “/”

Returns filesystem type

Return type str

avocado.utils.disk.is_root_device(device)
check for root disk

Parameters device – device to check

Returns True or False, True if given device is root disk otherwise will return False.

10.3.18 avocado.utils.distro module

This module provides the client facilities to detect the Linux Distribution it’s running under.

class avocado.utils.distro.LinuxDistro(name, version, release, arch)
Bases: object

Simple collection of information for a Linux Distribution

Initializes a new Linux Distro

Parameters

• name (str) – a short name that precisely distinguishes this Linux Distribution among all
others.

• version (str) – the major version of the distribution. Usually this is a single number
that denotes a large development cycle and support file.

10.3. Utilities APIs 443

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• release (str) – the release or minor version of the distribution. Usually this is also a
single number, that is often omitted or starts with a 0 when the major version is initially
release. It’s often associated with a shorter development cycle that contains incremental a
collection of improvements and fixes.

• arch (str) – the main target for this Linux Distribution. It’s common for some architec-
tures to ship with packages for previous and still compatible architectures, such as it’s the
case with Intel/AMD 64 bit architecture that support 32 bit code. In cases like this, this
should be set to the 64 bit architecture name.

class avocado.utils.distro.Probe
Bases: object

Probes the machine and does it best to confirm it’s the right distro

CHECK_FILE = None
Points to a file that can determine if this machine is running a given Linux Distribution. This servers a first
check that enables the extra checks to carry on.

CHECK_FILE_CONTAINS = None
Sets the content that should be checked on the file pointed to by CHECK_FILE_EXISTS. Leave it set to
None (its default) to check only if the file exists, and not check its contents

CHECK_FILE_DISTRO_NAME = None
The name of the Linux Distribution to be returned if the file defined by CHECK_FILE_EXISTS exist.

CHECK_VERSION_REGEX = None
A regular expression that will be run on the file pointed to by CHECK_FILE_EXISTS

check_name_for_file()
Checks if this class will look for a file and return a distro

The conditions that must be true include the file that identifies the distro file being set (CHECK_FILE)
and the name of the distro to be returned (CHECK_FILE_DISTRO_NAME)

check_name_for_file_contains()
Checks if this class will look for text on a file and return a distro

The conditions that must be true include the file that identifies the distro file being set (CHECK_FILE),
the text to look for inside the distro file (CHECK_FILE_CONTAINS) and the name of the distro to be
returned (CHECK_FILE_DISTRO_NAME)

check_release()
Checks if this has the conditions met to look for the release number

check_version()
Checks if this class will look for a regex in file and return a distro

get_distro()
Returns the LinuxDistro this probe detected

name_for_file()
Get the distro name if the CHECK_FILE is set and exists

name_for_file_contains()
Get the distro if the CHECK_FILE is set and has content

release()
Returns the release of the distro

version()
Returns the version of the distro

444 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

avocado.utils.distro.register_probe(probe_class)
Register a probe to be run during autodetection

avocado.utils.distro.detect()
Attempts to detect the Linux Distribution running on this machine

Returns the detected LinuxDistro or UNKNOWN_DISTRO

Return type LinuxDistro

10.3.19 avocado.utils.dmesg module

Module for manipulate dmesg while running test.

exception avocado.utils.dmesg.DmesgError
Bases: Exception

Base Exception Class for all dmesg utils exceptions.

avocado.utils.dmesg.clear_dmesg()
function clear dmesg.

The dmesg operation is a privileged user task. This function needs sudo permissions enabled on the target host

avocado.utils.dmesg.collect_dmesg(output_file=None)
Function collect dmesg and save in file.

The dmesg operation is a privileged user task. This function needs sudo permissions enabled on the target host

:param output_file [File use for save dmesg output if not provided it use] tmp file which located in system
/tmp path

Returns file which contain dmesg

Return type str

avocado.utils.dmesg.collect_errors_by_level(output_file=None, level_check=5,
skip_errors=None)

Verify dmesg having severity level of OS issue(s).

Parameters

• output_file (str) – The file used to save dmesg

• level_check (int) – level of severity of issues to be checked 1 - emerg 2 - emerg,alert
3 - emerg,alert,crit 4 - emerg,alert,crit,err 5 - emerg,alert,crit,err,warn

Skip_errors list of dmesg error messages which want skip

avocado.utils.dmesg.collect_errors_dmesg(patterns)
Check patterns in dmesg.

:param patterns : List variable to search in dmesg

:return error log in form of list :rtype: list of str

avocado.utils.dmesg.skip_dmesg_messages(dmesg_stdout, skip_messages)
Remove some messages from a dmesg buffer.

This method will remove some lines in a dmesg buffer if some strings are present. Returning the same buffer,
but with less lines (in case of match).

Dmesg_stdout dmesg messages from which filter should be applied. This must be a decoded output
buffer with new lines.

10.3. Utilities APIs 445

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

avocado Documentation, Release 88.1

Skip_messages list of strings to be removed

10.3.20 avocado.utils.download module

Methods to download URLs and regular files.

avocado.utils.download.get_file(src, dst, permissions=None, hash_expected=None,
hash_algorithm=’md5’, download_retries=1)

Gets a file from a source location, optionally using caching.

If no hash_expected is provided, simply download the file. Else, keep trying to download the file until down-
load_failures exceeds download_retries or the hashes match.

If the hashes match, return dst. If download_failures exceeds download_retries, raise an EnvironmentError.

Parameters

• src – source path or URL. May be local or a remote file.

• dst – destination path.

• permissions – (optional) set access permissions.

• hash_expected – Hash string that we expect the file downloaded to have.

• hash_algorithm – Algorithm used to calculate the hash string (md5, sha1).

• download_retries – Number of times we are going to retry a failed download.

Raise EnvironmentError.

Returns destination path.

avocado.utils.download.url_download(url, filename, data=None, timeout=300)
Retrieve a file from given url.

Parameters

• url – source URL.

• filename – destination path.

• data – (optional) data to post.

• timeout – (optional) default timeout in seconds.

Returns None.

avocado.utils.download.url_download_interactive(url, output_file, title=”,
chunk_size=102400)

Interactively downloads a given file url to a given output file.

Parameters

• url (string) – URL for the file to be download

• output_file (string) – file name or absolute path on which to save the file to

• title (string) – optional title to go along the progress bar

• chunk_size (integer) – amount of data to read at a time

avocado.utils.download.url_open(url, data=None, timeout=5)
Wrapper to urllib2.urlopen() with timeout addition.

Parameters

446 Chapter 10. Test API

avocado Documentation, Release 88.1

• url – URL to open.

• data – (optional) data to post.

• timeout – (optional) default timeout in seconds.

Returns file-like object.

Raises URLError.

10.3.21 avocado.utils.exit_codes module

Avocado Utilities exit codes.

These codes are returned on the command-line and may be used by the Avocado command-line utilities.

avocado.utils.exit_codes.UTILITY_FAIL = 1
The utility ran, but needs to signalize a fail.

avocado.utils.exit_codes.UTILITY_GENERIC_CRASH = -1
Utility generic crash

avocado.utils.exit_codes.UTILITY_OK = 0
The utility finished successfully

10.3.22 avocado.utils.file_utils module

SUMMARY

Utilities for file tests.

INTERFACE

avocado.utils.file_utils.check_owner(owner, group, file_name_pattern,
check_recursive=False)

Verifies that given file belongs to given owner and group.

Parameters

• owner (str) – user that owns of the file

• group (str) – group of the owner of the file

• file_name_pattern (str) – can be a glob

• check_recursive (bool) – if file_name_pattern matches a directory, recurse into that
subdir or not

Raises RuntimeError if file has wrong owner or group

avocado.utils.file_utils.check_permissions(perms, file_name_pattern)
Verify that a given file has a given numeric permission.

Parameters

• perms (int) – best given in octal form, e.g. 0o755

• file_name_pattern (str) – can be a glob

Raises RuntimeError if file has wrong permissions

10.3. Utilities APIs 447

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError

avocado Documentation, Release 88.1

10.3.23 avocado.utils.filelock module

Utility for individual file access control implemented via PID lock files.

exception avocado.utils.filelock.AlreadyLocked
Bases: Exception

class avocado.utils.filelock.FileLock(filename, timeout=0)
Bases: object

Creates an exclusive advisory lock for a file. All processes should use and honor the advisory locking scheme,
but uncooperative processes are free to ignore the lock and access the file in any way they choose.

exception avocado.utils.filelock.LockFailed
Bases: Exception

10.3.24 avocado.utils.gdb module

Module that provides communication with GDB via its GDB/MI interpreter

class avocado.utils.gdb.GDB(path=’/usr/bin/gdb’, *extra_args)
Bases: object

Wraps a GDB subprocess for easier manipulation

DEFAULT_BREAK = 'main'

REQUIRED_ARGS = ['--interpreter=mi', '--quiet']

cli_cmd(command)
Sends a cli command encoded as an MI command

Parameters command (str) – a regular GDB cli command

Returns a CommandResult instance

Return type CommandResult

cmd(command)
Sends a command and parses all lines until prompt is received

Parameters command (str) – the GDB command, hopefully in MI language

Returns a CommandResult instance

Return type CommandResult

cmd_exists(command)
Checks if a given command exists

Parameters command (str) – a GDB MI command, including the dash (-) prefix

Returns either True or False

Return type bool

connect(port)
Connects to a remote debugger (a gdbserver) at the given TCP port

This uses the “extended-remote” target type only

Parameters port (int) – the TCP port number

Returns a CommandResult instance

448 Chapter 10. Test API

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

avocado Documentation, Release 88.1

Return type CommandResult

del_break(number)
Deletes a breakpoint by its number

Parameters number (int) – the breakpoint number

Returns a CommandResult instance

Return type CommandResult

disconnect()
Disconnects from a remote debugger

Returns a CommandResult instance

Return type CommandResult

exit()
Exits the GDB application gracefully

Returns the result of subprocess.POpen.wait(), that is, a subprocess.POpen.
returncode

Return type int or None

read_gdb_response(timeout=0.01, max_tries=100)
Read raw responses from GDB

Parameters

• timeout (float) – the amount of time to way between read attempts

• max_tries (int) – the maximum number of cycles to try to read until a response is
obtained

Returns a string containing a raw response from GDB

Return type str

read_until_break(max_lines=100)
Read lines from GDB until a break condition is reached

Parameters max_lines (int) – the maximum number of lines to read

Returns a list of messages read

Return type list of str

run(args=None)
Runs the application inside the debugger

Parameters args (builtin.list) – the arguments to be passed to the binary as command
line arguments

Returns a CommandResult instance

Return type CommandResult

send_gdb_command(command)
Send a raw command to the GNU debugger input

Parameters command (str) – the GDB command, hopefully in MI language

Returns None

set_break(location, ignore_error=False)
Sets a new breakpoint on the binary currently being debugged

10.3. Utilities APIs 449

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Parameters location (str) – a breakpoint location expression as accepted by GDB

Returns a CommandResult instance

Return type CommandResult

set_file(path)
Sets the file that will be executed

Parameters path (str) – the path of the binary that will be executed

Returns a CommandResult instance

Return type CommandResult

class avocado.utils.gdb.GDBServer(path=’/usr/bin/gdbserver’, port=None,
wait_until_running=True, *extra_args)

Bases: object

Wraps a gdbserver instance

Initializes a new gdbserver instance

Parameters

• path (str) – location of the gdbserver binary

• port (int) – tcp port number to listen on for incoming connections

• wait_until_running (bool) – wait until the gdbserver is running and accepting con-
nections. It may take a little after the process is started and it is actually bound to the
allocated port

• extra_args – optional extra arguments to be passed to gdbserver

INIT_TIMEOUT = 5.0
The time to optionally wait for the server to initialize itself and be ready to accept new connections

PORT_RANGE = (20000, 20999)
The range from which a port to GDB server will try to be allocated from

REQUIRED_ARGS = ['--multi']
The default arguments used when starting the GDB server process

exit(force=True)
Quits the gdb_server process

Most correct way of quitting the GDB server is by sending it a command. If no GDB client is connected,
then we can try to connect to it and send a quit command. If this is not possible, we send it a signal and
wait for it to finish.

Parameters force (bool) – if a forced exit (sending SIGTERM) should be attempted

Returns None

class avocado.utils.gdb.GDBRemote(host, port, no_ack_mode=True, extended_mode=True)
Bases: object

Initializes a new GDBRemote object.

A GDBRemote acts like a client that speaks the GDB remote protocol, documented at:

https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html

Caveat: we currently do not support communicating with devices, only with TCP sockets. This limitation is
basically due to the lack of use cases that justify an implementation, but not due to any technical shortcoming.

Parameters

450 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html

avocado Documentation, Release 88.1

• host (str) – the IP address or host name

• port (int) – the port number where the the remote GDB is listening on

• no_ack_mode (bool) – if the packet transmission confirmation mode should be disabled

• extended_mode – if the remote extended mode should be enabled

static checksum(input_message)
Calculates a remote message checksum.

More details are available at: https://sourceware.org/gdb/current/onlinedocs/gdb/Overview.html

Parameters input_message (bytes) – the message input payload, without the start and
end markers

Returns two byte checksum

Return type bytes

cmd(command_data, expected_response=None)
Sends a command data to a remote gdb server

Limitations: the current version does not deal with retransmissions.

Parameters

• command_data (str) – the remote command to send the the remote stub

• expected_response (str) – the (optional) response that is expected as a response
for the command sent

Raises RetransmissionRequestedError, UnexpectedResponseError

Returns raw data read from from the remote server

Return type str

connect()
Connects to the remote target and initializes the chosen modes

static decode(data)
Decodes a packet and returns its payload.

More details are available at: https://sourceware.org/gdb/current/onlinedocs/gdb/Overview.html

Parameters command_data (bytes) – the command data payload

Returns the encoded command, ready to be sent to a remote GDB

Return type bytes

static encode(data)
Encodes a command.

That is, add prefix, suffix and checksum.

More details are available at: https://sourceware.org/gdb/current/onlinedocs/gdb/Overview.html

Parameters command_data (bytes) – the command data payload

Returns the encoded command, ready to be sent to a remote GDB

Return type bytes

set_extended_mode()
Enable extended mode. In extended mode, the remote server is made persistent. The ‘R’ packet is used to
restart the program being debugged. Original documentation at:

10.3. Utilities APIs 451

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://sourceware.org/gdb/current/onlinedocs/gdb/Overview.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://sourceware.org/gdb/current/onlinedocs/gdb/Overview.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://sourceware.org/gdb/current/onlinedocs/gdb/Overview.html
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

avocado Documentation, Release 88.1

https://sourceware.org/gdb/current/onlinedocs/gdb/Packets.html#extended-mode

start_no_ack_mode()
Request that the remote stub disable the normal +/- protocol acknowledgments. Original documentation
at:

https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#QStartNoAckMode

10.3.25 avocado.utils.genio module

Avocado generic IO related functions.

exception avocado.utils.genio.GenIOError
Bases: Exception

Base Exception Class for all IO exceptions

avocado.utils.genio.append_file(filename, data)
Append data to a file.

Parameters

• filename (str) – Path to the file.

• line (str) – Line to be written.

avocado.utils.genio.append_one_line(filename, line)
Append one line of text to filename.

Parameters

• filename (str) – Path to the file.

• line (str) – Line to be written.

avocado.utils.genio.are_files_equal(filename, other)
Comparison of two files line by line :param filename: path to the first file :type filename: str :param other: path
to the second file :type other: str :return: equality of file :rtype: boolean

avocado.utils.genio.ask(question, auto=False)
Prompt the user with a (y/n) question.

Parameters

• question (str) – Question to be asked

• auto (bool) – Whether to return “y” instead of asking the question

Returns User answer

Return type str

avocado.utils.genio.is_pattern_in_file(filename, pattern)
Check if a pattern matches in a specified file. If a non regular file be informed a GenIOError will be raised.

Parameters

• filename (str) – Path to file

• pattern (str) – Pattern that need to match in file

Returns True when pattern matches in file if not return False

Return type boolean

452 Chapter 10. Test API

https://sourceware.org/gdb/current/onlinedocs/gdb/Packets.html#extended-mode
https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#QStartNoAckMode
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.utils.genio.read_all_lines(filename)
Return all lines of a given file

This utility method returns an empty list in any error scenario, that is, it doesn’t attempt to identify error paths
and raise appropriate exceptions. It does exactly the opposite to that.

This should be used when it’s fine or desirable to have an empty set of lines if a file is missing or is unreadable.

Parameters filename (str) – Path to the file.

Returns all lines of the file as list

Return type builtin.list

avocado.utils.genio.read_file(filename)
Read the entire contents of file.

Parameters filename (str) – Path to the file.

Returns File contents

Return type str

avocado.utils.genio.read_one_line(filename)
Read the first line of filename.

Parameters filename (str) – Path to the file.

Returns First line contents

Return type str

avocado.utils.genio.write_file(filename, data)
Write data to a file.

Parameters

• filename (str) – Path to the file.

• line (str) – Line to be written.

avocado.utils.genio.write_file_or_fail(filename, data)
Write to a file and raise exception on write failure

Parameters

• filename (str) – Path to file

• data (str) – Data to be written to file

Raises GenIOError – On write Failure

avocado.utils.genio.write_one_line(filename, line)
Write one line of text to filename.

Parameters

• filename (str) – Path to the file.

• line (str) – Line to be written.

10.3.26 avocado.utils.git module

APIs to download/update git repositories from inside python scripts.

10.3. Utilities APIs 453

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

class avocado.utils.git.GitRepoHelper(uri, branch=’master’, lbranch=None, commit=None,
destination_dir=None, base_uri=None)

Bases: object

Helps to deal with git repos, mostly fetching content from a repo

Instantiates a new GitRepoHelper

Parameters

• uri (string) – git repository url

• branch (string) – git remote branch

• lbranch (string) – git local branch name, if different from remote

• commit (string) – specific commit to download

• destination_dir (string) – path of a dir where to save downloaded code

• base_uri (string) – a closer, usually local, git repository url from where to fetch con-
tent first from

checkout(branch=None, commit=None)
Performs a git checkout for a given branch and start point (commit)

Parameters

• branch – Remote branch name.

• commit – Specific commit hash.

execute()
Performs all steps necessary to initialize and download a git repo.

This includes the init, fetch and checkout steps in one single utility method.

fetch(uri)
Performs a git fetch from the remote repo

get_top_commit()
Returns the topmost commit id for the current branch.

Returns Commit id.

get_top_tag()
Returns the topmost tag for the current branch.

Returns Tag.

git_cmd(cmd, ignore_status=False)
Wraps git commands.

Parameters

• cmd – Command to be executed.

• ignore_status – Whether we should suppress error.CmdError exceptions if the com-
mand did return exit code !=0 (True), or not suppress them (False).

init()
Initializes a directory for receiving a verbatim copy of git repo

This creates a directory if necessary, and either resets or inits the repo

avocado.utils.git.get_repo(uri, branch=’master’, lbranch=None, commit=None, destina-
tion_dir=None, base_uri=None)

Utility function that retrieves a given git code repository.

454 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Parameters

• uri (string) – git repository url

• branch (string) – git remote branch

• lbranch (string) – git local branch name, if different from remote

• commit (string) – specific commit to download

• destination_dir (string) – path of a dir where to save downloaded code

• base_uri (string) – a closer, usually local, git repository url from where to fetch con-
tent first from

10.3.27 avocado.utils.iso9660 module

Basic ISO9660 file-system support.

This code does not attempt (so far) to implement code that knows about ISO9660 internal structure. Instead, it uses
commonly available support either in userspace tools or on the Linux kernel itself (via mount).

avocado.utils.iso9660.iso9660(path, capabilities=None)
Checks the available tools on a system and chooses class accordingly

This is a convenience function, that will pick the first available iso9660 capable tool.

Parameters

• path (str) – path to an iso9660 image file

• capabilities (list) – list of specific capabilities that are required for the selected
implementation, such as “read”, “copy” and “mnt_dir”.

Returns an instance of any iso9660 capable tool

Return type Iso9660IsoInfo, Iso9660IsoRead, Iso9660Mount, ISO9660PyCDLib
or None

class avocado.utils.iso9660.Iso9660IsoInfo(path)
Bases: avocado.utils.iso9660.MixInMntDirMount, avocado.utils.iso9660.
BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the cdrkit’s isoinfo tool

read(path)
Abstract method to read data from path

Parameters path – path to the file

Returns data content from the file

Return type str

class avocado.utils.iso9660.Iso9660IsoRead(path)
Bases: avocado.utils.iso9660.MixInMntDirMount, avocado.utils.iso9660.
BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the libcdio’s iso-read tool

close()
Cleanups and frees any resources being used

10.3. Utilities APIs 455

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

copy(src, dst)
Simplistic version of copy that relies on read()

Parameters

• src (str) – source path

• dst (str) – destination path

Return type None

read(path)
Abstract method to read data from path

Parameters path – path to the file

Returns data content from the file

Return type str

class avocado.utils.iso9660.Iso9660Mount(path)
Bases: avocado.utils.iso9660.BaseIso9660

Represents a mounted ISO9660 filesystem.

initializes a mounted ISO9660 filesystem

Parameters path (str) – path to the ISO9660 file

close()
Perform umount operation on the temporary dir

Return type None

copy(src, dst)

Parameters

• src (str) – source

• dst (str) – destination

Return type None

mnt_dir
Returns a path to the browsable content of the iso

read(path)
Read data from path

Parameters path (str) – path to read data

Returns data content

Return type str

class avocado.utils.iso9660.ISO9660PyCDLib(path)
Bases: avocado.utils.iso9660.MixInMntDirMount, avocado.utils.iso9660.
BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the pycdlib library

DEFAULT_CREATE_FLAGS = {'interchange_level': 3, 'joliet': 3}
Default flags used when creating a new ISO image

456 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

close()
Cleanups and frees any resources being used

copy(src, dst)
Simplistic version of copy that relies on read()

Parameters

• src (str) – source path

• dst (str) – destination path

Return type None

create(flags=None)
Creates a new ISO image

Parameters flags (dict) – the flags used when creating a new image

read(path)
Abstract method to read data from path

Parameters path – path to the file

Returns data content from the file

Return type str

write(path, content)
Writes a new file into the ISO image

Parameters

• path (bytes) – the path of the new file inside the ISO image

• content – the content of the new file

10.3.28 avocado.utils.kernel module

Provides utilities for the Linux kernel.

class avocado.utils.kernel.KernelBuild(version, config_path=None, work_dir=None,
data_dirs=None)

Bases: object

Build the Linux Kernel from official tarballs.

Creates an instance of KernelBuild.

Parameters

• version – kernel version (“3.19.8”).

• config_path – path to config file.

• work_dir – work directory.

• data_dirs – list of directories to keep the downloaded kernel

Returns None.

SOURCE = 'linux-{version}.tar.gz'

URL = 'https://www.kernel.org/pub/linux/kernel/v{major}.x/'

build(binary_package=False, njobs=2)
Build kernel from source.

10.3. Utilities APIs 457

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Parameters

• binary_package – when True, the appropriate platform package is built for install()
to use

• njobs (int or None) – number of jobs. It is mapped to the -j option from make. If
njobs is None then do not limit the number of jobs (e.g. uses -j without value). The -j is
omitted if a value equal or less than zero is passed. Default value is set to multiprocess-
ing.cpu_count().

build_dir
Return the build path if the directory exists

configure(targets=’defconfig’, extra_configs=None)
Configure/prepare kernel source to build.

Parameters

• targets (list of str) – configuration targets. Default is ‘defconfig’.

• extra_configs (list of str) – additional configurations in the form of CON-
FIG_NAME=VALUE.

download(url=None)
Download kernel source.

Parameters url (str or None) – override the url from where to fetch the kernel source
tarball

install()
Install built kernel.

uncompress()
Uncompress kernel source.

Raises Exception in case the tarball is not downloaded

vmlinux
Return the vmlinux path if the file exists

avocado.utils.kernel.check_version(version)
This utility function compares the current kernel version with the version parameter and gives assertion error if
the version parameter is greater.

Parameters version (string) – version to be compared with current kernel version

10.3.29 avocado.utils.linux module

Linux OS utilities

avocado.utils.linux.enable_selinux_enforcing()
Enable SELinux Enforcing in system

Returns True if SELinux enable in enforcing mode, False if not enabled

avocado.utils.linux.get_proc_sys(key)
Read values from /proc/sys

Parameters key – A location under /proc/sys

Returns The single-line sysctl value as a string.

avocado.utils.linux.is_selinux_enforcing()
Returns True if SELinux is in enforcing mode, False if permissive/disabled.

458 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

avocado Documentation, Release 88.1

avocado.utils.linux.set_proc_sys(key, value)
Set values on /proc/sys

Parameters

• key – A location under /proc/sys

• value – If not None, a value to write into the sysctl.

Returns The single-line sysctl value as a string.

10.3.30 avocado.utils.linux_modules module

Linux kernel modules APIs

class avocado.utils.linux_modules.ModuleConfig
Bases: enum.Enum

An enumeration.

BUILTIN = <object object>
Config built-in to kernel (=y)

MODULE = <object object>
Config compiled as loadable module (=m)

NOT_SET = <object object>
Config commented out or not set

avocado.utils.linux_modules.check_kernel_config(config_name)
Reports the configuration of $config_name of the current kernel

Parameters config_name (str) – Name of kernel config to search

Returns Config status in running kernel (NOT_SET, BUILTIN, MODULE)

Return type ModuleConfig

avocado.utils.linux_modules.get_loaded_modules()
Gets list of loaded modules. :return: List of loaded modules.

avocado.utils.linux_modules.get_modules_dir()
Return the modules dir for the running kernel version

Returns path of module directory

Return type String

avocado.utils.linux_modules.get_submodules(module_name)
Get all submodules of the module.

Parameters module_name (str) – Name of module to search for

Returns List of the submodules

Return type builtin.list

avocado.utils.linux_modules.load_module(module_name)
Checks if a module has already been loaded. :param module_name: Name of module to check :return: True if
module is loaded, False otherwise :rtype: Bool

avocado.utils.linux_modules.loaded_module_info(module_name)
Get loaded module details: Size and Submodules.

Parameters module_name (str) – Name of module to search for

10.3. Utilities APIs 459

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Returns Dictionary of module name, size, submodules if present, filename, version, number of
modules using it, list of modules it is dependent on, list of dictionary of param name and type

Return type dict

avocado.utils.linux_modules.module_is_loaded(module_name)
Is module loaded

Parameters module_name (str) – Name of module to search for

Returns True if module is loaded

Return type bool

avocado.utils.linux_modules.parse_lsmod_for_module(l_raw, module_name, es-
cape=True)

Use a regex to parse raw lsmod output and get module information :param l_raw: raw output of lsmod :type
l_raw: str :param module_name: Name of module to search for :type module_name: str :param escape: Escape
regex tokens in module_name, default True :type escape: bool :return: Dictionary of module info, name, size,
submodules if present :rtype: dict

avocado.utils.linux_modules.unload_module(module_name)
Removes a module. Handles dependencies. If even then it’s not possible to remove one of the modules, it will
throw an error.CmdError exception.

Parameters module_name (str) – Name of the module we want to remove.

10.3.31 avocado.utils.lv_utils module

exception avocado.utils.lv_utils.LVException
Bases: Exception

Base Exception Class for all exceptions

avocado.utils.lv_utils.get_device_total_space(disk)
Get the total device size.

Parameters device (str) – name of the device/disk to find the total size

Returns size in bytes

Return type int

Raises LVException on failure to find disk space

avocado.utils.lv_utils.get_devices_total_space(devices)
Get the total size of given device(s)/disk(s).

Parameters devices (list) – list with the names of devices separated with space.

Returns sizes in bytes

Return type int

Raises LVException on failure to find disk space

avocado.utils.lv_utils.get_diskspace(disk)
Get the entire disk space of a given disk.

Parameters disk (str) – name of the disk to find the free space of

Returns size in bytes

Return type str

460 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Raises LVException on failure to find disk space

avocado.utils.lv_utils.lv_check(vg_name, lv_name)
Check whether provided logical volume exists.

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

Returns whether the logical volume was found

Return type bool

avocado.utils.lv_utils.lv_create(vg_name, lv_name, lv_size, force_flag=True,
pool_name=None, pool_size=’1G’)

Create a (possibly thin) logical volume in a volume group. The volume group must already exist.

A thin pool will be created if pool parameters are provided and the thin pool doesn’t already exist.

The volume group must already exist.

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

• lv_size (str) – size for the logical volume to be created

• force_flag (bool) – whether to abort if volume already exists or remove and recreate
it

• pool_name (str) – name of thin pool or None for a regular volume

• pool_size (str) – size of thin pool if it will be created

Raises LVException if preconditions or execution fails

avocado.utils.lv_utils.lv_list(vg_name=None)
List all info about available logical volumes.

Parameters vg_name (str) – name of the volume group or None to list all

Returns list of available logical volumes

Return type {str, {str, str}}

avocado.utils.lv_utils.lv_mount(vg_name, lv_name, mount_loc, create_filesystem=”)
Mount a logical volume to a mount location.

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

• mount_loc (str) – location to mount the logical volume to

• create_filesystem (str) – can be one of ext2, ext3, ext4, vfat or empty if the filesys-
tem was already created and the mkfs process is skipped

Raises LVException if the logical volume could not be mounted

avocado.utils.lv_utils.lv_reactivate(vg_name, lv_name, timeout=10)
In case of unclean shutdowns some of the lvs is still active and merging is postponed. Use this function to
attempt to deactivate and reactivate all of them to cause the merge to happen.

10.3. Utilities APIs 461

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

• timeout (int) – timeout between operations

Raises LVException if the logical volume is still active

avocado.utils.lv_utils.lv_remove(vg_name, lv_name)
Remove a logical volume.

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

Raises LVException if volume group or logical volume cannot be found

avocado.utils.lv_utils.lv_revert(vg_name, lv_name, lv_snapshot_name)
Revert the origin logical volume to a snapshot.

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

• lv_snapshot_name (str) – name of the snapshot to be reverted

Raises process.CmdError on failure to revert snapshot

Raises LVException if preconditions or execution fails

avocado.utils.lv_utils.lv_revert_with_snapshot(vg_name, lv_name, lv_snapshot_name,
lv_snapshot_size)

Perform logical volume merge with snapshot and take a new snapshot.

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

• lv_snapshot_name (str) – name of the snapshot to be reverted

• lv_snapshot_size (str) – size of the snapshot

avocado.utils.lv_utils.lv_take_snapshot(vg_name, lv_name, lv_snapshot_name,
lv_snapshot_size=None, pool_name=None)

Take a (possibly thin) snapshot of a regular (or thin) logical volume.

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

• lv_snapshot_name (str) – name of the snapshot be to created

• lv_snapshot_size (str) – size of the snapshot or None for thin snapshot of an already
thin volume

• pool_name – name of thin pool or None for regular snapshot or snapshot in the same thin
pool like the volume

Raises process.CmdError on failure to create snapshot

462 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Raises LVException if preconditions fail

avocado.utils.lv_utils.lv_umount(vg_name, lv_name)
Unmount a Logical volume from a mount location.

Parameters

• vg_name (str) – name of the volume group

• lv_name (str) – name of the logical volume

Raises LVException if the logical volume could not be unmounted

avocado.utils.lv_utils.vg_check(vg_name)
Check whether provided volume group exists.

Parameters vg_name (str) – name of the volume group

Returns whether the volume group was found

Return type bool

avocado.utils.lv_utils.vg_create(vg_name, pv_list, force=False)
Create a volume group from a list of physical volumes.

Parameters

• vg_name (str) – name of the volume group

• pv_list (str or [str]) – list of physical volumes to use

• force (bool) – create volume group with a force flag

Raises LVException if volume group already exists

avocado.utils.lv_utils.vg_list(vg_name=None)
List all info about available volume groups.

Parameters vg_name (str or None) – name of the volume group to list or or None to list all

Returns list of available volume groups

Return type {str, {str, str}}

avocado.utils.lv_utils.vg_ramdisk(disk, vg_name, ramdisk_vg_size, ramdisk_basedir,
ramdisk_sparse_filename, use_tmpfs=True)

Create volume group on top of ram memory to speed up LV performance. When disk is specified the size of the
physical volume is taken from existing disk space.

Parameters

• disk (str) – name of the disk in which volume groups are created

• vg_name (str) – name of the volume group

• ramdisk_vg_size (str) – size of the ramdisk virtual group (MB)

• ramdisk_basedir (str) – base directory for the ramdisk sparse file

• ramdisk_sparse_filename (str) – name of the ramdisk sparse file

• use_tmpfs (bool) – whether to use RAM or slower storage

Returns ramdisk_filename, vg_ramdisk_dir, vg_name, loop_device

Return type (str, str, str, str)

Raises LVException on failure at any stage

10.3. Utilities APIs 463

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Sample ramdisk params: - ramdisk_vg_size = “40000” - ramdisk_basedir = “/tmp” - ramdisk_sparse_filename
= “virtual_hdd”

Sample general params: - vg_name=’autotest_vg’, - lv_name=’autotest_lv’, - lv_size=’1G’, -
lv_snapshot_name=’autotest_sn’, - lv_snapshot_size=’1G’ The ramdisk volume group size is in MB.

avocado.utils.lv_utils.vg_ramdisk_cleanup(ramdisk_filename=None,
vg_ramdisk_dir=None, vg_name=None,
loop_device=None, use_tmpfs=True)

Clean up any stage of the VG ramdisk setup in case of test error.

This detects whether the components were initialized and if so tries to remove them. In case of failure it raises
summary exception.

Parameters

• ramdisk_filename (str) – name of the ramdisk sparse file

• vg_ramdisk_dir (str) – location of the ramdisk file

• vg_name (str) – name of the volume group

• loop_device (str) – name of the disk or loop device

• use_tmpfs (bool) – whether to use RAM or slower storage

Returns ramdisk_filename, vg_ramdisk_dir, vg_name, loop_device

Return type (str, str, str, str)

Raises LVException on intolerable failure at any stage

avocado.utils.lv_utils.vg_reactivate(vg_name, timeout=10, export=False)
In case of unclean shutdowns some of the vgs is still active and merging is postponed. Use this function to
attempt to deactivate and reactivate all of them to cause the merge to happen.

Parameters

• vg_name (str) – name of the volume group

• timeout (int) – timeout between operations

Raises LVException if the logical volume is still active

avocado.utils.lv_utils.vg_remove(vg_name)
Remove a volume group.

Parameters vg_name (str) – name of the volume group

Raises LVException if volume group cannot be found

10.3.32 avocado.utils.memory module

exception avocado.utils.memory.MemError
Bases: Exception

called when memory operations fails

class avocado.utils.memory.MemInfo
Bases: object

Representation of /proc/meminfo

avocado.utils.memory.check_hotplug()
Check kernel support for memory hotplug

464 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Returns True if hotplug supported, else False

Return type ‘bool’

avocado.utils.memory.drop_caches()
Writes back all dirty pages to disk and clears all the caches.

avocado.utils.memory.freememtotal()
Read MemFree from meminfo.

avocado.utils.memory.get_blk_string(block)
Format the given block id to string

Parameters block – memory block id or block string.

Returns returns string memory198 if id 198 is given

Return type string

avocado.utils.memory.get_buddy_info(chunk_sizes, nodes=’all’, zones=’all’)
Get the fragement status of the host.

It uses the same method to get the page size in buddyinfo. The expression to evaluate it is:

2^chunk_size * page_size

The chunk_sizes can be string make up by all orders that you want to check split with blank or a mathematical
expression with >, < or =.

For example:

• The input of chunk_size could be: 0 2 4, and the return will be {'0': 3, '2': 286,
'4': 687}

• If you are using expression: >=9 the return will be {'9': 63, '10': 225}

Parameters

• chunk_size (string) – The order number shows in buddyinfo. This is not the real page
size.

• nodes (string) – The numa node that you want to check. Default value is all

• zones (string) – The memory zone that you want to check. Default value is all

Returns A dict using the chunk_size as the keys

Return type dict

avocado.utils.memory.get_huge_page_size()
Get size of the huge pages for this system.

Returns Huge pages size (KB).

avocado.utils.memory.get_num_huge_pages()
Get number of huge pages for this system.

Returns Number of huge pages.

avocado.utils.memory.get_page_size()
Get linux page size for this system.

:return Kernel page size (Bytes).

avocado.utils.memory.get_supported_huge_pages_size()
Get all supported huge page sizes for this system.

10.3. Utilities APIs 465

https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

Returns list of Huge pages size (kB).

avocado.utils.memory.get_thp_value(feature)
Gets the value of the thp feature arg passed

Param feature Thp feature to get value

avocado.utils.memory.hotplug(block)
Online the memory for the given block id.

Parameters block – memory block id or or memory198

avocado.utils.memory.hotunplug(block)
Offline the memory for the given block id.

Parameters block – memory block id.

avocado.utils.memory.is_hot_pluggable(block)
Check if the given memory block is hotpluggable

Parameters block – memory block id.

Returns True if hotpluggable, else False

Return type ‘bool’

avocado.utils.memory.memtotal()
Read Memtotal from meminfo.

avocado.utils.memory.memtotal_sys()
Reports actual memory size according to online-memory blocks available via “/sys”

Returns system memory in Kb as float

avocado.utils.memory.node_size()
Return node size.

Returns Node size.

avocado.utils.memory.numa_nodes()
Get a list of NUMA nodes present on the system.

Returns List with nodes.

avocado.utils.memory.numa_nodes_with_memory()
Get a list of NUMA nodes present with memory on the system.

Returns List with nodes which has memory.

avocado.utils.memory.read_from_meminfo(key)
Retrieve key from meminfo.

Parameters key – Key name, such as MemTotal.

avocado.utils.memory.read_from_numa_maps(pid, key)
Get the process numa related info from numa_maps. This function only use to get the numbers like anon=1.

Parameters

• pid (String) – Process id

• key (String) – The item you want to check from numa_maps

Returns A dict using the address as the keys

Return type dict

466 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

avocado.utils.memory.read_from_smaps(pid, key)
Get specific item value from the smaps of a process include all sections.

Parameters

• pid (String) – Process id

• key (String) – The item you want to check from smaps

Returns The value of the item in kb

Return type int

avocado.utils.memory.read_from_vmstat(key)
Get specific item value from vmstat

Parameters key (String) – The item you want to check from vmstat

Returns The value of the item

Return type int

avocado.utils.memory.rounded_memtotal()
Get memtotal, properly rounded.

Returns Total memory, KB.

avocado.utils.memory.set_num_huge_pages(num)
Set number of huge pages.

Parameters num – Target number of huge pages.

avocado.utils.memory.set_thp_value(feature, value)
Sets THP feature to a given value

Parameters

• feature (str) – Thp feature to set

• value (str) – Value to be set to feature

10.3.33 avocado.utils.multipath module

Module with multipath related utility functions. It needs root access.

exception avocado.utils.multipath.MPException
Bases: Exception

Base Exception Class for all exceptions

avocado.utils.multipath.add_mpath(mpath)
Add back the removed mpathX of multipath.

Parameters mpath_name – mpath names. Example: mpatha, mpathb.

Returns True or False

avocado.utils.multipath.add_path(path)
Add back the removed individual paths.

Parameters path (str) – disk path. Example: sda, sdb.

Returns True or False

avocado.utils.multipath.device_exists(mpath)
Checks if a given mpath exists.

10.3. Utilities APIs 467

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Parameters mpath – The multipath path

Returns True if path exists, False if does not exist.

Return type bool

avocado.utils.multipath.fail_path(path)
Fail the individual paths.

Parameters path (str) – disk path. Example: sda, sdb.

Returns True if succeeded, False otherwise

Return type bool

avocado.utils.multipath.flush_path(path_name)
Flushes the given multipath.

Returns Returns False if command fails, True otherwise.

avocado.utils.multipath.form_conf_mpath_file(blacklist=”, defaults_extra=”)
Form a multipath configuration file, and restart multipath service.

Parameters

• blacklist – Entry in conf file to indicate blacklist section.

• defaults_extra – Extra entry in conf file in defaults section.

avocado.utils.multipath.get_mpath_name(wwid)
Get multipath name for a given wwid.

Parameters wwid – wwid of multipath device.

Returns Name of multipath device.

Return type str

avocado.utils.multipath.get_mpath_status(mpath)
Get the status of mpathX of multipaths.

Parameters mpath – mpath names. Example: mpatha, mpathb.

Returns state of mpathX eg: Active, Suspend, None

avocado.utils.multipath.get_multipath_details()
Get multipath details as a dictionary.

This is the output of the following command:

$ multipathd show maps json

Returns Dictionary of multipath output in json format

Return type dict

avocado.utils.multipath.get_multipath_wwid(mpath)
Get the wwid binding for given mpath name

Returns Multipath wwid

Return type str

avocado.utils.multipath.get_multipath_wwids()
Get list of multipath wwids.

Returns List of multipath wwids.

468 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Return type list of str

avocado.utils.multipath.get_path_status(disk_path)
Return the status of a path in multipath.

Parameters disk_path – disk path. Example: sda, sdb.

Returns Tuple in the format of (dm status, dev status, checker status)

avocado.utils.multipath.get_paths(wwid)
Get list of paths, given a multipath wwid.

Returns List of paths.

Return type list of str

avocado.utils.multipath.get_policy(wwid)
Gets path_checker policy, given a multipath wwid.

Returns path checker policy.

Return type str

avocado.utils.multipath.get_size(wwid)
Gets size of device, given a multipath wwid.

Returns size of multipath device.

Return type str

avocado.utils.multipath.get_svc_name()
Gets the multipath service name based on distro.

avocado.utils.multipath.is_mpath_dev(mpath)
Check the give name is a multipath device name or not.

Returns True if device is multipath or False

Return type Boolean

avocado.utils.multipath.is_path_a_multipath(disk_path)
Check if given disk path is part of a multipath.

Parameters disk_path – disk path. Example: sda, sdb.

Returns True if part of multipath, else False.

avocado.utils.multipath.reinstate_path(path)
Reinstate the individual paths.

Parameters path (str) – disk path. Example: sda, sdb.

Returns True if succeeded, False otherwise

avocado.utils.multipath.remove_mpath(mpath)
Remove the mpathX of multipaths.

Parameters mpath_name – mpath names. Example: mpatha, mpathb.

Returns True or False

avocado.utils.multipath.remove_path(path)
Remove the individual paths.

Parameters disk_path – disk path. Example: sda, sdb.

Returns True or False

10.3. Utilities APIs 469

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.utils.multipath.resume_mpath(mpath)
Resume the suspended mpathX of multipaths.

Parameters mpath_name – mpath names. Example: mpatha, mpathb.

Returns True or False

avocado.utils.multipath.suspend_mpath(mpath)
Suspend the given mpathX of multipaths.

Parameters mpath – mpath names. Example: mpatha, mpathb.

Returns True or False

10.3.34 avocado.utils.output module

Utility functions for user friendly display of information.

class avocado.utils.output.ProgressBar(minimum=0, maximum=100, width=75, title=”)
Bases: object

Displays interactively the progress of a given task

Inspired/adapted from https://gist.github.com/t0xicCode/3306295

Initializes a new progress bar

Parameters

• minimum (integer) – minimum (initial) value on the progress bar

• maximum (integer) – maximum (final) value on the progress bar

• with – number of columns, that is screen width

append_amount(amount)
Increments the current amount value.

draw()
Prints the updated text to the screen.

update_amount(amount)
Performs sanity checks and update the current amount.

update_percentage(percentage)
Updates the progress bar to the new percentage.

avocado.utils.output.display_data_size(size)
Display data size in human readable units (SI).

Parameters size (int) – Data size, in Bytes.

Returns Human readable string with data size, using SI prefixes.

10.3.35 avocado.utils.partition module

Utility for handling partitions.

class avocado.utils.partition.MtabLock(timeout=60)
Bases: object

device = '/etc/mtab'

470 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://gist.github.com/t0xicCode/3306295
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

class avocado.utils.partition.Partition(device, loop_size=0, mountpoint=None,
mkfs_flags=”, mount_options=None)

Bases: object

Class for handling partitions and filesystems

Parameters

• device – The device in question (e.g.”/dev/hda2”). If device is a file it will be mounted as
loopback.

• loop_size – Size of loopback device (in MB). Defaults to 0.

• mountpoint – Where the partition to be mounted to.

• mkfs_flags – Optional flags for mkfs

• mount_options – Add mount options optionally

get_mountpoint(filename=None)
Find the mount point of this partition object.

Parameters filename – where to look for the mounted partitions information (default None
which means it will search /proc/mounts and/or /etc/mtab)

Returns a string with the mount point of the partition or None if not mounted

static list_mount_devices()
Lists mounted file systems and swap on devices.

static list_mount_points()
Lists the mount points.

mkfs(fstype=None, args=”)
Format a partition to filesystem type

Parameters

• fstype – the filesystem type, such as “ext3”, “ext2”. Defaults to previously set type or
“ext2” if none has set.

• args – arguments to be passed to mkfs command.

mount(mountpoint=None, fstype=None, args=”, mnt_check=True)
Mount this partition to a mount point

Parameters

• mountpoint – If you have not provided a mountpoint to partition object or want to use
a different one, you may specify it here.

• fstype – Filesystem type. If not provided partition object value will be used.

• args – Arguments to be passed to “mount” command.

• mnt_check – Flag to check/avoid checking existing device/mountpoint

unmount(force=True)
Umount this partition.

It’s easier said than done to umount a partition. We need to lock the mtab file to make sure we don’t have
any locking problems if we are umounting in parallel.

When the unmount fails and force==True we unmount the partition ungracefully.

Returns 1 on success, 2 on force umount success

Raises PartitionError – On failure

10.3. Utilities APIs 471

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

exception avocado.utils.partition.PartitionError(partition, reason, details=None)
Bases: Exception

Generic PartitionError

10.3.36 avocado.utils.path module

Avocado path related functions.

exception avocado.utils.path.CmdNotFoundError(cmd, paths)
Bases: Exception

Indicates that the command was not found in the system after a search.

Parameters

• cmd – String with the command.

• paths – List of paths where we looked after.

class avocado.utils.path.PathInspector(path)
Bases: object

get_first_line()

has_exec_permission()

is_empty()

is_python()

is_script(language=None)

avocado.utils.path.check_readable(path)
Verify that the given path exists and is readable

This should be used where an assertion makes sense, and is useful because it can provide a better message in
the exception it raises.

Parameters path (str) – the path to test

Raises OSError – path does not exist or path could not be read

Return type None

avocado.utils.path.find_command(cmd, default=None, check_exec=True)
Try to find a command in the PATH, paranoid version.

Parameters

• cmd – Command to be found.

• default – Command path to use as a fallback if not found in the standard directories.

• check_exec (bool) – if a check for permissions that render the command executable by
the current user should be performed.

Raise avocado.utils.path.CmdNotFoundError in case the command was not found and
no default was given.

Returns Returns an absolute path to the command or the default value if the command is not found

Return type str

472 Chapter 10. Test API

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.utils.path.get_path(base_path, user_path)
Translate a user specified path to a real path. If user_path is relative, append it to base_path. If user_path is
absolute, return it as is.

Parameters

• base_path – The base path of relative user specified paths.

• user_path – The user specified path.

avocado.utils.path.init_dir(*args)
Wrapper around os.path.join that creates dirs based on the final path.

Parameters args – List of dir arguments that will be os.path.joined.

Returns directory.

Return type str

avocado.utils.path.usable_ro_dir(directory)
Verify whether dir exists and we can access its contents.

Check if a usable RO directory is there.

Parameters directory – Directory

avocado.utils.path.usable_rw_dir(directory, create=True)
Verify whether we can use this dir (read/write).

Checks for appropriate permissions, and creates missing dirs as needed.

Parameters

• directory – Directory

• create – whether to create the directory

10.3.37 avocado.utils.pci module

Module for all PCI devices related functions.

avocado.utils.pci.get_cfg(dom_pci_address)
Gets the hardware configuration data of the given PCI address.

Note Specific for ppc64 processor.

Parameters dom_pci_address – Partial PCI address including domain addr and at least bus
addr (0003:00, 0003:00:1f.2, . . .)

Returns dictionary of configuration data of a PCI address.

Return type dict

avocado.utils.pci.get_disks_in_pci_address(pci_address)
Gets disks in a PCI address.

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns list of disks in a PCI address.

avocado.utils.pci.get_domains()
Gets all PCI domains. Example, it returns [‘0000’, ‘0001’, . . .]

Returns List of PCI domains.

Return type list of str

10.3. Utilities APIs 473

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

avocado.utils.pci.get_driver(pci_address)
Gets the kernel driver in use of given PCI address. (first match only)

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns driver of a PCI address.

Return type str

avocado.utils.pci.get_interfaces_in_pci_address(pci_address, pci_class)
Gets interface in a PCI address.

e.g: host = pci.get_interfaces_in_pci_address(“0001:01:00.0”, “net”) [‘enP1p1s0f0’] host =
pci.get_interfaces_in_pci_address(“0004:01:00.0”, “fc_host”) [‘host6’]

Parameters

• pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

• class – Adapter type (FC(fc_host), FCoE(net), NIC(net), SCSI(scsi)..)

Returns list of generic interfaces in a PCI address.

avocado.utils.pci.get_mask(pci_address)
Gets the mask of PCI address. (first match only)

Note There may be multiple memory entries for a PCI address.

Note This mask is calculated only with the first such entry.

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns mask of a PCI address.

Return type str

avocado.utils.pci.get_memory_address(pci_address)
Gets the memory address of a PCI address. (first match only)

Note There may be multiple memory address for a PCI address.

Note This function returns only the first such address.

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns memory address of a pci_address.

Return type str

avocado.utils.pci.get_nics_in_pci_address(pci_address)
Gets network interface(nic) in a PCI address.

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns list of network interfaces in a PCI address.

avocado.utils.pci.get_num_interfaces_in_pci(dom_pci_address)
Gets number of interfaces of a given partial PCI address starting with full domain address.

Parameters dom_pci_address – Partial PCI address including domain address (0000,
0000:00:1f, 0000:00:1f.2, etc)

Returns number of devices in a PCI domain.

Return type int

474 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

avocado Documentation, Release 88.1

avocado.utils.pci.get_pci_addresses()
Gets list of PCI addresses in the system. Does not return the PCI Bridges/Switches.

Returns list of full PCI addresses including domain (0000:00:14.0)

Return type list of str

avocado.utils.pci.get_pci_class_name(pci_address)
Gets pci class name for given pci bus address

e.g: >>> pci.get_pci_class_name(“0000:01:00.0”) ‘scsi_host’

Parameters pci_address – Any segment of a PCI address(1f, 0000:00:if, . . .)

Returns class name for corresponding pci bus address

avocado.utils.pci.get_pci_fun_list(pci_address)
Gets list of functions in the given PCI address. Example: in address 0000:03:00, functions are 0000:03:00.0 and
0000:03:00.1

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns list of functions in a PCI address.

avocado.utils.pci.get_pci_id(pci_address)
Gets PCI id of given address. (first match only)

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns PCI ID of a PCI address.

avocado.utils.pci.get_pci_id_from_sysfs(full_pci_address)
Gets the PCI ID from sysfs of given PCI address.

Parameters full_pci_address – Full PCI address including domain (0000:03:00.0)

Returns PCI ID of a PCI address from sysfs.

avocado.utils.pci.get_pci_prop(pci_address, prop)
Gets specific PCI ID of given PCI address. (first match only)

Parameters

• pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

• part – prop of PCI ID.

Returns specific PCI ID of a PCI address.

Return type str

avocado.utils.pci.get_slot_from_sysfs(full_pci_address)
Gets the PCI slot of given address.

Note Specific for ppc64 processor.

Parameters full_pci_address – Full PCI address including domain (0000:03:00.0)

Returns Removed port related details using re, only returns till physical slot of the adapter.

avocado.utils.pci.get_slot_list()
Gets list of PCI slots in the system.

Note Specific for ppc64 processor.

Returns list of slots in the system.

10.3. Utilities APIs 475

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.utils.pci.get_vpd(dom_pci_address)
Gets the VPD (Virtual Product Data) of the given PCI address.

Note Specific for ppc64 processor.

Parameters dom_pci_address – Partial PCI address including domain addr and at least bus
addr (0003:00, 0003:00:1f.2, . . .)

Returns dictionary of VPD of a PCI address.

Return type dict

10.3.38 avocado.utils.pmem module

class avocado.utils.pmem.PMem(ndctl=’ndctl’, daxctl=’daxctl’)
Bases: object

PMem class which provides function to perform ndctl and daxctl operations

This class can be used only if ndctl binaries are provided before hand

Initialize PMem object

Parameters

• ndctl – path to ndctl binary, defaults to ndctl

• daxctl – path to daxctl binary, defaults to ndctl

static check_buses()
Get buses from sys subsystem to verify persistent devices exist

Returns List of buses available

Return type list

check_daxctl_subcmd(command)
Check if given sub command is supported by daxctl

check_ndctl_subcmd(command)
Check if given sub command is supported by ndctl

static check_subcmd(binary, command)
Check if given sub command is supported by binary

Parameters command – sub command of ndctl to check for existence

Returns True if sub command is available

Return type bool

create_namespace(region=”, bus=”, n_type=’pmem’, mode=’fsdax’, memmap=’dev’, name=”,
size=”, uuid=”, sector_size=”, align=”, reconfig=”, force=False, autola-
bel=False)

Creates namespace with specified options

Parameters

• region – Region on which namespace has to be created

• bus – Bus with which namespace has to be created

• n_type – Type of namespace to be created [pmem/blk]

• mode – Mode of namespace to be created, defaults to fsdax

476 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

avocado Documentation, Release 88.1

• memmap – Metadata mapping for created namespace

• name – Optional name provided for namespace

• size – Size with which namespace has to be created

• uuid – Optional uuid provided for namespace

• sector_size – Sector size with which namespace has to be created

• align – Alignment with which namespace has to be created

• reconfig – Optionally reconfigure namespace providing existing namespace/region
name

• force – Force creation of namespace

• autolabel – Optionally autolabel the namespace

Returns True on success

Raise PMemException, if command fails.

destroy_namespace(namespace=’all’, region=”, bus=”, force=False)
Destroy namespaces, skipped in case of legacy namespace

Parameters

• namespace – name of the namespace to be destroyed

• region – Filter namespace by region

• bus – Filter namespace by bus

• force – Force a namespace to be destroyed

Returns True on Success

Raise PMemException, if command fails.

disable_namespace(namespace=’all’, region=”, bus=”, verbose=False)
Disable namespaces

Parameters

• namespace – name of the namespace to be disabled

• region – Filter namespace by region

• bus – Filter namespace by bus

• verbose – Enable True command with debug information

Returns True on success

Raise PMemException, if command fails.

disable_region(name=’all’)
Disable given region

Parameters name – name of the region to be disabled

Returns True on success

Raise PMemException, if command fails.

enable_namespace(namespace=’all’, region=”, bus=”, verbose=False)
Enable namespaces

Parameters

10.3. Utilities APIs 477

avocado Documentation, Release 88.1

• namespace – name of the namespace to be enabled

• region – Filter namespace by region

• bus – Filter namespace by bus

• verbose – Enable True command with debug information

return: True on success :raise: PMemException, if command fails.

enable_region(name=’all’)
Enable given region

Parameters name – name of the region to be enabled

Returns True on success

Raise PMemException, if command fails.

get_slot_count(region)
Get max slot count in the index area for a dimm backing a region We use region0 - > nmem0

Parameters region – Region for which slot count is found

Returns Number of slots for given region 0 in case region is not available/command fails

Return type int

static is_region_legacy(region)
Check whether we have label index namespace. If legacy we can’t create new namespaces.

Parameters region – Region for which legacy check is made

Returns True if given region is legacy, else False

read_infoblock(namespace=”, inp_file=”, **kwargs)
Read an infoblock from the specified medium

Parameters

• namespace – Read the infoblock from given namespace

• inp_file – Input file to read the infoblock from

• kwargs –

Example: self.plib.read_infoblock(namespace=ns_name, json_form=True)

Returns By default return list of json objects, if json_form is True Return as raw data, if
json_form is False Return file path if op_file is specified

Raise PMemException, if command fails.

reconfigure_dax_device(device, mode=’devdax’, region=None, no_online=False,
no_movable=False)

Reconfigure devdax device into devdax or system-ram mode

Parameters

• device – Device from which memory is to be online

• mode – Mode with which device is to be configured, default:devdax

• region – Optionally filter device by region

• no_online – Optionally don’t online the memory(only system-ram)

• no_movable – Optionally mark memory non-movable(only system-ram)

478 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#int

avocado Documentation, Release 88.1

Returns Property of configured device

Return type str

Raise PMemException, if command fails.

run_daxctl_list(options=”)
Get the json of each provided options

Parameters options – optional arguments to daxctl list command

Returns By default returns entire list of json objects

Return type list of json objects

run_ndctl_list(option=”)
Get the json of each provided options

Parameters option – optional arguments to ndctl list command

Returns By default returns entire list of json objects

Return type list of json objects

static run_ndctl_list_val(json_op, field)
Get the value of a field in given json

Parameters

• json_op – Input Json object

• field – Field to find the value from json_op object

Return type Found value type, None if not found

set_dax_memory_offline(device, region=None)
Set memory from a given devdax device offline

Parameters

• device – Device from which memory is to be offline

• region – Optionally filter device by region

Returns True if command succeeds

Return type bool

Raise PMemException, if command fails.

set_dax_memory_online(device, region=None, no_movable=False)
Set memory from a given devdax device online

Parameters

• device – Device from which memory is to be online

• region – Optionally filter device by region

• no_movable – Optionally make the memory non-movable

Returns True if command succeeds

Return type bool

Raise PMemException, if command fails.

write_infoblock(namespace=”, stdout=False, output=None, **kwargs)
Write an infoblock to the specified medium.

10.3. Utilities APIs 479

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

avocado Documentation, Release 88.1

Parameters

• namespace – Write the infoblock to given namespace

• stdout – Write the infoblock to stdout if True

• output – Write the infoblock to the file path specified

• kwargs –

Example:

pmem.write_infoblock(namespace=ns_name, align=align, size=size, mode=’devdax’)

Returns True if command succeeds

Return type bool

Raise PMemException, if command fails.

exception avocado.utils.pmem.PMemException(additional_text=None)
Bases: Exception

Error raised for all PMem failures

10.3.39 avocado.utils.process module

Functions dedicated to find and run external commands.

avocado.utils.process.CURRENT_WRAPPER = None
The active wrapper utility script.

exception avocado.utils.process.CmdError(command=None, result=None, addi-
tional_text=None)

Bases: Exception

class avocado.utils.process.CmdResult(command=”, stdout=b”, stderr=b”,
exit_status=None, duration=0, pid=None, en-
coding=None)

Bases: object

Command execution result.

Parameters

• command (str) – the command line itself

• exit_status (int) – exit code of the process

• stdout (bytes) – content of the process stdout

• stderr (bytes) – content of the process stderr

• duration (float) – elapsed wall clock time running the process

• pid (int) – ID of the process

• encoding (str) – the encoding to use for the text version of stdout and stderr, by default
avocado.utils.astring.ENCODING

stderr = None
The raw stderr (bytes)

stderr_text

480 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

stdout = None
The raw stdout (bytes)

stdout_text

class avocado.utils.process.FDDrainer(fd, result, name=None, logger=None, log-
ger_prefix=’%s’, stream_logger=None, ig-
nore_bg_processes=False, verbose=False)

Bases: object

Reads data from a file descriptor in a thread, storing locally in a file-like data object.

Parameters

• fd (int) – a file descriptor that will be read (drained) from

• result (a CmdResult instance) – a CmdResult instance associated with the process
used to detect if the process is still running and if there’s still data to be read.

• name (str) – a descriptive name that will be passed to the Thread name

• logger (logging.Logger) – the logger that will be used to (interactively) write the
content from the file descriptor

• logger_prefix (str with one %-style string formatter) – the prefix
used when logging the data

• ignore_bg_processes (boolean) – When True the process does not wait for child
processes which keep opened stdout/stderr streams after the main process finishes (eg.
forked daemon which did not closed the stdout/stderr). Note this might result in missing
output produced by those daemons after the main thread finishes and also it allows those
daemons to be running after the process finishes.

• verbose (boolean) – whether to log in both the logger and stream_logger

flush()

start()

avocado.utils.process.OUTPUT_CHECK_RECORD_MODE = None
The current output record mode. It’s not possible to record both the ‘stdout’ and ‘stderr’ streams, and at the
same time in the right order, the combined ‘output’ stream. So this setting defines the mode.

class avocado.utils.process.SubProcess(cmd, verbose=True, allow_output_check=None,
shell=False, env=None, sudo=False, ig-
nore_bg_processes=False, encoding=None)

Bases: object

Run a subprocess in the background, collecting stdout/stderr streams.

Creates the subprocess object, stdout/err, reader threads and locks.

Parameters

• cmd (str) – Command line to run.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using

10.3. Utilities APIs 481

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the subprocess in a subshell.

• env (dict) – Use extra environment variables.

• sudo (bool) – Whether the command requires admin privileges to run, so that sudo will
be prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• ignore_bg_processes – When True the process does not wait for child processes
which keep opened stdout/stderr streams after the main process finishes (eg. forked daemon
which did not closed the stdout/stderr). Note this might result in missing output produced by
those daemons after the main thread finishes and also it allows those daemons to be running
after the process finishes.

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Raises ValueError if incorrect values are given to parameters

get_pid()
Reports PID of this process

get_stderr()
Get the full stderr of the subprocess so far.

Returns Standard error of the process.

Return type str

get_stdout()
Get the full stdout of the subprocess so far.

Returns Standard output of the process.

Return type str

get_user_id()
Reports user id of this process

is_sudo_enabled()
Returns whether the subprocess is running with sudo enabled

kill()
Send a signal.SIGKILL to the process. Please consider using stop() instead if you want to do all
that’s possible to finalize the process and wait for it to finish.

poll()
Call the subprocess poll() method, fill results if rc is not None.

run(timeout=None, sig=<Signals.SIGTERM: 15>)
Start a process and wait for it to end, returning the result attr.

If the process was already started using .start(), this will simply wait for it to end.

Parameters

• timeout (float) – Time (seconds) we’ll wait until the process is finished. If it’s not,
we’ll try to terminate it and it’s children using sig and get a status. When the process
refuses to die within 1s we use SIGKILL and report the status (be it exit_code or zombie)

• sig (int) – Signal to send to the process in case it did not end after the specified timeout.

482 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

avocado Documentation, Release 88.1

Returns The command result object.

Return type A CmdResult instance.

send_signal(sig)
Send the specified signal to the process.

Parameters sig – Signal to send.

start()
Start running the subprocess.

This method is particularly useful for background processes, since you can start the subprocess and not
block your test flow.

Returns Subprocess PID.

Return type int

stop(timeout=None)
Stop background subprocess.

Call this method to terminate the background subprocess and wait for it results.

Parameters timeout – Time (seconds) we’ll wait until the process is finished. If it’s not, we’ll
try to terminate it and it’s children using sig and get a status. When the process refuses to
die within 1s we use SIGKILL and report the status (be it exit_code or zombie)

terminate()
Send a signal.SIGTERM to the process. Please consider using stop() instead if you want to do all
that’s possible to finalize the process and wait for it to finish.

wait(timeout=None, sig=<Signals.SIGTERM: 15>)
Call the subprocess poll() method, fill results if rc is not None.

Parameters

• timeout – Time (seconds) we’ll wait until the process is finished. If it’s not, we’ll try to
terminate it and it’s children using sig and get a status. When the process refuses to die
within 1s we use SIGKILL and report the status (be it exit_code or zombie)

• sig – Signal to send to the process in case it did not end after the specified timeout.

avocado.utils.process.UNDEFINED_BEHAVIOR_EXCEPTION = None
Exception to be raised when users of this API need to know that the execution of a given process resulted in
undefined behavior. One concrete example when a user, in an interactive session, let the inferior process exit
before before avocado resumed the debugger session. Since the information is unknown, and the behavior is
undefined, this situation will be flagged by an exception.

avocado.utils.process.WRAP_PROCESS = None
The global wrapper. If set, run every process under this wrapper.

avocado.utils.process.WRAP_PROCESS_NAMES_EXPR = []
Set wrapper per program names. A list of wrappers and program names. Format: [(‘/path/to/wrapper.sh’,
‘progname’), . . .]

class avocado.utils.process.WrapSubProcess(cmd, verbose=True, al-
low_output_check=None, shell=False,
env=None, wrapper=None, sudo=False, ig-
nore_bg_processes=False, encoding=None)

Bases: avocado.utils.process.SubProcess

Wrap subprocess inside an utility program.

10.3. Utilities APIs 483

https://docs.python.org/3/library/functions.html#int

avocado Documentation, Release 88.1

avocado.utils.process.binary_from_shell_cmd(cmd)
Tries to find the first binary path from a simple shell-like command.

Note It’s a naive implementation, but for commands like: VAR=VAL binary -args || true gives the
right result (binary)

Parameters cmd (unicode string) – simple shell-like binary

Returns first found binary from the cmd

avocado.utils.process.can_sudo(cmd=None)
Check whether sudo is available (or running as root)

Parameters cmd – unicode string with the commands

avocado.utils.process.cmd_split(s, comments=False, posix=True)
This is kept for compatibility purposes, but is now deprecated and will be removed in later versions. Please use
shlex.split() instead.

avocado.utils.process.get_capabilities(pid=None)
Gets a list of all capabilities for a process.

In case the getpcaps command is not available, and empty list will be returned.

It supports getpcaps’ two different formats, the current and the so called legacy/ugly.

Parameters pid (int) – the process ID (PID), if one is not given, the current PID is used (given
by os.getpid())

Returns all capabilities

Return type list

avocado.utils.process.get_children_pids(parent_pid, recursive=False)
Returns the children PIDs for the given process

Note This is currently Linux specific.

Parameters parent_pid – The PID of parent child process

Returns The PIDs for the children processes

Return type list of int

avocado.utils.process.get_command_output_matching(command, pattern)
Runs a command, and if the pattern is in in the output, returns it.

Parameters

• command (str) – the command to execute

• pattern (str) – pattern to search in the output, in a line by line basis

Returns list of lines matching the pattern

Return type list of str

avocado.utils.process.get_owner_id(pid)
Get the owner’s user id of a process

Parameters pid – the process id

Returns user id of the process owner

avocado.utils.process.get_parent_pid(pid)
Returns the parent PID for the given process

Note This is currently Linux specific.

484 Chapter 10. Test API

https://docs.python.org/3/library/shlex.html#shlex.split
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/os.html#os.getpid
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Parameters pid – The PID of child process

Returns The parent PID

Return type int

avocado.utils.process.get_sub_process_klass(cmd)
Which sub process implementation should be used

Either the regular one, or the GNU Debugger version

Parameters cmd – the command arguments, from where we extract the binary name

avocado.utils.process.getoutput(cmd, timeout=None, verbose=False, ignore_status=True,
allow_output_check=’combined’, shell=True, env=None,
sudo=False, ignore_bg_processes=False)

Because commands module is removed in Python3 and it redirect stderr to stdout, we port commands.getoutput
to make code compatible Return output (stdout or stderr) of executing cmd in a shell.

Parameters

• cmd (str) – Command line to run.

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status – Whether to raise an exception when command returns =! 0 (False), or
not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables

• sudo (bool) – Whether the command requires admin privileges to run, so that sudo will
be prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• ignore_bg_processes (bool) – Whether to ignore background processes

Returns Command output(stdout or stderr).

Return type str

avocado.utils.process.getstatusoutput(cmd, timeout=None, verbose=False, ig-
nore_status=True, allow_output_check=’combined’,
shell=True, env=None, sudo=False, ig-
nore_bg_processes=False)

Because commands module is removed in Python3 and it redirect stderr to stdout, we port com-
mands.getstatusoutput to make code compatible Return (status, output) of executing cmd in a shell.

Parameters

10.3. Utilities APIs 485

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• cmd (str) – Command line to run.

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status – Whether to raise an exception when command returns =! 0 (False), or
not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables

• sudo (bool) – Whether the command requires admin privileges to run, so that sudo will
be prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• ignore_bg_processes (bool) – Whether to ignore background processes

Returns Exit status and command output(stdout and stderr).

Return type tuple

avocado.utils.process.has_capability(capability, pid=None)
Checks if a process has a given capability.

This is a simple wrapper around getpcaps, part of the libcap package. In case the getpcaps command is not
available, the capability will be considered not to be available.

Parameters capability (str) – the name of the capability, refer to capabilities(7) man page for
more information.

Returns whether the capability is available or not

Return type bool

avocado.utils.process.kill_process_by_pattern(pattern)
Send SIGTERM signal to a process with matched pattern.

Parameters pattern – normally only matched against the process name

avocado.utils.process.kill_process_tree(pid, sig=None, send_sigcont=True, timeout=0)
Signal a process and all of its children.

If the process does not exist – return.

Parameters

• pid – The pid of the process to signal.

• sig – The signal to send to the processes, defaults to signal.SIGKILL

• send_sigcont – Send SIGCONT to allow killing stopped processes

486 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/signal.html#signal.SIGKILL

avocado Documentation, Release 88.1

• timeout – How long to wait for the pid(s) to die (negative=infinity, 0=don’t wait, posi-
tive=number_of_seconds)

Returns list of all PIDs we sent signal to

Return type list

avocado.utils.process.pid_exists(pid)
Return True if a given PID exists.

Parameters pid – Process ID number.

avocado.utils.process.process_in_ptree_is_defunct(ppid)
Verify if any processes deriving from PPID are in the defunct state.

Attempt to verify if parent process and any children from PPID is defunct (zombie) or not.

Parameters ppid – The parent PID of the process to verify.

avocado.utils.process.run(cmd, timeout=None, verbose=True, ignore_status=False, al-
low_output_check=None, shell=False, env=None, sudo=False,
ignore_bg_processes=False, encoding=None)

Run a subprocess, returning a CmdResult object.

Parameters

• cmd (str) – Command line to run.

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status (bool) – Whether to raise an exception when command returns =! 0
(False), or not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables

• sudo – Whether the command requires admin privileges to run, so that sudo will be
prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Returns An CmdResult object.

Raise CmdError, if ignore_status=False.

avocado.utils.process.safe_kill(pid, signal)
Attempt to send a signal to a given process that may or may not exist.

10.3. Utilities APIs 487

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Parameters signal – Signal number.

avocado.utils.process.should_run_inside_wrapper(cmd)
Whether the given command should be run inside the wrapper utility.

Parameters cmd – the command arguments, from where we extract the binary name

avocado.utils.process.system(cmd, timeout=None, verbose=True, ignore_status=False, al-
low_output_check=None, shell=False, env=None, sudo=False, ig-
nore_bg_processes=False, encoding=None)

Run a subprocess, returning its exit code.

Parameters

• cmd (str) – Command line to run.

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status (bool) – Whether to raise an exception when command returns =! 0
(False), or not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables.

• sudo – Whether the command requires admin privileges to run, so that sudo will be
prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Returns Exit code.

Return type int

Raise CmdError, if ignore_status=False.

avocado.utils.process.system_output(cmd, timeout=None, verbose=True, ig-
nore_status=False, allow_output_check=None,
shell=False, env=None, sudo=False, ig-
nore_bg_processes=False, strip_trail_nl=True, en-
coding=None)

Run a subprocess, returning its output.

Parameters

• cmd (str) – Command line to run.

488 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status – Whether to raise an exception when command returns =! 0 (False), or
not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables

• sudo (bool) – Whether the command requires admin privileges to run, so that sudo will
be prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• ignore_bg_processes (bool) – Whether to ignore background processes

• strip_trail_nl (bool) – Whether to strip the trailing newline

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Returns Command output.

Return type bytes

Raise CmdError, if ignore_status=False.

10.3.40 avocado.utils.script module

Module to handle scripts creation.

avocado.utils.script.DEFAULT_MODE = 509
What is commonly known as “0775” or “u=rwx,g=rwx,o=rx”

avocado.utils.script.READ_ONLY_MODE = 292
What is commonly known as “0444” or “u=r,g=r,o=r”

class avocado.utils.script.Script(path, content, mode=509, open_mode=’w’)
Bases: object

Class that represents a script.

Creates an instance of Script.

Note that when the instance inside a with statement, it will automatically call save() and then remove() for you.

Parameters

• path – the script file name.

• content – the script content.

10.3. Utilities APIs 489

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

• mode – set file mode, defaults what is commonly known as 0775.

remove()
Remove script from the file system.

Returns True if script has been removed, otherwise False.

save()
Store script to file system.

Returns True if script has been stored, otherwise False.

class avocado.utils.script.TemporaryScript(name, content, prefix=’avocado_script’,
mode=509, open_mode=’w’)

Bases: avocado.utils.script.Script

Class that represents a temporary script.

Creates an instance of TemporaryScript.

Note that when the instance inside a with statement, it will automatically call save() and then remove() for you.

When the instance object is garbage collected, it will automatically call remove() for you.

Parameters

• name – the script file name.

• content – the script content.

• prefix – prefix for the temporary directory name.

• mode – set file mode, default to 0775.

remove()
Remove script from the file system.

Returns True if script has been removed, otherwise False.

avocado.utils.script.make_script(path, content, mode=509)
Creates a new script stored in the file system.

Parameters

• path – the script file name.

• content – the script content.

• mode – set file mode, default to 0775.

Returns the script path.

avocado.utils.script.make_temp_script(name, content, prefix=’avocado_script’, mode=509)
Creates a new temporary script stored in the file system.

Parameters

• path – the script file name.

• content – the script content.

• prefix – the directory prefix Default to ‘avocado_script’.

• mode – set file mode, default to 0775.

Returns the script path.

490 Chapter 10. Test API

avocado Documentation, Release 88.1

10.3.41 avocado.utils.service module

avocado.utils.service.ServiceManager(run=<function run>)
Detect which init program is being used, init or systemd and return a class has methods to start/stop services.

Example of use:

Get the system service manager
service_manager = ServiceManager()

Stating service/unit "sshd"
service_manager.start("sshd")

Getting a list of available units
units = service_manager.list()

Disabling and stopping a list of services
services_to_disable = ['ntpd', 'httpd']

for s in services_to_disable:
service_manager.disable(s)
service_manager.stop(s)

Returns SysVInitServiceManager or SystemdServiceManager

Return type _GenericServiceManager

avocado.utils.service.SpecificServiceManager(service_name, run=<function run>)
Get the service manager for a specific service.

Example of use:

Get the specific service manager for sshd
sshd = SpecificServiceManager("sshd")
sshd.start()
sshd.stop()
sshd.reload()
sshd.restart()
sshd.condrestart()
sshd.status()
sshd.enable()
sshd.disable()
sshd.is_enabled()

Parameters service_name (str) – systemd unit or init.d service to manager

Returns SpecificServiceManager that has start/stop methods

Return type _SpecificServiceManager

avocado.utils.service.convert_systemd_target_to_runlevel(target)
Convert systemd target to runlevel.

Parameters target (str) – systemd target

Returns sys_v runlevel

Return type str

Raises ValueError – when systemd target is unknown

10.3. Utilities APIs 491

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

avocado Documentation, Release 88.1

avocado.utils.service.convert_sysv_runlevel(level)
Convert runlevel to systemd target.

Parameters level (str or int) – sys_v runlevel

Returns systemd target

Return type str

Raises ValueError – when runlevel is unknown

avocado.utils.service.get_name_of_init(run=<function run>)
Internal function to determine what executable is PID 1

It does that by checking /proc/1/exe. Fall back to checking /proc/1/cmdline (local execution).

Returns executable name for PID 1, aka init

Return type str

avocado.utils.service.service_manager(run=<function run>)
Detect which init program is being used, init or systemd and return a class has methods to start/stop services.

Example of use:

Get the system service manager
service_manager = ServiceManager()

Stating service/unit "sshd"
service_manager.start("sshd")

Getting a list of available units
units = service_manager.list()

Disabling and stopping a list of services
services_to_disable = ['ntpd', 'httpd']

for s in services_to_disable:
service_manager.disable(s)
service_manager.stop(s)

Returns SysVInitServiceManager or SystemdServiceManager

Return type _GenericServiceManager

avocado.utils.service.specific_service_manager(service_name, run=<function run>)
Get the service manager for a specific service.

Example of use:

Get the specific service manager for sshd
sshd = SpecificServiceManager("sshd")
sshd.start()
sshd.stop()
sshd.reload()
sshd.restart()
sshd.condrestart()
sshd.status()
sshd.enable()
sshd.disable()
sshd.is_enabled()

492 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

Parameters service_name (str) – systemd unit or init.d service to manager

Returns SpecificServiceManager that has start/stop methods

Return type _SpecificServiceManager

avocado.utils.service.sys_v_init_command_generator(command)
Generate lists of command arguments for sys_v style inits.

Parameters command (str) – start,stop,restart, etc.

Returns list of commands to pass to process.run or similar function

Return type builtin.list

avocado.utils.service.sys_v_init_result_parser(command)
Parse results from sys_v style commands.

command status: return true if service is running. command is_enabled: return true if service is enabled.
command list: return a dict from service name to status. command others: return true if operate success.

Parameters command (str.) – command.

Returns different from the command.

avocado.utils.service.systemd_command_generator(command)
Generate list of command line argument strings for systemctl.

One argument per string for compatibility Popen

WARNING: If systemctl detects that it is running on a tty it will use color, pipe to $PAGER, change column sizes
and not truncate unit names. Use –no-pager to suppress pager output, or set PAGER=cat in the environment. You
may need to take other steps to suppress color output. See https://bugzilla.redhat.com/show_bug.cgi?id=713567

Parameters command (str) – start,stop,restart, etc.

Returns List of command and arguments to pass to process.run or similar functions

Return type builtin.list

avocado.utils.service.systemd_result_parser(command)
Parse results from systemd style commands.

command status: return true if service is running. command is_enabled: return true if service is enabled.
command list: return a dict from service name to status. command others: return true if operate success.

Parameters command (str.) – command.

Returns different from the command.

10.3.42 avocado.utils.softwareraid module

This module provides APIs to work with software raid.

class avocado.utils.softwareraid.SoftwareRaid(name, level, disks, metadata,
spare_disks=None)

Bases: object

Perform software raid related operations.

Parameters

• name (str) – Name of the software raid to be created

• level – Level of software raid to be created

10.3. Utilities APIs 493

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://bugzilla.redhat.com/show_bug.cgi?id=713567
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• disks (list) – List of disks for software raid

• metadata (str) – Metadata level for software raid

• spare_disks (list) – List of spare disks for software raid

add_disk(disk)
Adds disk specified to software raid.

Parameters disk (str) – disk to be added.

Returns True if add is successful, False otherwise.

Return type bool

assemble()
Assembles software raid.

Returns True if assembled, False otherwise.

Return type bool

clear_superblock()
Zeroes superblocks in member devices of raid.

Returns True if zeroed, False otherwise.

Return type bool

create()
Creates software raid.

Returns True if raid is created. False otherwise.

Return type bool

get_detail()
Returns mdadm details.

Returns mdadm –detail output

Return type str

is_recovering()
Checks if raid is recovering.

Returns True if recovering, False otherwise.

Return type bool

remove_disk(disk)
Removes disk specified from software raid.

Parameters disk (str) – disk to be removed.

Returns True if remove is successful, False otherwise.

Return type bool

stop()
Stops software raid.

Returns True if stopped, False otherwise.

Return type bool

494 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

avocado Documentation, Release 88.1

10.3.43 avocado.utils.ssh module

Provides utilities to carry out an SSH session.

Example of use:

from avocado.utils import ssh

with ssh.Session(host, user='root', key='/path/to/file') as session:
result = session.cmd('ls')
if result.exit_status == 0:

print(result.stdout_text)

exception avocado.utils.ssh.NWException
Bases: Exception

Base Exception Class for all exceptions

avocado.utils.ssh.SSH_CLIENT_BINARY = '/usr/bin/ssh'
The SSH client binary to use, if one is found in the system

class avocado.utils.ssh.Session(host, port=None, user=None, key=None, password=None)
Bases: object

Represents an SSH session to a remote system, for the purpose of executing commands remotely.

Session is also a context manager. On entering the context it tries to establish the connection, therefore on
exiting that connection is closed.

Parameters

• host (str) – a host name or IP address

• port (int) – port number

• user (str) – the name of the remote user

• key (str) – path to a key for authentication purpose

• password (str) – password for authentication purpose

DEFAULT_OPTIONS = (('StrictHostKeyChecking', 'no'), ('UpdateHostKeys', 'no'), ('ControlPath', '~/.ssh/avocado-master-%r@%h:%p'))

MASTER_OPTIONS = (('ControlMaster', 'yes'), ('ControlPersist', 'yes'))

cleanup_master()
Removes master file if exists.

cmd(command, ignore_status=True)
Runs a command over the SSH session

Parameters

• command (str) – the command to execute over the SSH session

• ignore_status (bool) – Whether to check the operation failed or not. If set to False
then it raises an avocado.utils.process.CmdError exception in case of either
the command or ssh connection returned with exit status other than zero.

Returns The command result object.

Return type A avocado.utils.process.CmdResult instance.

connect()
Establishes the connection to the remote endpoint

10.3. Utilities APIs 495

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

avocado Documentation, Release 88.1

On this implementation, it means creating the master connection, which is a process that will live while
and be used for subsequent commands.

Returns whether the connection is successfully established

Return type bool

control_master

copy_files(source, destination, recursive=False)
Copy Files to and from remote through scp session.

Parameters

• source – Source file

• destination – Destination file location

• recursive – Scp option for copy file. if set to True copy files inside directory recur-
sively.

Type str

Type str

Type bool

Returns True if success and an exception if not.

Return type bool

get_raw_ssh_command(command)
Returns the raw command that will be executed locally

This should only be used if you need to interact with the ssh subprocess, and most users will NOT need to.
Try to use the cmd() method instead.

Parameters command (str) – the command to execute over the SSH session

Returns The raw SSH command, that can be executed locally for the execution of a remote
command.

Return type str

quit()
Attempts to gracefully end the session, by finishing the master process

Returns if closing the session was successful or not

Return type bool

10.3.44 avocado.utils.stacktrace module

Traceback standard module plus some additional APIs.

avocado.utils.stacktrace.analyze_unpickable_item(path_prefix, obj)
Recursive method to obtain unpickable objects along with location

Parameters

• path_prefix – Path to this object

• obj – The sub-object under introspection

Returns [($path_to_the_object, $value), . . .]

496 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

avocado Documentation, Release 88.1

avocado.utils.stacktrace.log_exc_info(exc_info, logger=”)
Log exception info to logger_name.

Parameters

• exc_info – Exception info produced by sys.exc_info()

• logger – Name or logger instance (defaults to ‘’)

avocado.utils.stacktrace.log_message(message, logger=”)
Log message to logger.

Parameters

• message – Message

• logger – Name or logger instance (defaults to ‘’)

avocado.utils.stacktrace.prepare_exc_info(exc_info)
Prepare traceback info.

Parameters exc_info – Exception info produced by sys.exc_info()

avocado.utils.stacktrace.str_unpickable_object(obj)
Return human readable string identifying the unpickable objects

Parameters obj – The object for analysis

Raises ValueError – In case the object is pickable

avocado.utils.stacktrace.tb_info(exc_info)
Prepare traceback info.

Parameters exc_info – Exception info produced by sys.exc_info()

10.3.45 avocado.utils.vmimage module

Provides VM images acquired from official repositories

class avocado.utils.vmimage.CentOSImageProvider(version=’[0-9]+’, build=’[0-9]{4}’,
arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

CentOS Image Provider

get_image_url()
Probes the higher image available for the current parameters.

name = 'CentOS'

class avocado.utils.vmimage.CirrOSImageProvider(version=’[0-9]+\.[0-9]+\.[0-9]+’,
build=None, arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

CirrOS Image Provider

CirrOS is a Tiny OS that specializes in running on a cloud.

name = 'CirrOS'

class avocado.utils.vmimage.DebianImageProvider(version=’[0-9]+.[0-9]+.[0-9]+.*’,
build=None, arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

Debian Image Provider

10.3. Utilities APIs 497

https://docs.python.org/3/library/exceptions.html#ValueError

avocado Documentation, Release 88.1

name = 'Debian'

class avocado.utils.vmimage.FedoraImageProvider(version=’[0-9]+’, build=’[0-9]+.[0-
9]+’, arch=’x86_64’)

Bases: avocado.utils.vmimage.FedoraImageProviderBase

Fedora Image Provider

name = 'Fedora'

class avocado.utils.vmimage.FedoraImageProviderBase(version, build, arch)
Bases: avocado.utils.vmimage.ImageProviderBase

Base Fedora Image Provider

HTML_ENCODING = 'iso-8859-1'

get_image_url()
Probes the higher image available for the current parameters.

url_old_images = None

class avocado.utils.vmimage.FedoraSecondaryImageProvider(version=’[0-9]+’,
build=’[0-9]+.[0-9]+’,
arch=’x86_64’)

Bases: avocado.utils.vmimage.FedoraImageProviderBase

Fedora Secondary Image Provider

name = 'FedoraSecondary'

avocado.utils.vmimage.IMAGE_PROVIDERS = {<class 'avocado.utils.vmimage.OpenSUSEImageProvider'>, <class 'avocado.utils.vmimage.FedoraSecondaryImageProvider'>, <class 'avocado.utils.vmimage.UbuntuImageProvider'>, <class 'avocado.utils.vmimage.JeosImageProvider'>, <class 'avocado.utils.vmimage.FedoraImageProvider'>, <class 'avocado.utils.vmimage.CentOSImageProvider'>, <class 'avocado.utils.vmimage.DebianImageProvider'>, <class 'avocado.utils.vmimage.CirrOSImageProvider'>}
List of available providers classes

class avocado.utils.vmimage.Image(name, url, version, arch, build, checksum, algorithm,
cache_dir, snapshot_dir=None)

Bases: object

Creates an instance of Image class.

Parameters

• name (str) – Name of image.

• url (str) – The url where the image can be fetched from.

• version (int) – Version of image.

• arch (str) – Architecture of the system image.

• build (str) – Build of the system image.

• checksum (str) – Hash of the system image to match after download.

• algorithm (str) – Hash type, used when the checksum is provided.

• cache_dir (str or iterable) – Local system path where the base images will be
held.

• snapshot_dir (str) – Local system path where the snapshot images will be held. De-
faults to cache_dir if none is given.

base_image

download()

get()

path

498 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

class avocado.utils.vmimage.ImageProviderBase(version, build, arch)
Bases: object

Base class to define the common methods and attributes of an image. Intended to be sub-classed by the specific
image providers.

HTML_ENCODING = 'utf-8'

file_name

static get_best_version(versions)

get_image_parameters(image_file_name)
Computation of image parameters from image_pattern

Parameters image_file_name (str) – pattern with parameters

Returns dict with parameters

Return type dict or None

get_image_url()
Probes the higher image available for the current parameters.

get_version()
Probes the higher version available for the current parameters.

get_versions()
Return all available versions for the current parameters.

version

version_pattern

exception avocado.utils.vmimage.ImageProviderError
Bases: Exception

Generic error class for ImageProvider

class avocado.utils.vmimage.JeosImageProvider(version=’[0-9]+’, build=None,
arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

JeOS Image Provider

name = 'JeOS'

class avocado.utils.vmimage.OpenSUSEImageProvider(version=’[0-9]{2}.[0-9]{1}’,
build=None, arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

OpenSUSE Image Provider

HTML_ENCODING = 'iso-8859-1'

get_best_version(versions)

get_versions()
Return all available versions for the current parameters.

name = 'OpenSUSE'

version_pattern

avocado.utils.vmimage.QEMU_IMG = None
The “qemu-img” binary used when creating the snapshot images. If set to None (the default), it will attempt to

10.3. Utilities APIs 499

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception

avocado Documentation, Release 88.1

find a suitable binary with avocado.utils.path.find_command(), which uses the the system’s PATH
environment variable

class avocado.utils.vmimage.UbuntuImageProvider(version=’[0-9]+.[0-9]+’, build=None,
arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

Ubuntu Image Provider

get_versions()
Return all available versions for the current parameters.

name = 'Ubuntu'

class avocado.utils.vmimage.VMImageHtmlParser(pattern)
Bases: html.parser.HTMLParser

Custom HTML parser to extract the href items that match a given pattern

handle_starttag(tag, attrs)

avocado.utils.vmimage.get(name=None, version=None, build=None, arch=None, checksum=None,
algorithm=None, cache_dir=None, snapshot_dir=None)

Wrapper to get the best Image Provider, according to the parameters provided.

Parameters

• name – (optional) Name of the Image Provider, usually matches the distro name.

• version – (optional) Version of the system image.

• build – (optional) Build number of the system image.

• arch – (optional) Architecture of the system image.

• checksum – (optional) Hash of the system image to match after download.

• algorithm – (optional) Hash type, used when the checksum is provided.

• cache_dir – (optional) Local system path where the base images will be held.

• snapshot_dir – (optional) Local system path where the snapshot images will be held.
Defaults to cache_dir if none is given.

Returns Image instance that can provide the image according to the parameters.

avocado.utils.vmimage.get_best_provider(name=None, version=None, build=None,
arch=None)

Wrapper to get parameters of the best Image Provider, according to the parameters provided.

Parameters

• name – (optional) Name of the Image Provider, usually matches the distro name.

• version – (optional) Version of the system image.

• build – (optional) Build number of the system image.

• arch – (optional) Architecture of the system image.

Returns Image Provider

avocado.utils.vmimage.list_providers()
List the available Image Providers

500 Chapter 10. Test API

https://docs.python.org/3/library/html.parser.html#html.parser.HTMLParser

avocado Documentation, Release 88.1

10.3.46 avocado.utils.wait module

avocado.utils.wait.wait_for(func, timeout, first=0.0, step=1.0, text=None, args=None,
kwargs=None)

Wait until func() evaluates to True.

If func() evaluates to True before timeout expires, return the value of func(). Otherwise return None.

Parameters

• timeout – Timeout in seconds

• first – Time to sleep before first attempt

• step – Time to sleep between attempts in seconds

• text – Text to print while waiting, for debug purposes

• args – Positional arguments to func

• kwargs – Keyword arguments to func

10.3.47 Module contents

10.4 Extension (plugin) APIs

Extension APIs that may be of interest to plugin writers.

10.4.1 Subpackages

avocado.plugins.legacy package

Submodules

avocado.plugins.legacy.replay module

class avocado.plugins.legacy.replay.Replay
Bases: avocado.core.plugin_interfaces.CLI

Replay a job

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "Replay options for 'run' subcommand"

static load_config(resultsdir)

name = 'replay'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

10.4. Extension (plugin) APIs 501

avocado Documentation, Release 88.1

Module contents

avocado.plugins.spawners package

Submodules

avocado.plugins.spawners.podman module

class avocado.plugins.spawners.podman.PodmanCLI
Bases: avocado.core.plugin_interfaces.CLI

configure(parser)
Configures the command line parser with options specific to this plugin.

description = 'podman spawner command line options for "run"'

name = 'podman'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.spawners.podman.PodmanSpawner(config=None)
Bases: avocado.core.plugin_interfaces.Spawner, avocado.core.spawners.common.
SpawnerMixin

METHODS = [<SpawnMethod.STANDALONE_EXECUTABLE: <object object>>]

static check_task_requirements(runtime_task)
Check the runtime task requirements needed to be able to run

description = 'Podman (container) based spawner'

static is_task_alive(runtime_task)
Determines if a task is alive or not.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

spawn_task(runtime_task)
Spawns a task return whether the spawning was successful.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

static wait_task(runtime_task)
Waits for a task to finish.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

class avocado.plugins.spawners.podman.PodmanSpawnerInit
Bases: avocado.core.plugin_interfaces.Init

description = 'Podman (container) based spawner initialization'

initialize()
Entry point for the plugin to perform its initialization.

502 Chapter 10. Test API

avocado Documentation, Release 88.1

avocado.plugins.spawners.process module

class avocado.plugins.spawners.process.ProcessSpawner(config=None)
Bases: avocado.core.plugin_interfaces.Spawner, avocado.core.spawners.common.
SpawnerMixin

METHODS = [<SpawnMethod.STANDALONE_EXECUTABLE: <object object>>]

static check_task_requirements(runtime_task)
Check the runtime task requirements needed to be able to run

description = 'Process based spawner'

static is_task_alive(runtime_task)
Determines if a task is alive or not.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

spawn_task(runtime_task)
Spawns a task return whether the spawning was successful.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

static wait_task(runtime_task)
Waits for a task to finish.

Parameters runtime_task (avocado.core.task.runtime.RuntimeTask) –
wrapper for a Task with additional runtime information

Module contents

10.4.2 Submodules

10.4.3 avocado.plugins.archive module

Result Archive Plugin

class avocado.plugins.archive.Archive
Bases: avocado.core.plugin_interfaces.Result

description = 'Result archive (ZIP) support'

name = 'zip_archive'

render(result, job)
Entry point with method that renders the result.

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

class avocado.plugins.archive.ArchiveCLI
Bases: avocado.core.plugin_interfaces.CLI

configure(parser)
Configures the command line parser with options specific to this plugin.

10.4. Extension (plugin) APIs 503

avocado Documentation, Release 88.1

description = 'Result archive (ZIP) support to run command'

name = 'zip_archive'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

10.4.4 avocado.plugins.assets module

Assets subcommand

class avocado.plugins.assets.Assets
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘assets’ subcommand

configure(parser)
Add the subparser for the assets action.

Parameters parser (avocado.core.parser.ArgumentParser) – The Avocado
command line application parser

description = 'Manage assets'

static handle_fetch(config)

handle_list(config)

handle_purge(config)

static handle_register(config)

name = 'assets'

run(config)
Entry point for actually running the command.

class avocado.plugins.assets.FetchAssetHandler(file_name, klass=None, method=None)
Bases: ast.NodeVisitor

Handles the parsing of instrumented tests for fetch_asset statements.

PATTERN = 'fetch_asset'

visit_Assign(node)
Visit Assign on AST and build list of assignments that matches the pattern pattern name = string. :param
node: AST node to be evaluated :type node: ast.*

visit_Call(node)
Visit Calls on AST and build list of calls that matches the pattern. :param node: AST node to be evaluated
:type node: ast.*

visit_ClassDef(node)
Visit ClassDef on AST and save current Class. :param node: AST node to be evaluated :type node: ast.*

visit_FunctionDef(node)
Visit FunctionDef on AST and save current method. :param node: AST node to be evaluated :type node:
ast.*

504 Chapter 10. Test API

https://docs.python.org/3/library/ast.html#ast.NodeVisitor

avocado Documentation, Release 88.1

class avocado.plugins.assets.FetchAssetJob(config=None)
Bases: avocado.core.plugin_interfaces.JobPreTests

Implements the assets fetch job pre tests. This has the same effect of running the ‘avocado assets fetch INSTRU-
MENTED’, but it runs during the test execution, before the actual test starts.

description = 'Fetch assets before the test run'

name = 'fetchasset'

pre_tests(job)
Entry point for job running actions before tests execution.

avocado.plugins.assets.fetch_assets(test_file, klass=None, method=None, logger=None)
Fetches the assets based on keywords listed on FetchAssetHandler.calls. :param test_file: File name of instru-
mented test to be evaluated :type test_file: str :returns: list of names that were successfully fetched and list of
fails.

10.4.5 avocado.plugins.config module

class avocado.plugins.config.Config
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘config’ subcommand

configure(parser)
Lets the extension add command line options and do early configuration.

By default it will register its name as the command name and give its description as the help message.

description = 'Shows avocado config keys'

static handle_default()

static handle_reference(print_function)

name = 'config'

run(config)
Entry point for actually running the command.

10.4.6 avocado.plugins.dict_variants module

class avocado.plugins.dict_variants.DictVariants
Bases: avocado.core.plugin_interfaces.Varianter

Turns (a list of) Python dictionaries into variants

description = 'Python Dictionary based varianter'

initialize(config)

name = 'dict_variants'

to_str(summary, variants, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means silent and maximum is up to the plugin.

Parameters

• summary – How verbose summary to output (int)

10.4. Extension (plugin) APIs 505

avocado Documentation, Release 88.1

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

class avocado.plugins.dict_variants.DictVariantsInit
Bases: avocado.core.plugin_interfaces.Init

description = 'Python Dictionary based varianter'

initialize()
Entry point for the plugin to perform its initialization.

name = 'dict_variants'

10.4.7 avocado.plugins.diff module

Job Diff

class avocado.plugins.diff.Diff
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘diff’ subcommand

configure(parser)
Add the subparser for the diff action.

Parameters parser (avocado.core.parser.ArgumentParser) – The Avocado
command line application parser

description = 'Shows the difference between 2 jobs.'

name = 'diff'

run(config)
Entry point for actually running the command.

10.4.8 avocado.plugins.distro module

avocado.plugins.distro.DISTRO_PKG_INFO_LOADERS = {'deb': <class 'avocado.plugins.distro.DistroPkgInfoLoaderDeb'>, 'rpm': <class 'avocado.plugins.distro.DistroPkgInfoLoaderRpm'>}
the type of distro that will determine what loader will be used

class avocado.plugins.distro.Distro
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘distro’ subcommand

configure(parser)
Lets the extension add command line options and do early configuration.

By default it will register its name as the command name and give its description as the help message.

description = 'Shows detected Linux distribution'

name = 'distro'

run(config)
Entry point for actually running the command.

506 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

class avocado.plugins.distro.DistroDef(name, version, release, arch)
Bases: avocado.utils.distro.LinuxDistro

More complete information on a given Linux Distribution

Can and should include all the software packages that ship with the distro, so that an analysis can be made on
whether a given package that may be responsible for a regression is part of the official set or an external package.

software_packages = None
All the software packages that ship with this Linux distro

software_packages_type = None
A simple text that denotes the software type that makes this distro

to_dict()
Returns the representation as a dictionary

to_json()
Returns the representation of the distro as JSON

class avocado.plugins.distro.DistroPkgInfoLoader(path)
Bases: object

Loads information from the distro installation tree into a DistroDef

It will go through all package files and inspect them with specific package utilities, collecting the necessary
information.

get_package_info(path)
Returns information about a given software package

Should be implemented by classes inheriting from DistroDefinitionLoader.

Parameters path (str) – path to the software package file

Returns tuple with name, version, release, checksum and arch

Return type tuple

get_packages_info()
This method will go through each file, checking if it’s a valid software package file by calling
is_software_package() and calling load_package_info() if it’s so.

is_software_package(path)
Determines if the given file at path is a software package

This check will be used to determine if load_package_info() will be called for file at path. This
method should be implemented by classes inheriting from DistroPkgInfoLoader and could be as
simple as checking for a file suffix.

Parameters path (str) – path to the software package file

Returns either True if the file is a valid software package or False otherwise

Return type bool

class avocado.plugins.distro.DistroPkgInfoLoaderDeb(path)
Bases: avocado.plugins.distro.DistroPkgInfoLoader

Loads package information for DEB files

get_package_info(path)
Returns information about a given software package

Should be implemented by classes inheriting from DistroDefinitionLoader.

10.4. Extension (plugin) APIs 507

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

avocado Documentation, Release 88.1

Parameters path (str) – path to the software package file

Returns tuple with name, version, release, checksum and arch

Return type tuple

is_software_package(path)
Determines if the given file at path is a software package

This check will be used to determine if load_package_info() will be called for file at path. This
method should be implemented by classes inheriting from DistroPkgInfoLoader and could be as
simple as checking for a file suffix.

Parameters path (str) – path to the software package file

Returns either True if the file is a valid software package or False otherwise

Return type bool

class avocado.plugins.distro.DistroPkgInfoLoaderRpm(path)
Bases: avocado.plugins.distro.DistroPkgInfoLoader

Loads package information for RPM files

get_package_info(path)
Returns information about a given software package

Should be implemented by classes inheriting from DistroDefinitionLoader.

Parameters path (str) – path to the software package file

Returns tuple with name, version, release, checksum and arch

Return type tuple

is_software_package(path)
Systems needs to be able to run the rpm binary in order to fetch information on package files. If the rpm
binary is not available on this system, we simply ignore the rpm files found

class avocado.plugins.distro.SoftwarePackage(name, version, release, checksum, arch)
Bases: object

Definition of relevant information on a software package

to_dict()
Returns the representation as a dictionary

to_json()
Returns the representation of the distro as JSON

avocado.plugins.distro.load_distro(path)
Loads the distro from an external file

Parameters path (str) – the location for the input file

Returns a dict with the distro definition data

Return type dict

avocado.plugins.distro.load_from_tree(name, version, release, arch, package_type, path)
Loads a DistroDef from an installable tree

Parameters

• name (str) – a short name that precisely distinguishes this Linux Distribution among all
others.

508 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• version (str) – the major version of the distribution. Usually this is a single number
that denotes a large development cycle and support file.

• release (str) – the release or minor version of the distribution. Usually this is also a
single number, that is often omitted or starts with a 0 when the major version is initially
release. It’s often associated with a shorter development cycle that contains incremental a
collection of improvements and fixes.

• arch (str) – the main target for this Linux Distribution. It’s common for some architec-
tures to ship with packages for previous and still compatible architectures, such as it’s the
case with Intel/AMD 64 bit architecture that support 32 bit code. In cases like this, this
should be set to the 64 bit architecture name.

• package_type (str) – one of the available package info loader types

• path (str) – top level directory of the distro installation tree files

avocado.plugins.distro.save_distro(linux_distro, path)
Saves the linux_distro to an external file format

Parameters

• linux_distro (DistroDef) – an DistroDef instance

• path (str) – the location for the output file

Returns None

10.4.9 avocado.plugins.exec_path module

Libexec PATHs modifier

class avocado.plugins.exec_path.ExecPath
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘exec-path’ subcommand

description = 'Returns path to avocado bash libraries and exits.'

name = 'exec-path'

run(config)
Print libexec path and finish

Parameters config – job configuration

10.4.10 avocado.plugins.expected_files_merge module

Functions for merging equal expected files together

class avocado.plugins.expected_files_merge.FilesMerge
Bases: avocado.core.plugin_interfaces.JobPost

Plugin for merging equal expected files together

description = 'Merge of equal expected files'

name = 'merge'

post(job)
Entry point for actually running the post job action.

10.4. Extension (plugin) APIs 509

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado.plugins.expected_files_merge.merge_expected_files(references)
Cascade merge of equal expected files in job references from variant level to file level :param references: list of
job references :type references: list

10.4.11 avocado.plugins.human module

Human result UI

class avocado.plugins.human.Human(config)
Bases: avocado.core.plugin_interfaces.ResultEvents

Human result UI

description = 'Human Interface UI'

end_test(result, state)
Event triggered when a test finishes running.

static get_colored_status(status, extra=None)

name = 'human'

post_tests(job)
Entry point for job running actions after the tests execution.

pre_tests(job)
Entry point for job running actions before tests execution.

start_test(result, state)
Event triggered when a test starts running.

test_progress(progress=False)
Interface to notify progress (or not) of the running test.

class avocado.plugins.human.HumanJob
Bases: avocado.core.plugin_interfaces.JobPre, avocado.core.plugin_interfaces.
JobPost

Human result UI

description = 'Human Interface UI'

name = 'human'

post(job)
Entry point for actually running the post job action.

pre(job)
Entry point for actually running the pre job action.

10.4.12 avocado.plugins.jobs module

Jobs subcommand

class avocado.plugins.jobs.Jobs
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘jobs’ subcommand

configure(parser)
Add the subparser for the assets action.

510 Chapter 10. Test API

avocado Documentation, Release 88.1

Parameters parser (avocado.core.parser.ArgumentParser) – The Avocado
command line application parser

description = 'Manage Avocado jobs'

static handle_list_command(jobs_results)
Called when ‘avocado jobs list’ command is executed.

handle_output_files_command(config)
Called when ‘avocado jobs get-output-files’ command is executed.

handle_show_command(config)
Called when ‘avocado jobs show’ command is executed.

name = 'jobs'

run(config)
Entry point for actually running the command.

10.4.13 avocado.plugins.jobscripts module

class avocado.plugins.jobscripts.JobScripts
Bases: avocado.core.plugin_interfaces.JobPre, avocado.core.plugin_interfaces.
JobPost

description = 'Runs scripts before/after the job is run'

name = 'jobscripts'

post(job)
Entry point for actually running the post job action.

pre(job)
Entry point for actually running the pre job action.

class avocado.plugins.jobscripts.JobScriptsInit
Bases: avocado.core.plugin_interfaces.Init

description = 'Jobscripts plugin initialization'

initialize()
Entry point for the plugin to perform its initialization.

name = 'jobscripts-init'

10.4.14 avocado.plugins.journal module

Journal Plugin

class avocado.plugins.journal.Journal
Bases: avocado.core.plugin_interfaces.CLI

Test journal

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "Journal options for the 'run' subcommand"

name = 'journal'

10.4. Extension (plugin) APIs 511

avocado Documentation, Release 88.1

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.journal.JournalResult(config)
Bases: avocado.core.plugin_interfaces.ResultEvents

Test Result Journal class.

This class keeps a log of the test updates: started running, finished, etc. This information can be forwarded live
to an avocado server and provide feedback to users from a central place.

Creates an instance of ResultJournal.

Parameters job – an instance of avocado.core.job.Job.

description = 'Journal event based results implementation'

end_test(result, state)
Event triggered when a test finishes running.

lazy_init_journal(state)

name = 'journal'

post_tests(job)
Entry point for job running actions after the tests execution.

pre_tests(job)
Entry point for job running actions before tests execution.

start_test(result, state)
Event triggered when a test starts running.

test_progress(progress=False)
Interface to notify progress (or not) of the running test.

10.4.15 avocado.plugins.json_variants module

class avocado.plugins.json_variants.JsonVariants
Bases: avocado.core.plugin_interfaces.Varianter

Processes the serialized file into variants

description = 'JSON serialized based Varianter'

initialize(config)

name = 'json variants'

to_str(summary, variants, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means silent and maximum is up to the plugin.

Parameters

• summary – How verbose summary to output (int)

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

512 Chapter 10. Test API

avocado Documentation, Release 88.1

Return type str

variants = None

class avocado.plugins.json_variants.JsonVariantsCLI
Bases: avocado.core.plugin_interfaces.CLI

Serialized based Varianter options

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "JSON serialized based Varianter options for the 'run' subcommand"

name = 'json variants'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.json_variants.JsonVariantsInit
Bases: avocado.core.plugin_interfaces.Init

description = 'JSON serialized based varianter initialization'

initialize()
Entry point for the plugin to perform its initialization.

name = 'json_variants'

10.4.16 avocado.plugins.jsonresult module

JSON output module.

class avocado.plugins.jsonresult.JSONCLI
Bases: avocado.core.plugin_interfaces.CLI

JSON output

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "JSON output options for 'run' command"

name = 'json'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.jsonresult.JSONInit
Bases: avocado.core.plugin_interfaces.Init

description = 'JSON job result plugin initialization'

initialize()
Entry point for the plugin to perform its initialization.

10.4. Extension (plugin) APIs 513

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

name = 'json'

class avocado.plugins.jsonresult.JSONResult
Bases: avocado.core.plugin_interfaces.Result

description = 'JSON result support'

name = 'json'

render(result, job)
Entry point with method that renders the result.

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

10.4.17 avocado.plugins.list module

class avocado.plugins.list.List
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘list’ subcommand

configure(parser)
Add the subparser for the list action.

Parameters parser (avocado.core.parser.ArgumentParser) – The Avocado
command line application parser

description = 'List available tests'

name = 'list'

run(config)
Entry point for actually running the command.

static save_recipes(suite, directory, matrix_len)

10.4.18 avocado.plugins.plugins module

Plugins information plugin

class avocado.plugins.plugins.Plugins
Bases: avocado.core.plugin_interfaces.CLICmd

Plugins information

description = 'Displays plugin information'

name = 'plugins'

run(config)
Entry point for actually running the command.

514 Chapter 10. Test API

avocado Documentation, Release 88.1

10.4.19 avocado.plugins.replay module

Replay Job Plugin

class avocado.plugins.replay.Replay
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘replay’ subcommand.

configure(parser)
Lets the extension add command line options and do early configuration.

By default it will register its name as the command name and give its description as the help message.

description = 'Runs a new job using a previous job as its configuration'

name = 'replay'

run(config)
Entry point for actually running the command.

10.4.20 avocado.plugins.resolvers module

Test resolver for builtin test types

class avocado.plugins.resolvers.AvocadoInstrumentedResolver
Bases: avocado.core.plugin_interfaces.Resolver

description = 'Test resolver for Avocado Instrumented tests'

name = 'avocado-instrumented'

static resolve(reference)
Resolves the given reference into a reference resolution.

Parameters reference (str) – a specification that can eventually be resolved into a test (in
the form of a avocado.core.nrunner.Runnable)

Returns the result of the resolution process, containing the success, failure or error, along with
zero or more avocado.core.nrunner.Runnable objects

Return type avocado.core.resolver.ReferenceResolution

class avocado.plugins.resolvers.ExecTestResolver
Bases: avocado.core.plugin_interfaces.Resolver

description = 'Test resolver for executable files to be handled as tests'

name = 'exec-test'

static resolve(reference)
Resolves the given reference into a reference resolution.

Parameters reference (str) – a specification that can eventually be resolved into a test (in
the form of a avocado.core.nrunner.Runnable)

Returns the result of the resolution process, containing the success, failure or error, along with
zero or more avocado.core.nrunner.Runnable objects

Return type avocado.core.resolver.ReferenceResolution

class avocado.plugins.resolvers.PythonUnittestResolver
Bases: avocado.core.plugin_interfaces.Resolver

10.4. Extension (plugin) APIs 515

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

description = 'Test resolver for Python Unittests'

name = 'python-unittest'

static resolve(reference)
Resolves the given reference into a reference resolution.

Parameters reference (str) – a specification that can eventually be resolved into a test (in
the form of a avocado.core.nrunner.Runnable)

Returns the result of the resolution process, containing the success, failure or error, along with
zero or more avocado.core.nrunner.Runnable objects

Return type avocado.core.resolver.ReferenceResolution

class avocado.plugins.resolvers.TapResolver
Bases: avocado.core.plugin_interfaces.Resolver

description = 'Test resolver for executable files to be handled as tests'

name = 'tap'

static resolve(reference)
Resolves the given reference into a reference resolution.

Parameters reference (str) – a specification that can eventually be resolved into a test (in
the form of a avocado.core.nrunner.Runnable)

Returns the result of the resolution process, containing the success, failure or error, along with
zero or more avocado.core.nrunner.Runnable objects

Return type avocado.core.resolver.ReferenceResolution

avocado.plugins.resolvers.python_resolver(name, reference, find_tests)

10.4.21 avocado.plugins.run module

Base Test Runner Plugins.

class avocado.plugins.run.Run
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘run’ subcommand

configure(parser)
Add the subparser for the run action.

Parameters parser – Main test runner parser.

description = 'Runs one or more tests (native test, test alias, binary or script)'

name = 'run'

run(config)
Run test modules or simple tests.

Parameters config (dict) – Configuration received from command line parser and possibly
other sources.

class avocado.plugins.run.RunInit
Bases: avocado.core.plugin_interfaces.Init

description = 'Initializes the run options'

516 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

initialize()
Entry point for the plugin to perform its initialization.

name = 'run'

10.4.22 avocado.plugins.runner module

Conventional Test Runner Plugin

class avocado.plugins.runner.TestRunner
Bases: avocado.core.plugin_interfaces.Runner

A test runner class that displays tests results.

Creates an instance of TestRunner class.

DEFAULT_TIMEOUT = 86400

description = 'The conventional test runner'

name = 'runner'

run_suite(job, test_suite)
Run one or more tests and report with test result.

Parameters

• job – an instance of avocado.core.job.Job.

• test_suite – a list of tests to run.

Returns a set with types of test failures.

run_test(job, test_factory, queue, summary, job_deadline=0)
Run a test instance inside a subprocess.

Parameters

• test_factory (tuple of avocado.core.test.Test and dict.) – Test factory (test
class and parameters).

• queue (:class`multiprocessing.Queue` instance.) – Multiprocess
queue.

• summary (set.) – Contains types of test failures.

• job_deadline (int.) – Maximum time to execute.

10.4.23 avocado.plugins.runner_nrunner module

NRunner based implementation of job compliant runner

class avocado.plugins.runner_nrunner.Runner
Bases: avocado.core.plugin_interfaces.Runner

description = 'nrunner based implementation of job compliant runner'

name = 'nrunner'

run_suite(job, test_suite)
Run one or more tests and report with test result.

Parameters

10.4. Extension (plugin) APIs 517

avocado Documentation, Release 88.1

• job – an instance of avocado.core.job.Job.

• test_suite – an instance of TestSuite with some tests to run.

Returns a set with types of test failures.

class avocado.plugins.runner_nrunner.RunnerCLI
Bases: avocado.core.plugin_interfaces.CLI

configure(parser)
Configures the command line parser with options specific to this plugin.

description = 'nrunner command line options for "run"'

name = 'nrunner'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.runner_nrunner.RunnerInit
Bases: avocado.core.plugin_interfaces.Init

description = 'nrunner initialization'

initialize()
Entry point for the plugin to perform its initialization.

name = 'nrunner'

10.4.24 avocado.plugins.sysinfo module

System information plugin

class avocado.plugins.sysinfo.SysInfo
Bases: avocado.core.plugin_interfaces.CLICmd

Collect system information

configure(parser)
Add the subparser for the run action.

Parameters parser (avocado.core.parser.ArgumentParser) – The Avocado
command line application parser

description = 'Collect system information'

name = 'sysinfo'

run(config)
Entry point for actually running the command.

class avocado.plugins.sysinfo.SysInfoJob(config)
Bases: avocado.core.plugin_interfaces.JobPreTests, avocado.core.
plugin_interfaces.JobPostTests

description = 'Collects system information before/after the job is run'

name = 'sysinfo'

518 Chapter 10. Test API

avocado Documentation, Release 88.1

post_tests(job)
Entry point for job running actions after the tests execution.

pre_tests(job)
Entry point for job running actions before tests execution.

class avocado.plugins.sysinfo.SysinfoInit
Bases: avocado.core.plugin_interfaces.Init

description = 'Initializes sysinfo settings'

initialize()
Entry point for the plugin to perform its initialization.

name = 'sysinfo'

10.4.25 avocado.plugins.tap module

TAP output module.

class avocado.plugins.tap.TAP
Bases: avocado.core.plugin_interfaces.CLI

TAP Test Anything Protocol output avocado plugin

configure(parser)
Configures the command line parser with options specific to this plugin.

description = 'TAP - Test Anything Protocol results'

name = 'TAP'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.tap.TAPInit
Bases: avocado.core.plugin_interfaces.Init

description = 'TAP - Test Anything Protocol - result plugin initilization'

initialize()
Entry point for the plugin to perform its initialization.

name = 'TAP'

class avocado.plugins.tap.TAPResult(config)
Bases: avocado.core.plugin_interfaces.ResultEvents

TAP output class

description = 'TAP - Test Anything Protocol results'

end_test(result, state)
Log the test status and details

name = 'tap'

post_tests(job)
Entry point for job running actions after the tests execution.

10.4. Extension (plugin) APIs 519

avocado Documentation, Release 88.1

pre_tests(job)
Log the test plan

start_test(result, state)
Event triggered when a test starts running.

test_progress(progress=False)
Interface to notify progress (or not) of the running test.

avocado.plugins.tap.file_log_factory(log_file)
Generates a function which simulates writes to logger and outputs to file

Parameters log_file – The output file

10.4.26 avocado.plugins.testlogs module

class avocado.plugins.testlogs.TestLogging(config)
Bases: avocado.core.plugin_interfaces.ResultEvents

TODO: The description should be changed when the legacy runner will be deprecated.

description = 'Nrunner specific Test logs for Job'

end_test(result, state)
Event triggered when a test finishes running.

post_tests(job)
Entry point for job running actions after the tests execution.

pre_tests(job)
Entry point for job running actions before tests execution.

start_test(result, state)
Event triggered when a test starts running.

test_progress(progress=False)
Interface to notify progress (or not) of the running test.

class avocado.plugins.testlogs.TestLogsUI
Bases: avocado.core.plugin_interfaces.JobPre, avocado.core.plugin_interfaces.
JobPost

description = "Shows content from tests' logs"

post(job)
Entry point for actually running the post job action.

pre(job)
Entry point for actually running the pre job action.

class avocado.plugins.testlogs.TestLogsUIInit
Bases: avocado.core.plugin_interfaces.Init

description = 'Initialize testlogs plugin settings'

initialize()
Entry point for the plugin to perform its initialization.

10.4.27 avocado.plugins.teststmpdir module

Tests temporary directory plugin

520 Chapter 10. Test API

avocado Documentation, Release 88.1

class avocado.plugins.teststmpdir.TestsTmpDir
Bases: avocado.core.plugin_interfaces.JobPre, avocado.core.plugin_interfaces.
JobPost

description = 'Creates a temporary directory for tests consumption'

name = 'teststmpdir'

post(job)
Entry point for actually running the post job action.

pre(job)
Entry point for actually running the pre job action.

10.4.28 avocado.plugins.variants module

class avocado.plugins.variants.Variants
Bases: avocado.core.plugin_interfaces.CLICmd

Implements “variants” command to visualize/debug test variants and params

configure(parser)
Lets the extension add command line options and do early configuration.

By default it will register its name as the command name and give its description as the help message.

description = 'Tool to analyze and visualize test variants and params'

name = 'variants'

run(config)
Entry point for actually running the command.

avocado.plugins.variants.map_verbosity_level(level)

10.4.29 avocado.plugins.vmimage module

class avocado.plugins.vmimage.VMimage
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘vmimage’ subcommand

configure(parser)
Lets the extension add command line options and do early configuration.

By default it will register its name as the command name and give its description as the help message.

description = 'Provides VM images acquired from official repositories'

name = 'vmimage'

run(config)
Entry point for actually running the command.

avocado.plugins.vmimage.display_images_list(images)
Displays table with information about images :param images: list with image’s parameters :type images: list of
dicts

avocado.plugins.vmimage.download_image(distro, version=None, arch=None)
Downloads the vmimage to the cache directory if doesn’t already exist

Parameters

10.4. Extension (plugin) APIs 521

avocado Documentation, Release 88.1

• distro (str) – Name of image distribution

• version (str) – Version of image

• arch (str) – Architecture of image

Raises AttributeError – When image can’t be downloaded

Returns Information about downloaded image

Return type dict

avocado.plugins.vmimage.list_downloaded_images()
List the available Image inside avocado cache :return: list with image’s parameters :rtype: list of dicts

10.4.30 avocado.plugins.wrapper module

class avocado.plugins.wrapper.Wrapper
Bases: avocado.core.plugin_interfaces.CLI

Implements the ‘–wrapper’ flag for the ‘run’ subcommand

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "Implements the '--wrapper' flag for the 'run' subcommand"

name = 'wrapper'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

10.4.31 avocado.plugins.xunit module

xUnit module.

class avocado.plugins.xunit.XUnitCLI
Bases: avocado.core.plugin_interfaces.CLI

xUnit output

configure(parser)
Configures the command line parser with options specific to this plugin.

description = 'xUnit output options'

name = 'xunit'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.xunit.XUnitInit
Bases: avocado.core.plugin_interfaces.Init

522 Chapter 10. Test API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

description = 'xUnit job result initialization'

initialize()
Entry point for the plugin to perform its initialization.

name = 'xunit'

class avocado.plugins.xunit.XUnitResult
Bases: avocado.core.plugin_interfaces.Result

PRINTABLE = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\n\r '

UNKNOWN = '<unknown>'

description = 'XUnit result support'

name = 'xunit'

render(result, job)
Entry point with method that renders the result.

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

10.4.32 Module contents

10.5 Optional Plugins API

The following pages document the private APIs of optional Avocado plugins.

10.5.1 avocado_varianter_yaml_to_mux package

Submodules

avocado_varianter_yaml_to_mux.mux module

This file contains mux-enabled implementations of parts useful for creating a custom Varianter plugin.

class avocado_varianter_yaml_to_mux.mux.Control(code, value=None)
Bases: object

Container used to identify node vs. control sequence

class avocado_varianter_yaml_to_mux.mux.MuxPlugin
Bases: object

Base implementation of Mux-like Varianter plugin. It should be used as a base class in conjunction with
avocado.core.plugin_interfaces.Varianter.

initialize_mux(root, paths)
Initialize the basic values

Note We can’t use __init__ as this object is intended to be used via dispatcher with no __init__
arguments.

paths = None

10.5. Optional Plugins API 523

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

root = None

to_str(summary, variants, **kwargs)
See avocado.core.plugin_interfaces.Varianter.to_str()

variant_ids = []

variants = None

class avocado_varianter_yaml_to_mux.mux.MuxTree(root)
Bases: object

Object representing part of the tree from the root to leaves or another multiplex domain. Recursively it creates
multiplexed variants of the full tree.

Parameters root – Root of this tree slice

iter_variants()
Iterates through variants without verifying the internal filters

:yield all existing variants

class avocado_varianter_yaml_to_mux.mux.MuxTreeNode(name=”, value=None, par-
ent=None, children=None)

Bases: avocado.core.tree.TreeNode

Class for bounding nodes into tree-structure with support for multiplexation

fingerprint()
Reports string which represents the value of this node.

merge(other)
Merges other node into this one without checking the name of the other node. New values are appended,
existing values overwritten and unaffected ones are kept. Then all other node children are added as children
(recursively they get either appended at the end or merged into existing node in the previous position.

class avocado_varianter_yaml_to_mux.mux.OutputList(values, nodes, yamls)
Bases: list

List with some debug info

class avocado_varianter_yaml_to_mux.mux.OutputValue(value, node, srcyaml)
Bases: object

Ordinary value with some debug info

class avocado_varianter_yaml_to_mux.mux.ValueDict(srcyaml, node, values)
Bases: dict

Dict which stores the origin of the items

items()
Slower implementation with the use of __getitem__

avocado_varianter_yaml_to_mux.mux.apply_filters(root, filter_only=None, fil-
ter_out=None)

Apply a set of filters to the tree.

The basic filtering is filter only, which includes nodes, and the filter out rules, that exclude nodes.

Note that filter_out is stronger than filter_only, so if you filter out something, you could not bypass some nodes
by using a filter_only rule.

Parameters

• root – Root node of the multiplex tree.

524 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

avocado Documentation, Release 88.1

• filter_only – the list of paths which will include nodes.

• filter_out – the list of paths which will exclude nodes.

Returns the original tree minus the nodes filtered by the rules.

avocado_varianter_yaml_to_mux.mux.path_parent(path)
From a given path, return its parent path.

Parameters path – the node path as string.

Returns the parent path as string.

Module contents

Varianter plugin to parse yaml files to params

class avocado_varianter_yaml_to_mux.ListOfNodeObjects
Bases: list

Used to mark list as list of objects from whose node is going to be created

class avocado_varianter_yaml_to_mux.YamlToMux
Bases: avocado_varianter_yaml_to_mux.mux.MuxPlugin, avocado.core.
plugin_interfaces.Varianter

Processes the mux options into varianter plugin

description = 'Multiplexer plugin to parse yaml files to params'

initialize(config)

name = 'yaml_to_mux'

class avocado_varianter_yaml_to_mux.YamlToMuxCLI
Bases: avocado.core.plugin_interfaces.CLI

Defines arguments for YamlToMux plugin

configure(parser)
Configures “run” and “variants” subparsers

description = "YamlToMux options for the 'run' subcommand"

name = 'yaml_to_mux'

run(config)
The YamlToMux varianter plugin handles these

class avocado_varianter_yaml_to_mux.YamlToMuxInit
Bases: avocado.core.plugin_interfaces.Init

YamlToMux initialization plugin

description = 'YamlToMux initialization plugin'

initialize()
Entry point for the plugin to perform its initialization.

name = 'yaml_to_mux'

avocado_varianter_yaml_to_mux.create_from_yaml(paths)
Create tree structure from yaml-like file.

Parameters paths – File object to be processed

10.5. Optional Plugins API 525

https://docs.python.org/3/library/stdtypes.html#list

avocado Documentation, Release 88.1

Raises SyntaxError – When yaml-file is corrupted

Returns Root of the created tree structure

10.5.2 avocado_varianter_pict package

Module contents

class avocado_varianter_pict.VarianterPict
Bases: avocado.core.plugin_interfaces.Varianter

Processes the pict file into variants

description = 'PICT based Varianter'

initialize(config)

name = 'pict'

to_str(summary, variants, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means silent and maximum is up to the plugin.

Parameters

• summary – How verbose summary to output (int)

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

class avocado_varianter_pict.VarianterPictCLI
Bases: avocado.core.plugin_interfaces.CLI

Pict based Varianter options

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "PICT based Varianter options for the 'run' subcommand"

name = 'pict'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

avocado_varianter_pict.parse_pict_output(output)

avocado_varianter_pict.run_pict(binary, parameter_file, order)

10.5.3 avocado_resultsdb package

Module contents

Avocado Plugin to propagate Job results to Resultsdb

526 Chapter 10. Test API

https://docs.python.org/3/library/exceptions.html#SyntaxError
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

class avocado_resultsdb.ResultsdbCLI
Bases: avocado.core.plugin_interfaces.CLI

Propagate Job results to Resultsdb

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "Resultsdb options for 'run' subcommand"

name = 'resultsdb'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado_resultsdb.ResultsdbResult
Bases: avocado.core.plugin_interfaces.Result

ResultsDB render class

description = 'Resultsdb result support'

name = 'resultsdb'

render(result, job)
Entry point with method that renders the result.

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

class avocado_resultsdb.ResultsdbResultEvent(config)
Bases: avocado.core.plugin_interfaces.ResultEvents

ResultsDB output class

description = 'Resultsdb result support'

end_test(result, state)
Create the ResultsDB result, which corresponds to one test from the Avocado Job

name = 'resultsdb'

post_tests(job)
Entry point for job running actions after the tests execution.

pre_tests(job)
Create the ResultsDB group, which corresponds to the Avocado Job

start_test(result, state)
Event triggered when a test starts running.

test_progress(progress=False)
Interface to notify progress (or not) of the running test.

10.5. Optional Plugins API 527

avocado Documentation, Release 88.1

10.5.4 avocado_golang package

Submodules

avocado_golang.runner module

class avocado_golang.runner.GolangRunner(runnable)
Bases: avocado.core.nrunner.BaseRunner

Runner for Golang tests.

When creating the Runnable, use the following attributes:

• kind: should be ‘golang’;

• uri: module name and optionally a test method name, separated by colon;

• args: not used

• kwargs: not used

Example:

runnable = Runnable(kind=’golang’, uri=’countavocados:ExampleContainers’)

run()
Runner main method

Yields dictionary as output, containing status as well as relevant information concerning the results.

class avocado_golang.runner.RunnerApp(echo=<built-in function print>, prog=None, descrip-
tion=None)

Bases: avocado.core.nrunner.BaseRunnerApp

PROG_DESCRIPTION = 'nrunner application for golang tests'

PROG_NAME = 'avocado-runner-golang'

RUNNABLE_KINDS_CAPABLE = {'golang': <class 'avocado_golang.runner.GolangRunner'>}

avocado_golang.runner.main()

Module contents

Plugin to run Golang tests in Avocado

class avocado_golang.GolangCLI
Bases: avocado.core.plugin_interfaces.CLI

Run Golang tests

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "Golang options for 'run' subcommand"

name = 'golang'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

528 Chapter 10. Test API

avocado Documentation, Release 88.1

class avocado_golang.GolangLoader(config, extra_params)
Bases: avocado.core.loader.TestLoader

Golang loader class

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from an reference.

Parameters

• reference (str) – the reference to be inspected.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns a list of test matching the reference as params.

static get_decorator_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: decorator function}

static get_type_label_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: ‘TEST_LABEL_STRING’}

name = 'golang'

class avocado_golang.GolangResolver
Bases: avocado.core.plugin_interfaces.Resolver

description = 'Test resolver for Go language tests'

name = 'golang'

static resolve(reference)
Resolves the given reference into a reference resolution.

Parameters reference (str) – a specification that can eventually be resolved into a test (in
the form of a avocado.core.nrunner.Runnable)

Returns the result of the resolution process, containing the success, failure or error, along with
zero or more avocado.core.nrunner.Runnable objects

Return type avocado.core.resolver.ReferenceResolution

class avocado_golang.GolangTest(name, params=None, base_logdir=None, job=None, sub-
test=None, executable=None)

Bases: avocado.core.test.SimpleTest

Run a Golang Test command as a SIMPLE test.

filename
Returns the path of the golang test suite.

test()
Create the Golang command and execute it.

class avocado_golang.NotGolangTest
Bases: object

Not a golang test (for reporting purposes)

avocado_golang.find_files(path, recursive=True)

avocado_golang.find_tests(test_path)

10.5. Optional Plugins API 529

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

10.5.5 avocado_varianter_cit package

Submodules

avocado_varianter_cit.Cit module

class avocado_varianter_cit.Cit.Cit(input_data, t_value, constraints)
Bases: object

Creation of CombinationMatrix from user input

Parameters

• input_data – parameters from user

• t_value – size of one combination

• constraints – constraints of combinations

change_one_column(matrix)
Randomly choose one column of the matrix. In each cell of this column changes value. The row with the
best coverage is the solution.

Parameters matrix – matrix to be changed

Returns solution, index of solution inside matrix and parameters which has been changed

change_one_value(matrix, row_index=None, column_index=None)
Change one cell inside the matrix

Parameters

• matrix – matrix to be changed

• row_index – row inside matrix. If it’s None it is chosen randomly

• column_index – column inside matrix. If it’s None it is chosen randomly

Returns solution, index of solution inside matrix and parameters which has been changed

compute()
Searching for the best solution. It creates one solution and from that, it tries to create smaller solution.
This searching process is limited by ITERATIONS_SIZE. When ITERATIONS_SIZE is 0 the last found
solution is the best solution.

Returns The best solution

compute_hamming_distance(row)

Returns hamming distance of row from final matrix

compute_row()
Computation of one row which covers most of combinations

Returns new solution row

compute_row_using_hamming_distance()

Returns row with the biggest hamming distance from final matrix

cover_missing_combination(matrix)
Randomly finds one missing combination. This combination puts into each row of the matrix. The row
with the best coverage is the solution

Parameters matrix – matrix to be changed

530 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Returns solution, index of solution inside matrix and parameters which has been changed

create_random_row_with_constraints()
Create a new test-case random row, and the row meets the constraints.

Returns new random row

Return type list

final_matrix_init()
Creation of the first solution. This solution is the start of searching for the best solution

Returns solution matrix (list(list))

find_better_solution(counter, matrix)
Changing the matrix to cover all combinations

Parameters

• counter – maximum number of changes in the matrix

• matrix – matrix to be changed

Returns new matrix and is changes have been successful?

get_missing_combination_random()
Randomly finds one missing combination.

Returns parameter of combination and values of combination

use_random_algorithm(matrix)
Applies one of these algorithms to the matrix. It chooses algorithm by random in proportion 1:1:8

Parameters matrix – matrix to be changed

Returns new row of matrix, index of row inside matrix and parameters which has been changed

avocado_varianter_cit.CombinationMatrix module

class avocado_varianter_cit.CombinationMatrix.CombinationMatrix(input_data,
t_value)

Bases: object

CombinationMatrix object stores Rows of combinations into dictionary. And also stores which rows are not
covered. Keys in dictionary are parameters of combinations and values are CombinationRow objects. Combi-
nationMatrix object has information about how many combinations are uncovered and how many of them are
covered more than ones.

Parameters

• input_data – list of data from user

• t_value – t number from user

cover_combination(row, parameters)
Cover combination of specific parameters by one row from possible solution

Parameters

• row – one row from solution

• parameters – parameters which has to be covered

Returns number of still uncovered combinations

10.5. Optional Plugins API 531

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

cover_solution_row(row)
Cover all combination by one row from possible solution

Parameters row – one row from solution

Returns number of still uncovered combinations

del_cell(parameters, combination)
Disable one combination. If combination is disabled it means that the combination does not match the
constraints

Parameters

• parameters – parameters whose combination is disabled

• combination – combination to be disabled

get_row(key)

Parameters key – identifier of row

Returns CombinationRow

is_valid_combination(row, parameters)
Is the specific parameters from solution row match the constraints.

Parameters

• row – one row from solution

• parameters – parameters from row

is_valid_solution(row)
Is the solution row match the constraints.

Parameters row – one row from solution

uncover()
Uncover all combinations

uncover_combination(row, parameters)
Uncover combination of specific parameters by one row from possible solution

Parameters

• row – one row from solution

• parameters – parameters which has to be covered

Returns number of uncovered combinations

uncover_solution_row(row)
Uncover all combination by one row from possible solution

Parameters row – one row from solution

Returns number of uncovered combinations

avocado_varianter_cit.CombinationRow module

class avocado_varianter_cit.CombinationRow.CombinationRow(input_data, t_value, pa-
rameters)

Bases: object

532 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

Row object store all combinations between two parameters into dictionary. Keys in dictionary are values of
combinations and values in dictionary are information about coverage. Row object has information how many
combinations are uncovered and how many of them are covered more than ones.

Parameters

• input_data – list of data from user

• t_value – t number from user

• parameters – the tuple of parameters whose combinations Row object represents

completely_uncover()
Uncover all combinations inside Row

cover_cell(key)
Cover one combination inside Row

Parameters key – combination to be covered

Returns number of new covered combinations and number of new covered combinations more
than ones

del_cell(key)
Disable one combination. If combination is disabled it means that the combination does not match the
constraints

Parameters key – combination to be disabled

Returns number of new covered combinations

get_all_uncovered_combinations()

Returns list of all uncovered combination

is_valid(key)
Is the combination match the constraints.

Parameters key – combination to valid

uncover_cell(key)
Uncover one combination inside Row

Parameters key – combination to be uncovered

Returns number of new covered combinations and number of new covered combinations more
than ones

avocado_varianter_cit.Parser module

class avocado_varianter_cit.Parser.Parser
Bases: object

static parse(file_object)
Parsing of input file with parameters and constraints

Parameters file_object – input file for parsing

Returns array of parameters and set of constraints

10.5. Optional Plugins API 533

https://docs.python.org/3/library/functions.html#object

avocado Documentation, Release 88.1

avocado_varianter_cit.Solver module

class avocado_varianter_cit.Solver.Parameter(name, values)
Bases: object

Storage for constraints of one parameter.

This class stores the constraints which constrain the values of one parameter.

Parameters

• name (int) – identification of parameter

• size (int) – number of values

• constraints (list) – list for storing constraints

Parameter initialization.

Parameters

• name (int) – identification of parameter

• values – values of parameter

Type list

add_constraint(constraint, value, index)
Append new constraint to the parameter.

The constraint is placed under the parameter value which is affected by this constraint. And this value is
also deleted from the constraint, because is defined by the index in the ‘self.constraints’ list.

Parameters

• constraint (list) – will be appended to the parameter constraints

• value (int) – parameter value which is is affected by new constraint

• index (int) – index of that value inside the constraint

is_full
Compute if constraints constrain every parameter value.

Return type bool

class avocado_varianter_cit.Solver.Solver(data, constraints)
Bases: object

CON_NAME = 0

CON_VAL = 1

clean_hash_table(combination_matrix, t_value)

compute_constraints()

get_possible_values(row, parameter)
Compute all possible values for the given parameter.

These values are based on constraints and already picked values of other parameters.

Parameters

• row (list) – row with picked values. -1 means an unpicked value.

• parameter (int) – index of the parameter whose we want to know the values

Returns all possible values for the given parameter

534 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

avocado Documentation, Release 88.1

Return type list

read_constraints()

simplify_constraints()

Module contents

avocado_varianter_cit.DEFAULT_ORDER_OF_COMBINATIONS = 2
The default order of combinations

class avocado_varianter_cit.VarianterCit
Bases: avocado.core.plugin_interfaces.Varianter

Processes the parameters file into variants

description = 'CIT Varianter'

static error_exit(config)

initialize(config)

name = 'cit'

to_str(summary, variants, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means silent and maximum is up to the plugin.

Parameters

• summary – How verbose summary to output (int)

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

class avocado_varianter_cit.VarianterCitCLI
Bases: avocado.core.plugin_interfaces.CLI

CIT Varianter options

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "CIT Varianter options for the 'run' subcommand"

name = 'cit'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

10.5.6 avocado_robot package

Submodules

10.5. Optional Plugins API 535

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

avocado_robot.runner module

Avocado nrunner for Robot Framework tests

class avocado_robot.runner.RobotRunner(runnable)
Bases: avocado.core.nrunner.BaseRunner

run()
Runner main method

Yields dictionary as output, containing status as well as relevant information concerning the results.

class avocado_robot.runner.RunnerApp(echo=<built-in function print>, prog=None, descrip-
tion=None)

Bases: avocado.core.nrunner.BaseRunnerApp

PROG_DESCRIPTION = '*nrunner application for robot tests'

PROG_NAME = 'avocado-runner-robot'

RUNNABLE_KINDS_CAPABLE = {'robot': <class 'avocado_robot.runner.RobotRunner'>}

avocado_robot.runner.main()

Module contents

Plugin to run Robot Framework tests in Avocado

class avocado_robot.NotRobotTest
Bases: object

Not a robot test (for reporting purposes)

class avocado_robot.RobotCLI
Bases: avocado.core.plugin_interfaces.CLI

Run Robot Framework tests

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "Robot Framework options for 'run' subcommand"

name = 'robot'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado_robot.RobotLoader(config, extra_params)
Bases: avocado.core.loader.TestLoader

Robot loader class

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from an reference.

Parameters

• reference (str) – the reference to be inspected.

536 Chapter 10. Test API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns a list of test matching the reference as params.

static get_decorator_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: decorator function}

static get_type_label_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: ‘TEST_LABEL_STRING’}

name = 'robot'

class avocado_robot.RobotResolver
Bases: avocado.core.plugin_interfaces.Resolver

description = 'Test resolver for Robot Framework tests'

name = 'robot'

static resolve(reference)
Resolves the given reference into a reference resolution.

Parameters reference (str) – a specification that can eventually be resolved into a test (in
the form of a avocado.core.nrunner.Runnable)

Returns the result of the resolution process, containing the success, failure or error, along with
zero or more avocado.core.nrunner.Runnable objects

Return type avocado.core.resolver.ReferenceResolution

class avocado_robot.RobotTest(name, params=None, base_logdir=None, config=None, exe-
cutable=None)

Bases: avocado.core.test.SimpleTest

Run a Robot command as a SIMPLE test.

filename
Returns the path of the robot test suite.

test()
Create the Robot command and execute it.

avocado_robot.find_tests(reference, test_suite)

10.5.7 avocado_result_upload package

Module contents

Avocado Plugin to propagate Job results to remote host

class avocado_result_upload.ResultUpload
Bases: avocado.core.plugin_interfaces.Result

ResultsUpload output class

description = 'ResultUpload result support'

name = 'result_upload'

render(result, job)
Upload result, which corresponds to one test from the Avocado Job

10.5. Optional Plugins API 537

https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 88.1

if job.status == “RUNNING”: return # Don’t create results on unfinished jobs

class avocado_result_upload.ResultUploadCLI
Bases: avocado.core.plugin_interfaces.CLI

ResultsUpload output class

configure(parser)
Configures the command line parser with options specific to this plugin.

description = "ResultUpload options for 'run' subcommand"

name = 'result_upload'

run(config)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

10.6 Indices and tables

• genindex

• modindex

• search

538 Chapter 10. Test API

Python Module Index

a
avocado, 337
avocado.core, 408
avocado.core.app, 349
avocado.core.data_dir, 349
avocado.core.decorators, 351
avocado.core.dispatcher, 352
avocado.core.enabled_extension_manager,

353
avocado.core.exceptions, 353
avocado.core.exit_codes, 355
avocado.core.extension_manager, 355
avocado.core.job, 356
avocado.core.job_id, 359
avocado.core.jobdata, 359
avocado.core.loader, 359
avocado.core.main, 363
avocado.core.messages, 363
avocado.core.nrunner, 366
avocado.core.output, 373
avocado.core.parameters, 377
avocado.core.parser, 378
avocado.core.parser_common_args, 379
avocado.core.plugin_interfaces, 379
avocado.core.references, 383
avocado.core.requirements, 342
avocado.core.requirements.cache, 342
avocado.core.requirements.cache.backends,

342
avocado.core.requirements.cache.backends.sqlite,

342
avocado.core.requirements.resolver, 342
avocado.core.resolver, 383
avocado.core.result, 384
avocado.core.runner, 384
avocado.core.runners, 345
avocado.core.runners.avocado_instrumented,

342
avocado.core.runners.requirement_package,

343
avocado.core.runners.tap, 344
avocado.core.safeloader, 385
avocado.core.settings, 388
avocado.core.settings_dispatcher, 392
avocado.core.spawners, 346
avocado.core.spawners.common, 345
avocado.core.spawners.exceptions, 345
avocado.core.spawners.mock, 346
avocado.core.status, 348
avocado.core.status.repo, 346
avocado.core.status.server, 347
avocado.core.status.utils, 347
avocado.core.streams, 392
avocado.core.suite, 392
avocado.core.sysinfo, 394
avocado.core.tags, 396
avocado.core.tapparser, 396
avocado.core.task, 349
avocado.core.task.runtime, 348
avocado.core.task.statemachine, 348
avocado.core.test, 397
avocado.core.test_id, 403
avocado.core.teststatus, 403
avocado.core.tree, 404
avocado.core.utils, 406
avocado.core.varianter, 406
avocado.core.version, 408
avocado.plugins, 523
avocado.plugins.archive, 503
avocado.plugins.assets, 504
avocado.plugins.config, 505
avocado.plugins.dict_variants, 505
avocado.plugins.diff, 506
avocado.plugins.distro, 506
avocado.plugins.exec_path, 509
avocado.plugins.expected_files_merge,

509
avocado.plugins.human, 510
avocado.plugins.jobs, 510

539

avocado Documentation, Release 88.1

avocado.plugins.jobscripts, 511
avocado.plugins.journal, 511
avocado.plugins.json_variants, 512
avocado.plugins.jsonresult, 513
avocado.plugins.legacy, 502
avocado.plugins.legacy.replay, 501
avocado.plugins.list, 514
avocado.plugins.plugins, 514
avocado.plugins.replay, 515
avocado.plugins.resolvers, 515
avocado.plugins.run, 516
avocado.plugins.runner, 517
avocado.plugins.runner_nrunner, 517
avocado.plugins.spawners, 503
avocado.plugins.spawners.podman, 502
avocado.plugins.spawners.process, 503
avocado.plugins.sysinfo, 518
avocado.plugins.tap, 519
avocado.plugins.testlogs, 520
avocado.plugins.teststmpdir, 520
avocado.plugins.variants, 521
avocado.plugins.vmimage, 521
avocado.plugins.wrapper, 522
avocado.plugins.xunit, 522
avocado.utils, 501
avocado.utils.archive, 424
avocado.utils.asset, 426
avocado.utils.astring, 428
avocado.utils.aurl, 430
avocado.utils.build, 431
avocado.utils.cloudinit, 431
avocado.utils.configure_network, 433
avocado.utils.cpu, 434
avocado.utils.crypto, 436
avocado.utils.data_factory, 436
avocado.utils.data_structures, 436
avocado.utils.datadrainer, 438
avocado.utils.debug, 439
avocado.utils.diff_validator, 440
avocado.utils.disk, 442
avocado.utils.distro, 443
avocado.utils.dmesg, 445
avocado.utils.download, 446
avocado.utils.exit_codes, 447
avocado.utils.external, 412
avocado.utils.external.gdbmi_parser, 409
avocado.utils.external.spark, 411
avocado.utils.file_utils, 447
avocado.utils.filelock, 448
avocado.utils.gdb, 448
avocado.utils.genio, 452
avocado.utils.git, 453
avocado.utils.iso9660, 455
avocado.utils.kernel, 457

avocado.utils.linux, 458
avocado.utils.linux_modules, 459
avocado.utils.lv_utils, 460
avocado.utils.memory, 464
avocado.utils.multipath, 467
avocado.utils.network, 417
avocado.utils.network.common, 412
avocado.utils.network.exceptions, 412
avocado.utils.network.hosts, 413
avocado.utils.network.interfaces, 414
avocado.utils.network.ports, 416
avocado.utils.output, 470
avocado.utils.partition, 470
avocado.utils.path, 472
avocado.utils.pci, 473
avocado.utils.pmem, 476
avocado.utils.process, 480
avocado.utils.script, 489
avocado.utils.service, 491
avocado.utils.software_manager, 424
avocado.utils.software_manager.backends,

422
avocado.utils.software_manager.backends.apt,

417
avocado.utils.software_manager.backends.base,

418
avocado.utils.software_manager.backends.dnf,

418
avocado.utils.software_manager.backends.dpkg,

419
avocado.utils.software_manager.backends.rpm,

419
avocado.utils.software_manager.backends.yum,

421
avocado.utils.software_manager.backends.zypper,

422
avocado.utils.software_manager.distro_packages,

423
avocado.utils.software_manager.inspector,

423
avocado.utils.software_manager.main, 423
avocado.utils.software_manager.manager,

423
avocado.utils.softwareraid, 493
avocado.utils.ssh, 495
avocado.utils.stacktrace, 496
avocado.utils.vmimage, 497
avocado.utils.wait, 501
avocado_golang, 528
avocado_golang.runner, 528
avocado_result_upload, 537
avocado_resultsdb, 526
avocado_robot, 536
avocado_robot.runner, 536

540 Python Module Index

avocado Documentation, Release 88.1

avocado_varianter_cit, 535
avocado_varianter_cit.Cit, 530
avocado_varianter_cit.CombinationMatrix,

531
avocado_varianter_cit.CombinationRow,

532
avocado_varianter_cit.Parser, 533
avocado_varianter_cit.Solver, 534
avocado_varianter_pict, 526
avocado_varianter_yaml_to_mux, 525
avocado_varianter_yaml_to_mux.mux, 523

Python Module Index 541

avocado Documentation, Release 88.1

542 Python Module Index

Index

A
AccessDeniedPath (class in avocado.core.loader),

359
action (avocado.core.settings.ConfigOption attribute),

388
add() (avocado.core.tree.FilterSet method), 404
add() (avocado.utils.archive.ArchiveFile method), 424
add() (avocado.utils.external.spark.GenericParser

method), 411
add_argparser() (avo-

cado.core.settings.ConfigOption method),
388

add_argparser_to_option() (avo-
cado.core.settings.Settings method), 389

add_child() (avocado.core.tree.TreeNode method),
404

add_constraint() (avo-
cado_varianter_cit.Solver.Parameter method),
534

add_disk() (avocado.utils.softwareraid.SoftwareRaid
method), 494

add_imported_object() (avo-
cado.core.safeloader.PythonModule method),
386

add_ipaddr() (avo-
cado.utils.network.interfaces.NetworkInterface
method), 414

add_loader_options() (in module avo-
cado.core.loader), 363

add_log_handler() (in module avo-
cado.core.output), 376

add_logger() (avocado.core.output.LoggingFile
method), 373

add_mpath() (in module avocado.utils.multipath), 467
add_path() (in module avocado.utils.multipath), 467
add_repo() (avocado.utils.software_manager.backends.apt.AptBackend

method), 417
add_repo() (avocado.utils.software_manager.backends.yum.YumBackend

method), 421

add_repo() (avocado.utils.software_manager.backends.zypper.ZypperBackend
method), 422

add_runner_failure() (in module avo-
cado.core.runner), 385

add_tag_filter_args() (in module avo-
cado.core.parser_common_args), 379

add_validated_files() (avo-
cado.utils.diff_validator.Change method),
440

addRule() (avocado.utils.external.spark.GenericParser
method), 411

adjust_settings_paths() (avo-
cado.core.plugin_interfaces.Settings method),
382

ALL (avocado.core.loader.DiscoverMode attribute), 360
AlreadyLocked, 448
ambiguity() (avocado.utils.external.spark.GenericParser

method), 411
analyze_unpickable_item() (in module avo-

cado.utils.stacktrace), 496
ANY (avocado.core.spawners.common.SpawnMethod at-

tribute), 345
append_amount() (avocado.utils.output.ProgressBar

method), 470
append_expected_add() (avo-

cado.utils.diff_validator.Change method),
440

append_expected_remove() (avo-
cado.utils.diff_validator.Change method),
440

append_file() (in module avocado.utils.genio), 452
append_one_line() (in module avo-

cado.utils.genio), 452
apply_filters() (in module avo-

cado_varianter_yaml_to_mux.mux), 524
AptBackend (class in avo-

cado.utils.software_manager.backends.apt),
417

Archive (class in avocado.plugins.archive), 503
ArchiveCLI (class in avocado.plugins.archive), 503

543

avocado Documentation, Release 88.1

ArchiveException, 424
ArchiveFile (class in avocado.utils.archive), 424
are_files_equal() (in module avo-

cado.utils.genio), 452
are_requirements_available() (avo-

cado.core.nrunner.Task method), 372
arg_parse_args (avo-

cado.core.settings.ConfigOption attribute),
388

argparse_type (avocado.core.settings.ConfigOption
attribute), 388

ArgumentParser (class in avocado.core.parser), 378
as_dict() (avocado.core.settings.Settings method),

389
as_full_dict() (avocado.core.settings.Settings

method), 390
as_json() (avocado.core.settings.Settings method),

390
ask() (in module avocado.utils.genio), 452
assemble() (avocado.utils.softwareraid.SoftwareRaid

method), 494
assert_change() (in module avo-

cado.utils.diff_validator), 441
assert_change_dict() (in module avo-

cado.utils.diff_validator), 441
Asset (class in avocado.utils.asset), 426
asset_name (avocado.utils.asset.Asset attribute), 426
Assets (class in avocado.plugins.assets), 504
AST (class in avocado.utils.external.gdbmi_parser), 409
augment() (avocado.utils.external.spark.GenericParser

method), 411
AUTHORIZED_KEY_TEMPLATE (in module avo-

cado.utils.cloudinit), 431
AVAILABLE (avocado.core.loader.DiscoverMode

attribute), 360
avocado (module), 337
avocado.core (module), 408
avocado.core.app (module), 349
avocado.core.data_dir (module), 349
avocado.core.decorators (module), 351
avocado.core.dispatcher (module), 352
avocado.core.enabled_extension_manager

(module), 353
avocado.core.exceptions (module), 353
avocado.core.exit_codes (module), 355
avocado.core.extension_manager (module),

355
avocado.core.job (module), 356
avocado.core.job_id (module), 359
avocado.core.jobdata (module), 359
avocado.core.loader (module), 359
avocado.core.main (module), 363
avocado.core.messages (module), 363
avocado.core.nrunner (module), 366

avocado.core.output (module), 373
avocado.core.parameters (module), 377
avocado.core.parser (module), 378
avocado.core.parser_common_args (module),

379
avocado.core.plugin_interfaces (module),

379
avocado.core.references (module), 383
avocado.core.requirements (module), 342
avocado.core.requirements.cache (module),

342
avocado.core.requirements.cache.backends

(module), 342
avocado.core.requirements.cache.backends.sqlite

(module), 342
avocado.core.requirements.resolver (mod-

ule), 342
avocado.core.resolver (module), 383
avocado.core.result (module), 384
avocado.core.runner (module), 384
avocado.core.runners (module), 345
avocado.core.runners.avocado_instrumented

(module), 342
avocado.core.runners.requirement_package

(module), 343
avocado.core.runners.tap (module), 344
avocado.core.safeloader (module), 385
avocado.core.settings (module), 388
avocado.core.settings_dispatcher (mod-

ule), 392
avocado.core.spawners (module), 346
avocado.core.spawners.common (module), 345
avocado.core.spawners.exceptions (mod-

ule), 345
avocado.core.spawners.mock (module), 346
avocado.core.status (module), 348
avocado.core.status.repo (module), 346
avocado.core.status.server (module), 347
avocado.core.status.utils (module), 347
avocado.core.streams (module), 392
avocado.core.suite (module), 392
avocado.core.sysinfo (module), 394
avocado.core.tags (module), 396
avocado.core.tapparser (module), 396
avocado.core.task (module), 349
avocado.core.task.runtime (module), 348
avocado.core.task.statemachine (module),

348
avocado.core.test (module), 397
avocado.core.test_id (module), 403
avocado.core.teststatus (module), 403
avocado.core.tree (module), 404
avocado.core.utils (module), 406
avocado.core.varianter (module), 406

544 Index

avocado Documentation, Release 88.1

avocado.core.version (module), 408
avocado.plugins (module), 523
avocado.plugins.archive (module), 503
avocado.plugins.assets (module), 504
avocado.plugins.config (module), 505
avocado.plugins.dict_variants (module),

505
avocado.plugins.diff (module), 506
avocado.plugins.distro (module), 506
avocado.plugins.exec_path (module), 509
avocado.plugins.expected_files_merge

(module), 509
avocado.plugins.human (module), 510
avocado.plugins.jobs (module), 510
avocado.plugins.jobscripts (module), 511
avocado.plugins.journal (module), 511
avocado.plugins.json_variants (module),

512
avocado.plugins.jsonresult (module), 513
avocado.plugins.legacy (module), 502
avocado.plugins.legacy.replay (module),

501
avocado.plugins.list (module), 514
avocado.plugins.plugins (module), 514
avocado.plugins.replay (module), 515
avocado.plugins.resolvers (module), 515
avocado.plugins.run (module), 516
avocado.plugins.runner (module), 517
avocado.plugins.runner_nrunner (module),

517
avocado.plugins.spawners (module), 503
avocado.plugins.spawners.podman (module),

502
avocado.plugins.spawners.process (mod-

ule), 503
avocado.plugins.sysinfo (module), 518
avocado.plugins.tap (module), 519
avocado.plugins.testlogs (module), 520
avocado.plugins.teststmpdir (module), 520
avocado.plugins.variants (module), 521
avocado.plugins.vmimage (module), 521
avocado.plugins.wrapper (module), 522
avocado.plugins.xunit (module), 522
avocado.utils (module), 501
avocado.utils.archive (module), 424
avocado.utils.asset (module), 426
avocado.utils.astring (module), 428
avocado.utils.aurl (module), 430
avocado.utils.build (module), 431
avocado.utils.cloudinit (module), 431
avocado.utils.configure_network (module),

433
avocado.utils.cpu (module), 434
avocado.utils.crypto (module), 436

avocado.utils.data_factory (module), 436
avocado.utils.data_structures (module),

436
avocado.utils.datadrainer (module), 438
avocado.utils.debug (module), 439
avocado.utils.diff_validator (module), 440
avocado.utils.disk (module), 442
avocado.utils.distro (module), 443
avocado.utils.dmesg (module), 445
avocado.utils.download (module), 446
avocado.utils.exit_codes (module), 447
avocado.utils.external (module), 412
avocado.utils.external.gdbmi_parser

(module), 409
avocado.utils.external.spark (module), 411
avocado.utils.file_utils (module), 447
avocado.utils.filelock (module), 448
avocado.utils.gdb (module), 448
avocado.utils.genio (module), 452
avocado.utils.git (module), 453
avocado.utils.iso9660 (module), 455
avocado.utils.kernel (module), 457
avocado.utils.linux (module), 458
avocado.utils.linux_modules (module), 459
avocado.utils.lv_utils (module), 460
avocado.utils.memory (module), 464
avocado.utils.multipath (module), 467
avocado.utils.network (module), 417
avocado.utils.network.common (module), 412
avocado.utils.network.exceptions (mod-

ule), 412
avocado.utils.network.hosts (module), 413
avocado.utils.network.interfaces (mod-

ule), 414
avocado.utils.network.ports (module), 416
avocado.utils.output (module), 470
avocado.utils.partition (module), 470
avocado.utils.path (module), 472
avocado.utils.pci (module), 473
avocado.utils.pmem (module), 476
avocado.utils.process (module), 480
avocado.utils.script (module), 489
avocado.utils.service (module), 491
avocado.utils.software_manager (module),

424
avocado.utils.software_manager.backends

(module), 422
avocado.utils.software_manager.backends.apt

(module), 417
avocado.utils.software_manager.backends.base

(module), 418
avocado.utils.software_manager.backends.dnf

(module), 418

Index 545

avocado Documentation, Release 88.1

avocado.utils.software_manager.backends.dpkg
(module), 419

avocado.utils.software_manager.backends.rpm
(module), 419

avocado.utils.software_manager.backends.yum
(module), 421

avocado.utils.software_manager.backends.zypper
(module), 422

avocado.utils.software_manager.distro_packages
(module), 423

avocado.utils.software_manager.inspector
(module), 423

avocado.utils.software_manager.main
(module), 423

avocado.utils.software_manager.manager
(module), 423

avocado.utils.softwareraid (module), 493
avocado.utils.ssh (module), 495
avocado.utils.stacktrace (module), 496
avocado.utils.vmimage (module), 497
avocado.utils.wait (module), 501
AVOCADO_ALL_OK (in module avo-

cado.core.exit_codes), 355
AVOCADO_FAIL (in module avocado.core.exit_codes),

355
AVOCADO_GENERIC_CRASH (in module avo-

cado.core.exit_codes), 355
avocado_golang (module), 528
avocado_golang.runner (module), 528
AVOCADO_JOB_FAIL (in module avo-

cado.core.exit_codes), 355
AVOCADO_JOB_INTERRUPTED (in module avo-

cado.core.exit_codes), 355
avocado_result_upload (module), 537
avocado_resultsdb (module), 526
avocado_robot (module), 536
avocado_robot.runner (module), 536
AVOCADO_TESTS_FAIL (in module avo-

cado.core.exit_codes), 355
avocado_varianter_cit (module), 535
avocado_varianter_cit.Cit (module), 530
avocado_varianter_cit.CombinationMatrix

(module), 531
avocado_varianter_cit.CombinationRow

(module), 532
avocado_varianter_cit.Parser (module), 533
avocado_varianter_cit.Solver (module), 534
avocado_varianter_pict (module), 526
avocado_varianter_yaml_to_mux (module),

525
avocado_varianter_yaml_to_mux.mux (mod-

ule), 523
AvocadoApp (class in avocado.core.app), 349
AvocadoInstrumentedResolver (class in avo-

cado.plugins.resolvers), 515
AvocadoInstrumentedTestRunner (class in avo-

cado.core.runners.avocado_instrumented), 342
AvocadoParam (class in avocado.core.parameters),

377
AvocadoParams (class in avocado.core.parameters),

377

B
b (avocado.utils.data_structures.DataSize attribute), 437
base_image (avocado.utils.vmimage.Image attribute),

498
BaseBackend (class in avo-

cado.utils.software_manager.backends.base),
418

basedir (avocado.core.test.Test attribute), 399
basedir (avocado.Test attribute), 338
BaseDrainer (class in avocado.utils.datadrainer), 438
BaseMessageHandler (class in avo-

cado.core.messages), 363
BaseRunner (class in avocado.core.nrunner), 366
BaseRunnerApp (class in avocado.core.nrunner), 366
BaseRunningMessageHandler (class in avo-

cado.core.messages), 363
binary_from_shell_cmd() (in module avo-

cado.utils.process), 483
bitlist_to_string() (in module avo-

cado.utils.astring), 429
bootstrap() (avocado.core.task.statemachine.Worker

method), 349
Borg (class in avocado.utils.data_structures), 436
bring_down() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 414

bring_up() (avocado.utils.network.interfaces.NetworkInterface
method), 414

BrokenSymlink (class in avocado.core.loader), 359
BufferFDDrainer (class in avo-

cado.utils.datadrainer), 439
build() (avocado.utils.kernel.KernelBuild method),

457
build_dep() (avocado.utils.software_manager.backends.apt.AptBackend

method), 417
build_dep() (avocado.utils.software_manager.backends.dnf.DnfBackend

method), 419
build_dep() (avocado.utils.software_manager.backends.yum.YumBackend

static method), 421
build_dep() (avocado.utils.software_manager.backends.zypper.ZypperBackend

method), 422
build_dir (avocado.utils.kernel.KernelBuild at-

tribute), 458
buildASTNode() (avo-

cado.utils.external.spark.GenericASTBuilder
method), 411

546 Index

avocado Documentation, Release 88.1

buildTree() (avocado.utils.external.spark.GenericParser
method), 411

BUILTIN (avocado.utils.linux_modules.ModuleConfig
attribute), 459

BUILTIN_STREAM_SETS (in module avo-
cado.core.streams), 392

BUILTIN_STREAMS (in module avocado.core.streams),
392

bytes_from_file() (avo-
cado.core.spawners.common.SpawnerMixin
static method), 345

C
CACHE_DATABASE_PATH (in module avo-

cado.core.requirements.cache.backends.sqlite),
342

cache_dirs (avocado.core.test.Test attribute), 399
cache_dirs (avocado.Test attribute), 338
CallbackRegister (class in avo-

cado.utils.data_structures), 436
can_sudo() (in module avocado.utils.process), 484
cancel() (avocado.core.test.Test static method), 400
cancel() (avocado.Test static method), 338
cancel_on() (in module avocado), 340
cancel_on() (in module avocado.core.decorators),

351
category (avocado.core.nrunner.Task attribute), 372
causal() (avocado.utils.external.spark.GenericParser

method), 411
cb() (avocado.core.status.server.StatusServer method),

347
CentOSImageProvider (class in avo-

cado.utils.vmimage), 497
Change (class in avocado.utils.diff_validator), 440
change_one_column() (avo-

cado_varianter_cit.Cit.Cit method), 530
change_one_value() (avo-

cado_varianter_cit.Cit.Cit method), 530
check_buses() (avocado.utils.pmem.PMem static

method), 476
check_daxctl_subcmd() (avo-

cado.utils.pmem.PMem method), 476
check_docstring_directive() (in module avo-

cado.core.safeloader), 386
CHECK_FILE (avocado.utils.distro.Probe attribute), 444
check_file() (in module avocado.core.resolver), 384
CHECK_FILE_CONTAINS (avocado.utils.distro.Probe

attribute), 444
CHECK_FILE_DISTRO_NAME (avo-

cado.utils.distro.Probe attribute), 444
check_hotplug() (in module avo-

cado.utils.memory), 464
check_installed() (avo-

cado.utils.software_manager.backends.dpkg.DpkgBackend

method), 419
check_installed() (avo-

cado.utils.software_manager.backends.rpm.RpmBackend
method), 419

check_kernel_config() (in module avo-
cado.utils.linux_modules), 459

check_name_for_file() (avo-
cado.utils.distro.Probe method), 444

check_name_for_file_contains() (avo-
cado.utils.distro.Probe method), 444

check_ndctl_subcmd() (avo-
cado.utils.pmem.PMem method), 476

check_owner() (in module avocado.utils.file_utils),
447

check_permissions() (in module avo-
cado.utils.file_utils), 447

check_readable() (in module avocado.utils.path),
472

check_release() (avocado.utils.distro.Probe
method), 444

check_runnables_runner_requirements()
(in module avocado.core.nrunner), 372

check_subcmd() (avocado.utils.pmem.PMem static
method), 476

check_task_requirements() (avo-
cado.core.plugin_interfaces.Spawner static
method), 382

check_task_requirements() (avo-
cado.core.spawners.mock.MockSpawner
static method), 346

check_task_requirements() (avo-
cado.plugins.spawners.podman.PodmanSpawner
static method), 502

check_task_requirements() (avo-
cado.plugins.spawners.process.ProcessSpawner
static method), 503

check_test() (avocado.core.result.Result method),
384

check_version() (avocado.utils.distro.Probe
method), 444

check_version() (in module avocado.utils.kernel),
458

CHECK_VERSION_REGEX (avocado.utils.distro.Probe
attribute), 444

checkout() (avocado.utils.git.GitRepoHelper
method), 454

checksum() (avocado.utils.gdb.GDBRemote static
method), 451

CirrOSImageProvider (class in avo-
cado.utils.vmimage), 497

Cit (class in avocado_varianter_cit.Cit), 530
clean_hash_table() (avo-

cado_varianter_cit.Solver.Solver method),
534

Index 547

avocado Documentation, Release 88.1

clean_tmp_files() (in module avo-
cado.core.data_dir), 349

cleanup() (avocado.core.job.Job method), 357
cleanup_master() (avocado.utils.ssh.Session

method), 495
clear_dmesg() (in module avocado.utils.dmesg), 445
clear_plugins() (avo-

cado.core.loader.TestLoaderProxy method),
362

clear_superblock() (avo-
cado.utils.softwareraid.SoftwareRaid method),
494

CLI (class in avocado.core.plugin_interfaces), 379
cli_cmd() (avocado.utils.gdb.GDB method), 448
CLICmd (class in avocado.core.plugin_interfaces), 379
CLICmdDispatcher (class in avo-

cado.core.dispatcher), 352
CLIDispatcher (class in avocado.core.dispatcher),

352
close() (avocado.core.nrunner.TaskStatusService

method), 372
close() (avocado.core.output.Paginator method), 374
close() (avocado.core.output.StdOutput method), 374
close() (avocado.core.status.server.StatusServer

method), 347
close() (avocado.utils.archive.ArchiveFile method),

425
close() (avocado.utils.iso9660.Iso9660IsoRead

method), 455
close() (avocado.utils.iso9660.Iso9660Mount

method), 456
close() (avocado.utils.iso9660.ISO9660PyCDLib

method), 456
cmd() (avocado.utils.gdb.GDB method), 448
cmd() (avocado.utils.gdb.GDBRemote method), 451
cmd() (avocado.utils.ssh.Session method), 495
cmd_exists() (avocado.utils.gdb.GDB method), 448
CMD_RUNNABLE_RUN_ARGS (avo-

cado.core.nrunner.BaseRunnerApp attribute),
366

CMD_RUNNABLE_RUN_RECIPE_ARGS (avo-
cado.core.nrunner.BaseRunnerApp attribute),
366

cmd_split() (in module avocado.utils.process), 484
CMD_STATUS_SERVER_ARGS (avo-

cado.core.nrunner.BaseRunnerApp attribute),
366

CMD_TASK_RUN_ARGS (avo-
cado.core.nrunner.BaseRunnerApp attribute),
366

CMD_TASK_RUN_RECIPE_ARGS (avo-
cado.core.nrunner.BaseRunnerApp attribute),
366

CmdError, 480

CmdNotFoundError, 472
CmdResult (class in avocado.utils.process), 480
collect_dmesg() (in module avocado.utils.dmesg),

445
collect_errors_by_level() (in module avo-

cado.utils.dmesg), 445
collect_errors_dmesg() (in module avo-

cado.utils.dmesg), 445
collect_sysinfo() (in module avo-

cado.core.sysinfo), 395
Collectible (class in avocado.core.sysinfo), 394
collectRules() (avo-

cado.utils.external.spark.GenericParser
method), 411

COLOR_BLUE (avocado.core.output.TermSupport
attribute), 375

COLOR_DARKGREY (avocado.core.output.TermSupport
attribute), 375

COLOR_GREEN (avocado.core.output.TermSupport at-
tribute), 375

COLOR_RED (avocado.core.output.TermSupport at-
tribute), 375

COLOR_YELLOW (avocado.core.output.TermSupport at-
tribute), 375

CombinationMatrix (class in avo-
cado_varianter_cit.CombinationMatrix),
531

CombinationRow (class in avo-
cado_varianter_cit.CombinationRow), 532

comma_separated_ranges_to_list() (in mod-
ule avocado.utils.data_structures), 437

Command (class in avocado.core.sysinfo), 394
command_capabilities() (avo-

cado.core.nrunner.BaseRunnerApp method),
367

command_runnable_run() (avo-
cado.core.nrunner.BaseRunnerApp method),
367

command_runnable_run_recipe() (avo-
cado.core.nrunner.BaseRunnerApp method),
367

command_task_run() (avo-
cado.core.nrunner.BaseRunnerApp method),
367

command_task_run_recipe() (avo-
cado.core.nrunner.BaseRunnerApp method),
367

COMMON_TMPDIR_NAME (in module avo-
cado.core.test), 397

compare_matrices() (in module avo-
cado.utils.data_structures), 437

complete (avocado.core.task.statemachine.TaskStateMachine
attribute), 348

completely_uncover() (avo-

548 Index

avocado Documentation, Release 88.1

cado_varianter_cit.CombinationRow.CombinationRow
method), 533

compress() (in module avocado.utils.archive), 425
compute() (avocado_varianter_cit.Cit.Cit method),

530
compute_constraints() (avo-

cado_varianter_cit.Solver.Solver method),
534

compute_hamming_distance() (avo-
cado_varianter_cit.Cit.Cit method), 530

compute_row() (avocado_varianter_cit.Cit.Cit
method), 530

compute_row_using_hamming_distance()
(avocado_varianter_cit.Cit.Cit method), 530

computeNull() (avo-
cado.utils.external.spark.GenericParser
method), 411

CON_NAME (avocado_varianter_cit.Solver.Solver at-
tribute), 534

CON_VAL (avocado_varianter_cit.Solver.Solver at-
tribute), 534

Config (class in avocado.plugins.config), 505
config_filename (avo-

cado.utils.network.interfaces.NetworkInterface
attribute), 414

ConfigFileNotFound, 388
ConfigOption (class in avocado.core.settings), 388
configure() (avocado.core.plugin_interfaces.CLI

method), 379
configure() (avocado.core.plugin_interfaces.CLICmd

method), 379
configure() (avocado.plugins.archive.ArchiveCLI

method), 503
configure() (avocado.plugins.assets.Assets method),

504
configure() (avocado.plugins.config.Config

method), 505
configure() (avocado.plugins.diff.Diff method), 506
configure() (avocado.plugins.distro.Distro method),

506
configure() (avocado.plugins.jobs.Jobs method),

510
configure() (avocado.plugins.journal.Journal

method), 511
configure() (avocado.plugins.json_variants.JsonVariantsCLI

method), 513
configure() (avocado.plugins.jsonresult.JSONCLI

method), 513
configure() (avocado.plugins.legacy.replay.Replay

method), 501
configure() (avocado.plugins.list.List method), 514
configure() (avocado.plugins.replay.Replay

method), 515
configure() (avocado.plugins.run.Run method), 516

configure() (avocado.plugins.runner_nrunner.RunnerCLI
method), 518

configure() (avocado.plugins.spawners.podman.PodmanCLI
method), 502

configure() (avocado.plugins.sysinfo.SysInfo
method), 518

configure() (avocado.plugins.tap.TAP method), 519
configure() (avocado.plugins.variants.Variants

method), 521
configure() (avocado.plugins.vmimage.VMimage

method), 521
configure() (avocado.plugins.wrapper.Wrapper

method), 522
configure() (avocado.plugins.xunit.XUnitCLI

method), 522
configure() (avocado.utils.kernel.KernelBuild

method), 458
configure() (avocado_golang.GolangCLI method),

528
configure() (avocado_result_upload.ResultUploadCLI

method), 538
configure() (avocado_resultsdb.ResultsdbCLI

method), 527
configure() (avocado_robot.RobotCLI method), 536
configure() (avocado_varianter_cit.VarianterCitCLI

method), 535
configure() (avocado_varianter_pict.VarianterPictCLI

method), 526
configure() (avocado_varianter_yaml_to_mux.YamlToMuxCLI

method), 525
configure() (in module avocado.utils.build), 431
configured (avocado.core.output.StdOutput at-

tribute), 374
connect() (avocado.utils.gdb.GDB method), 448
connect() (avocado.utils.gdb.GDBRemote method),

451
connect() (avocado.utils.ssh.Session method), 495
CONTINUE (avocado.core.resolver.ReferenceResolutionAction

attribute), 383
Control (class in avo-

cado_varianter_yaml_to_mux.mux), 523
CONTROL_END (avocado.core.output.TermSupport at-

tribute), 375
control_master (avocado.utils.ssh.Session at-

tribute), 496
convert_systemd_target_to_runlevel() (in

module avocado.utils.service), 491
convert_sysv_runlevel() (in module avo-

cado.utils.service), 491
copy() (avocado.core.tree.TreeEnvironment method),

404
copy() (avocado.utils.iso9660.Iso9660IsoRead

method), 456
copy() (avocado.utils.iso9660.Iso9660Mount method),

Index 549

avocado Documentation, Release 88.1

456
copy() (avocado.utils.iso9660.ISO9660PyCDLib

method), 457
copy_files() (avocado.utils.ssh.Session method),

496
count (avocado.core.tapparser.TapParser.Plan at-

tribute), 397
cover_cell() (avo-

cado_varianter_cit.CombinationRow.CombinationRow
method), 533

cover_combination() (avo-
cado_varianter_cit.CombinationMatrix.CombinationMatrix
method), 531

cover_missing_combination() (avo-
cado_varianter_cit.Cit.Cit method), 530

cover_solution_row() (avo-
cado_varianter_cit.CombinationMatrix.CombinationMatrix
method), 531

cpu_has_flags() (in module avocado.utils.cpu), 434
cpu_online_list() (in module avocado.utils.cpu),

434
create() (avocado.utils.iso9660.ISO9660PyCDLib

method), 457
create() (avocado.utils.softwareraid.SoftwareRaid

method), 494
create() (in module avocado.utils.archive), 425
create_diff_report() (in module avo-

cado.utils.diff_validator), 441
create_from_yaml() (in module avo-

cado_varianter_yaml_to_mux), 525
create_job_logs_dir() (in module avo-

cado.core.data_dir), 349
create_loop_device() (in module avo-

cado.utils.disk), 442
create_namespace() (avocado.utils.pmem.PMem

method), 476
create_random_row_with_constraints()

(avocado_varianter_cit.Cit.Cit method), 531
create_server() (avo-

cado.core.status.server.StatusServer method),
347

create_test_suite() (avocado.core.job.Job
method), 357

create_unique_job_id() (in module avo-
cado.core.job_id), 359

CURRENT_WRAPPER (in module avocado.utils.process),
480

D
Daemon (class in avocado.core.sysinfo), 394
data (avocado.utils.datadrainer.BufferFDDrainer at-

tribute), 439
data_available() (avo-

cado.utils.datadrainer.BaseDrainer static

method), 438
data_available() (avo-

cado.utils.datadrainer.FDDrainer method),
439

DATA_SOURCES (avocado.core.test.SimpleTest at-
tribute), 399

DATA_SOURCES (avocado.core.test.TestData attribute),
402

DataSize (class in avocado.utils.data_structures), 437
DebianImageProvider (class in avo-

cado.utils.vmimage), 497
deco_factory() (in module avo-

cado.core.decorators), 351
decode() (avocado.utils.gdb.GDBRemote static

method), 451
DEFAULT (avocado.core.loader.DiscoverMode at-

tribute), 360
default() (avocado.core.nrunner.StatusEncoder

method), 371
default() (avocado.utils.external.spark.GenericASTTraversal

method), 411
DEFAULT_BREAK (avocado.utils.gdb.GDB attribute),

448
DEFAULT_CREATE_FLAGS (avo-

cado.utils.iso9660.ISO9660PyCDLib at-
tribute), 456

DEFAULT_HASH_ALGORITHM (in module avo-
cado.utils.asset), 428

DEFAULT_MODE (in module avocado.utils.script), 489
DEFAULT_OPTIONS (avocado.utils.ssh.Session at-

tribute), 495
DEFAULT_ORDER_OF_COMBINATIONS (in module

avocado_varianter_cit), 535
DEFAULT_POLICY (avocado.core.resolver.Resolver at-

tribute), 384
DEFAULT_TIMEOUT (avo-

cado.core.runners.avocado_instrumented.AvocadoInstrumentedTestRunner
attribute), 343

DEFAULT_TIMEOUT (avo-
cado.plugins.runner.TestRunner attribute),
517

del_break() (avocado.utils.gdb.GDB method), 449
del_cell() (avocado_varianter_cit.CombinationMatrix.CombinationMatrix

method), 532
del_cell() (avocado_varianter_cit.CombinationRow.CombinationRow

method), 533
del_last_configuration() (in module avo-

cado.core.output), 377
del_temp_file_copies() (in module avo-

cado.utils.diff_validator), 441
delete_loop_device() (in module avo-

cado.utils.disk), 442
deriveEpsilon() (avo-

cado.utils.external.spark.GenericParser

550 Index

avocado Documentation, Release 88.1

method), 411
description (avocado.core.plugin_interfaces.CLICmd

attribute), 379
description (avocado.core.requirements.resolver.RequirementsResolver

attribute), 342
description (avocado.plugins.archive.Archive

attribute), 503
description (avocado.plugins.archive.ArchiveCLI

attribute), 504
description (avocado.plugins.assets.Assets at-

tribute), 504
description (avocado.plugins.assets.FetchAssetJob

attribute), 505
description (avocado.plugins.config.Config at-

tribute), 505
description (avocado.plugins.dict_variants.DictVariants

attribute), 505
description (avocado.plugins.dict_variants.DictVariantsInit

attribute), 506
description (avocado.plugins.diff.Diff attribute), 506
description (avocado.plugins.distro.Distro at-

tribute), 506
description (avocado.plugins.exec_path.ExecPath

attribute), 509
description (avocado.plugins.expected_files_merge.FilesMerge

attribute), 509
description (avocado.plugins.human.Human at-

tribute), 510
description (avocado.plugins.human.HumanJob at-

tribute), 510
description (avocado.plugins.jobs.Jobs attribute),

511
description (avocado.plugins.jobscripts.JobScripts

attribute), 511
description (avocado.plugins.jobscripts.JobScriptsInit

attribute), 511
description (avocado.plugins.journal.Journal

attribute), 511
description (avocado.plugins.journal.JournalResult

attribute), 512
description (avocado.plugins.json_variants.JsonVariants

attribute), 512
description (avocado.plugins.json_variants.JsonVariantsCLI

attribute), 513
description (avocado.plugins.json_variants.JsonVariantsInit

attribute), 513
description (avocado.plugins.jsonresult.JSONCLI

attribute), 513
description (avocado.plugins.jsonresult.JSONInit

attribute), 513
description (avocado.plugins.jsonresult.JSONResult

attribute), 514
description (avocado.plugins.legacy.replay.Replay

attribute), 501

description (avocado.plugins.list.List attribute), 514
description (avocado.plugins.plugins.Plugins

attribute), 514
description (avocado.plugins.replay.Replay at-

tribute), 515
description (avocado.plugins.resolvers.AvocadoInstrumentedResolver

attribute), 515
description (avocado.plugins.resolvers.ExecTestResolver

attribute), 515
description (avocado.plugins.resolvers.PythonUnittestResolver

attribute), 515
description (avocado.plugins.resolvers.TapResolver

attribute), 516
description (avocado.plugins.run.Run attribute),

516
description (avocado.plugins.run.RunInit attribute),

516
description (avocado.plugins.runner.TestRunner at-

tribute), 517
description (avocado.plugins.runner_nrunner.Runner

attribute), 517
description (avocado.plugins.runner_nrunner.RunnerCLI

attribute), 518
description (avocado.plugins.runner_nrunner.RunnerInit

attribute), 518
description (avocado.plugins.spawners.podman.PodmanCLI

attribute), 502
description (avocado.plugins.spawners.podman.PodmanSpawner

attribute), 502
description (avocado.plugins.spawners.podman.PodmanSpawnerInit

attribute), 502
description (avocado.plugins.spawners.process.ProcessSpawner

attribute), 503
description (avocado.plugins.sysinfo.SysInfo at-

tribute), 518
description (avocado.plugins.sysinfo.SysinfoInit at-

tribute), 519
description (avocado.plugins.sysinfo.SysInfoJob at-

tribute), 518
description (avocado.plugins.tap.TAP attribute),

519
description (avocado.plugins.tap.TAPInit attribute),

519
description (avocado.plugins.tap.TAPResult at-

tribute), 519
description (avocado.plugins.testlogs.TestLogging

attribute), 520
description (avocado.plugins.testlogs.TestLogsUI

attribute), 520
description (avocado.plugins.testlogs.TestLogsUIInit

attribute), 520
description (avocado.plugins.teststmpdir.TestsTmpDir

attribute), 521
description (avocado.plugins.variants.Variants at-

Index 551

avocado Documentation, Release 88.1

tribute), 521
description (avocado.plugins.vmimage.VMimage at-

tribute), 521
description (avocado.plugins.wrapper.Wrapper at-

tribute), 522
description (avocado.plugins.xunit.XUnitCLI

attribute), 522
description (avocado.plugins.xunit.XUnitInit at-

tribute), 522
description (avocado.plugins.xunit.XUnitResult at-

tribute), 523
description (avocado_golang.GolangCLI attribute),

528
description (avocado_golang.GolangResolver at-

tribute), 529
description (avocado_result_upload.ResultUpload

attribute), 537
description (avocado_result_upload.ResultUploadCLI

attribute), 538
description (avocado_resultsdb.ResultsdbCLI at-

tribute), 527
description (avocado_resultsdb.ResultsdbResult at-

tribute), 527
description (avocado_resultsdb.ResultsdbResultEvent

attribute), 527
description (avocado_robot.RobotCLI attribute),

536
description (avocado_robot.RobotResolver at-

tribute), 537
description (avocado_varianter_cit.VarianterCit at-

tribute), 535
description (avocado_varianter_cit.VarianterCitCLI

attribute), 535
description (avocado_varianter_pict.VarianterPict

attribute), 526
description (avocado_varianter_pict.VarianterPictCLI

attribute), 526
description (avocado_varianter_yaml_to_mux.YamlToMux

attribute), 525
description (avocado_varianter_yaml_to_mux.YamlToMuxCLI

attribute), 525
description (avocado_varianter_yaml_to_mux.YamlToMuxInit

attribute), 525
destroy_namespace() (avocado.utils.pmem.PMem

method), 477
detach() (avocado.core.tree.TreeNode method), 404
detect() (in module avocado.utils.distro), 445
device (avocado.utils.partition.MtabLock attribute),

470
device_exists() (in module avo-

cado.utils.multipath), 467
DictVariants (class in avo-

cado.plugins.dict_variants), 505
DictVariantsInit (class in avo-

cado.plugins.dict_variants), 506
Diff (class in avocado.plugins.diff), 506
DiffValidationError, 441
disable() (avocado.core.output.TermSupport

method), 375
disable_log_handler() (in module avo-

cado.core.output), 377
disable_namespace() (avocado.utils.pmem.PMem

method), 477
disable_region() (avocado.utils.pmem.PMem

method), 477
disconnect() (avocado.utils.gdb.GDB method), 449
discover() (avocado.core.loader.ExternalLoader

method), 360
discover() (avocado.core.loader.SimpleFileLoader

method), 361
discover() (avocado.core.loader.TestLoader

method), 362
discover() (avocado.core.loader.TestLoaderProxy

method), 362
discover() (avocado_golang.GolangLoader

method), 529
discover() (avocado_robot.RobotLoader method),

536
DiscoverMode (class in avocado.core.loader), 359
DiskError, 442
display_data_size() (in module avo-

cado.utils.output), 470
display_images_list() (in module avo-

cado.plugins.vmimage), 521
Distro (class in avocado.plugins.distro), 506
DISTRO_PKG_INFO_LOADERS (in module avo-

cado.plugins.distro), 506
DistroDef (class in avocado.plugins.distro), 506
DistroPkgInfoLoader (class in avo-

cado.plugins.distro), 507
DistroPkgInfoLoaderDeb (class in avo-

cado.plugins.distro), 507
DistroPkgInfoLoaderRpm (class in avo-

cado.plugins.distro), 508
DmesgError, 445
DnfBackend (class in avo-

cado.utils.software_manager.backends.dnf),
418

do_POST() (avocado.utils.cloudinit.PhoneHomeServerHandler
method), 432

DOCSTRING_DIRECTIVE_RE_RAW (in module avo-
cado.core.safeloader), 385

download() (avocado.utils.kernel.KernelBuild
method), 458

download() (avocado.utils.vmimage.Image method),
498

download_image() (in module avo-
cado.plugins.vmimage), 521

552 Index

avocado Documentation, Release 88.1

DpkgBackend (class in avo-
cado.utils.software_manager.backends.dpkg),
419

draw() (avocado.utils.output.ProgressBar method),
470

drop_caches() (in module avocado.utils.memory),
465

DryRunTest (class in avocado.core.test), 398
dump() (avocado.core.varianter.Varianter method), 407
dump_ivariants() (in module avo-

cado.core.varianter), 408
DuplicatedNamespace, 388

E
early_start() (in module avocado.core.output), 377
early_status (avocado.core.runner.TestStatus

attribute), 385
emit() (avocado.core.output.MemStreamHandler

method), 374
emit() (avocado.core.output.ProgressStreamHandler

method), 374
emit() (avocado.core.runners.avocado_instrumented.RunnerLogHandler

method), 343
emit() (avocado.core.test.RawFileHandler method),

398
enable_namespace() (avocado.utils.pmem.PMem

method), 477
enable_outputs() (avocado.core.output.StdOutput

method), 374
enable_paginator() (avo-

cado.core.output.StdOutput method), 375
enable_region() (avocado.utils.pmem.PMem

method), 478
enable_selinux_enforcing() (in module avo-

cado.utils.linux), 458
enable_stderr() (avocado.core.output.StdOutput

method), 375
enabled() (avocado.core.enabled_extension_manager.EnabledExtensionManager

method), 353
enabled() (avocado.core.extension_manager.ExtensionManager

method), 356
EnabledExtensionManager (class in avo-

cado.core.enabled_extension_manager),
353

encode() (avocado.utils.gdb.GDBRemote static
method), 451

ENCODING (in module avocado.utils.astring), 428
end() (avocado.core.sysinfo.SysInfo method), 395
end_test() (avocado.core.plugin_interfaces.ResultEvents

method), 381
end_test() (avocado.core.result.Result method), 384
end_test() (avocado.plugins.human.Human

method), 510

end_test() (avocado.plugins.journal.JournalResult
method), 512

end_test() (avocado.plugins.tap.TAPResult method),
519

end_test() (avocado.plugins.testlogs.TestLogging
method), 520

end_test() (avocado_resultsdb.ResultsdbResultEvent
method), 527

end_tests() (avocado.core.result.Result method),
384

environment (avocado.core.tree.TreeNode attribute),
404

ERROR (avocado.core.resolver.ReferenceResolutionResult
attribute), 383

error() (avocado.core.parser.ArgumentParser
method), 378

error() (avocado.core.test.Test static method), 400
error() (avocado.Test static method), 338
error() (avocado.utils.external.gdbmi_parser.GdbMiParser

method), 409
error() (avocado.utils.external.spark.GenericParser

static method), 411
error() (avocado.utils.external.spark.GenericScanner

static method), 412
error_exit() (avocado_varianter_cit.VarianterCit

static method), 535
error_str() (avocado.core.output.TermSupport

method), 375
ESCAPE_CODES (avocado.core.output.TermSupport at-

tribute), 375
ExecPath (class in avocado.plugins.exec_path), 509
ExecRunner (class in avocado.core.nrunner), 367
ExecTestResolver (class in avo-

cado.plugins.resolvers), 515
ExecTestRunner (class in avocado.core.nrunner),

368
execute() (avocado.utils.git.GitRepoHelper method),

454
execution_timeout (avo-

cado.core.task.runtime.RuntimeTask attribute),
348

exit() (avocado.utils.gdb.GDB method), 449
exit() (avocado.utils.gdb.GDBServer method), 450
explanation (avocado.core.tapparser.TapParser.Plan

attribute), 397
explanation (avocado.core.tapparser.TapParser.Test

attribute), 397
Extension (class in avo-

cado.core.extension_manager), 355
ExtensionManager (class in avo-

cado.core.extension_manager), 356
ExternalLoader (class in avocado.core.loader), 360
ExternalRunnerSpec (class in avocado.core.test),

398

Index 553

avocado Documentation, Release 88.1

ExternalRunnerTest (class in avocado.core.test),
398

extract() (avocado.utils.archive.ArchiveFile
method), 425

extract() (in module avocado.utils.archive), 425
extract_changes() (in module avo-

cado.utils.diff_validator), 442

F
FAIL (avocado.core.tapparser.TestResult attribute), 397
fail() (avocado.core.test.Test method), 400
fail() (avocado.Test method), 338
fail_class (avocado.core.test.Test attribute), 400
fail_class (avocado.Test attribute), 338
fail_header_str() (avo-

cado.core.output.TermSupport method),
375

fail_on() (in module avocado), 340
fail_on() (in module avocado.core.decorators), 351
fail_path() (in module avocado.utils.multipath), 468
fail_reason (avocado.core.test.Test attribute), 400
fail_reason (avocado.Test attribute), 338
fail_str() (avocado.core.output.TermSupport

method), 375
fake_outputs() (avocado.core.output.StdOutput

method), 375
FakeVariantDispatcher (class in avo-

cado.core.varianter), 406
FAMILIES (in module avocado.utils.network.ports), 416
FamilyException, 434
FDDrainer (class in avocado.utils.datadrainer), 439
FDDrainer (class in avocado.utils.process), 481
FedoraImageProvider (class in avo-

cado.utils.vmimage), 498
FedoraImageProviderBase (class in avo-

cado.utils.vmimage), 498
FedoraSecondaryImageProvider (class in avo-

cado.utils.vmimage), 498
fetch() (avocado.utils.asset.Asset method), 426
fetch() (avocado.utils.git.GitRepoHelper method),

454
fetch_asset() (avocado.core.test.Test method), 400
fetch_asset() (avocado.Test method), 338
fetch_assets() (in module avocado.plugins.assets),

505
FetchAssetHandler (class in avo-

cado.plugins.assets), 504
FetchAssetJob (class in avocado.plugins.assets),

504
file_log_factory() (in module avo-

cado.plugins.tap), 520
file_name (avocado.utils.vmimage.ImageProviderBase

attribute), 499
FileLoader (class in avocado.core.loader), 360

FileLock (class in avocado.utils.filelock), 448
filename (avocado.core.test.DryRunTest attribute),

398
filename (avocado.core.test.ExternalRunnerTest at-

tribute), 398
filename (avocado.core.test.SimpleTest attribute), 399
filename (avocado.core.test.Test attribute), 401
filename (avocado.Test attribute), 339
filename (avocado_golang.GolangTest attribute), 529
filename (avocado_robot.RobotTest attribute), 537
FileOrStdoutAction (class in avo-

cado.core.parser), 378
FilesMerge (class in avo-

cado.plugins.expected_files_merge), 509
filter() (avocado.core.output.FilterInfoAndLess

method), 373
filter() (avocado.core.output.FilterWarnAndMore

method), 373
filter_config() (avocado.core.settings.Settings

static method), 390
filter_test_tags() (in module avo-

cado.core.tags), 396
filter_test_tags_runnable() (in module avo-

cado.core.tags), 396
FilterInfoAndLess (class in avocado.core.output),

373
FilterSet (class in avocado.core.tree), 404
FilterWarnAndMore (class in avocado.core.output),

373
final_matrix_init() (avo-

cado_varianter_cit.Cit.Cit method), 531
finalState() (avo-

cado.utils.external.spark.GenericParser
method), 411

find_asset_file() (avocado.utils.asset.Asset
method), 426

find_avocado_tests() (in module avo-
cado.core.safeloader), 386

find_better_solution() (avo-
cado_varianter_cit.Cit.Cit method), 531

find_class_and_methods() (in module avo-
cado.core.safeloader), 386

find_command() (in module avocado.utils.path), 472
find_files() (in module avocado_golang), 529
find_free_port() (avo-

cado.utils.network.ports.PortTracker method),
416

find_free_port() (in module avo-
cado.utils.network.ports), 416

find_free_ports() (in module avo-
cado.utils.network.ports), 417

find_python_tests() (in module avo-
cado.core.safeloader), 386

find_python_unittests() (in module avo-

554 Index

avocado Documentation, Release 88.1

cado.core.safeloader), 387
find_rpm_packages() (avo-

cado.utils.software_manager.backends.rpm.RpmBackend
method), 419

find_tests() (in module avocado_golang), 529
find_tests() (in module avocado_robot), 537
fingerprint() (avocado.core.tree.TreeNode

method), 405
fingerprint() (avo-

cado.core.tree.TreeNodeEnvOnly method),
406

fingerprint() (avo-
cado_varianter_yaml_to_mux.mux.MuxTreeNode
method), 524

finish() (avocado.core.parser.Parser method), 379
finish() (avocado.core.runner.TestStatus method),

385
finished (avocado.core.task.statemachine.TaskStateMachine

attribute), 348
FinishMessageHandler (class in avo-

cado.core.messages), 363
flush() (avocado.core.output.LoggingFile method),

373
flush() (avocado.core.output.MemStreamHandler

method), 374
flush() (avocado.core.output.Paginator method), 374
flush() (avocado.core.runners.avocado_instrumented.StreamToQueue

method), 343
flush() (avocado.utils.process.FDDrainer method),

481
flush_path() (in module avocado.utils.multipath),

468
form_conf_mpath_file() (in module avo-

cado.utils.multipath), 468
foundMatch() (avo-

cado.utils.external.spark.GenericASTMatcher
static method), 411

freememtotal() (in module avocado.utils.memory),
465

freespace() (in module avocado.utils.disk), 443
from_args() (avocado.core.nrunner.Runnable class

method), 369
from_config() (avocado.core.job.Job class method),

357
from_config() (avocado.core.suite.TestSuite class

method), 392
from_identifier() (avocado.core.test_id.TestID

class method), 403
from_recipe() (avocado.core.nrunner.Runnable

class method), 369
from_recipe() (avocado.core.nrunner.Task class

method), 372
from_resultsdir() (avo-

cado.core.varianter.Varianter class method),

407
FS_UNSAFE_CHARS (in module avocado.utils.astring),

428
fully_qualified_name() (avo-

cado.core.extension_manager.ExtensionManager
method), 356

G
g (avocado.utils.data_structures.DataSize attribute), 437
GDB (class in avocado.utils.gdb), 448
GdbDynamicObject (class in avo-

cado.utils.external.gdbmi_parser), 409
GdbMiInterpreter (class in avo-

cado.utils.external.gdbmi_parser), 409
GdbMiParser (class in avo-

cado.utils.external.gdbmi_parser), 409
GdbMiRecord (class in avo-

cado.utils.external.gdbmi_parser), 410
GdbMiScanner (class in avo-

cado.utils.external.gdbmi_parser), 410
GdbMiScannerBase (class in avo-

cado.utils.external.gdbmi_parser), 410
GDBRemote (class in avocado.utils.gdb), 450
GDBServer (class in avocado.utils.gdb), 450
generate_random_string() (in module avo-

cado.utils.data_factory), 436
generate_variant_id() (in module avo-

cado.core.varianter), 408
GenericASTBuilder (class in avo-

cado.utils.external.spark), 411
GenericASTMatcher (class in avo-

cado.utils.external.spark), 411
GenericASTTraversal (class in avo-

cado.utils.external.spark), 411
GenericASTTraversalPruningException, 411
GenericParser (class in avo-

cado.utils.external.spark), 411
GenericScanner (class in avo-

cado.utils.external.spark), 412
GenIOError, 452
geometric_mean() (in module avo-

cado.utils.data_structures), 438
get() (avocado.core.parameters.AvocadoParams

method), 378
get() (avocado.utils.vmimage.Image method), 498
get() (in module avocado.utils.vmimage), 500
get_all_adds() (avo-

cado.utils.diff_validator.Change method),
441

get_all_assets() (avocado.utils.asset.Asset class
method), 427

get_all_removes() (avo-
cado.utils.diff_validator.Change method),
441

Index 555

avocado Documentation, Release 88.1

get_all_task_data() (avo-
cado.core.status.repo.StatusRepo method),
347

get_all_uncovered_combinations() (avo-
cado_varianter_cit.CombinationRow.CombinationRow
method), 533

get_arch() (in module avocado.utils.cpu), 434
get_asset_by_name() (avocado.utils.asset.Asset

class method), 427
get_assets_by_size() (avocado.utils.asset.Asset

class method), 427
get_assets_unused_for_days() (avo-

cado.utils.asset.Asset class method), 427
get_available_filesystems() (in module avo-

cado.utils.disk), 443
get_avocado_git_version() (in module avo-

cado.core.utils), 406
get_base_dir() (in module avocado.core.data_dir),

350
get_base_keywords() (avo-

cado.core.loader.TestLoaderProxy method),
362

get_best_provider() (in module avo-
cado.utils.vmimage), 500

get_best_version() (avo-
cado.utils.vmimage.ImageProviderBase static
method), 499

get_best_version() (avo-
cado.utils.vmimage.OpenSUSEImageProvider
method), 499

get_blk_string() (in module avo-
cado.utils.memory), 465

get_buddy_info() (in module avo-
cado.utils.memory), 465

get_cache_dirs() (in module avo-
cado.core.data_dir), 350

get_capabilities() (avo-
cado.core.nrunner.BaseRunnerApp method),
367

get_capabilities() (in module avo-
cado.utils.process), 484

get_cfg() (in module avocado.utils.pci), 473
get_children_pids() (in module avo-

cado.utils.process), 484
get_colored_status() (avo-

cado.plugins.human.Human static method),
510

get_command_args() (avo-
cado.core.nrunner.Runnable method), 369

get_command_args() (avocado.core.nrunner.Task
method), 372

get_command_output_matching() (in module
avocado.utils.process), 484

get_commands() (avo-

cado.core.nrunner.BaseRunnerApp method),
367

get_cpu_arch() (in module avocado.utils.cpu), 434
get_cpu_vendor_name() (in module avo-

cado.utils.cpu), 434
get_cpufreq_governor() (in module avo-

cado.utils.cpu), 434
get_cpuidle_state() (in module avo-

cado.utils.cpu), 434
get_crash_dir() (in module avocado.core.main),

363
get_data() (avocado.core.test.TestData method), 402
get_data_dir() (in module avocado.core.data_dir),

350
get_datafile_path() (in module avo-

cado.core.data_dir), 350
get_decorator_mapping() (avo-

cado.core.loader.ExternalLoader static
method), 360

get_decorator_mapping() (avo-
cado.core.loader.FileLoader static method),
360

get_decorator_mapping() (avo-
cado.core.loader.SimpleFileLoader static
method), 361

get_decorator_mapping() (avo-
cado.core.loader.TapLoader static method),
361

get_decorator_mapping() (avo-
cado.core.loader.TestLoader static method),
362

get_decorator_mapping() (avo-
cado.core.loader.TestLoaderProxy method),
362

get_decorator_mapping() (avo-
cado_golang.GolangLoader static method),
529

get_decorator_mapping() (avo-
cado_robot.RobotLoader static method),
537

get_default_route_interface() (avo-
cado.utils.network.hosts.Host method), 413

get_detail() (avo-
cado.utils.softwareraid.SoftwareRaid method),
494

get_device_total_space() (in module avo-
cado.utils.lv_utils), 460

get_devices_total_space() (in module avo-
cado.utils.lv_utils), 460

get_dict() (avocado.core.nrunner.Runnable
method), 369

get_disk_blocksize() (in module avo-
cado.utils.disk), 443

get_disks() (in module avocado.utils.disk), 443

556 Index

avocado Documentation, Release 88.1

get_disks_in_pci_address() (in module avo-
cado.utils.pci), 473

get_diskspace() (in module avocado.utils.lv_utils),
460

get_distro() (avocado.utils.distro.Probe method),
444

get_docstring_directives() (in module avo-
cado.core.safeloader), 387

get_docstring_directives_requirements()
(in module avocado.core.safeloader), 387

get_docstring_directives_tags() (in mod-
ule avocado.core.safeloader), 387

get_domains() (in module avocado.utils.pci), 473
get_driver() (in module avocado.utils.pci), 473
get_environment() (avocado.core.tree.TreeNode

method), 405
get_environment() (avo-

cado.core.tree.TreeNodeEnvOnly method),
406

get_extra_listing() (avo-
cado.core.loader.TestLoader method), 362

get_extra_listing() (avo-
cado.core.loader.TestLoaderProxy method),
362

get_failed_tests() (avocado.core.job.Job
method), 358

get_family() (in module avocado.utils.cpu), 434
get_file() (in module avocado.utils.download), 446
get_filesystem_type() (in module avo-

cado.utils.disk), 443
get_first_line() (avo-

cado.utils.path.PathInspector method), 472
get_freq_governor() (in module avo-

cado.utils.cpu), 434
get_full_decorator_mapping() (avo-

cado.core.loader.TestLoader method), 362
get_full_type_label_mapping() (avo-

cado.core.loader.TestLoader method), 362
get_huge_page_size() (in module avo-

cado.utils.memory), 465
get_hwaddr() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 414

get_idle_state() (in module avocado.utils.cpu),
434

get_image_parameters() (avo-
cado.utils.vmimage.ImageProviderBase
method), 499

get_image_url() (avo-
cado.utils.vmimage.CentOSImageProvider
method), 497

get_image_url() (avo-
cado.utils.vmimage.FedoraImageProviderBase
method), 498

get_image_url() (avo-
cado.utils.vmimage.ImageProviderBase
method), 499

get_interface_by_ipaddr() (avo-
cado.utils.network.hosts.Host method), 413

get_interfaces_in_pci_address() (in mod-
ule avocado.utils.pci), 474

get_ipaddrs() (avo-
cado.utils.network.interfaces.NetworkInterface
method), 414

get_job_results_dir() (in module avo-
cado.core.data_dir), 350

get_json() (avocado.core.nrunner.Runnable
method), 369

get_latest_task_data() (avo-
cado.core.status.repo.StatusRepo method),
347

get_leaves() (avocado.core.tree.TreeNode method),
405

get_link_state() (avo-
cado.utils.network.interfaces.NetworkInterface
method), 414

get_loaded_modules() (in module avo-
cado.utils.linux_modules), 459

get_logs_dir() (in module avocado.core.data_dir),
350

get_mask() (in module avocado.utils.pci), 474
get_memory_address() (in module avo-

cado.utils.pci), 474
get_metadata() (avocado.utils.asset.Asset method),

427
get_methods_info() (in module avo-

cado.core.safeloader), 387
get_missing_combination_random() (avo-

cado_varianter_cit.Cit.Cit method), 531
get_modules_dir() (in module avo-

cado.utils.linux_modules), 459
get_mountpoint() (avo-

cado.utils.partition.Partition method), 471
get_mpath_name() (in module avo-

cado.utils.multipath), 468
get_mpath_status() (in module avo-

cado.utils.multipath), 468
get_mtu() (avocado.utils.network.interfaces.NetworkInterface

method), 414
get_multipath_details() (in module avo-

cado.utils.multipath), 468
get_multipath_wwid() (in module avo-

cado.utils.multipath), 468
get_multipath_wwids() (in module avo-

cado.utils.multipath), 468
get_name_of_init() (in module avo-

cado.utils.service), 492
get_nics_in_pci_address() (in module avo-

Index 557

avocado Documentation, Release 88.1

cado.utils.pci), 474
get_node() (avocado.core.tree.TreeNode method),

405
get_num_huge_pages() (in module avo-

cado.utils.memory), 465
get_num_interfaces_in_pci() (in module avo-

cado.utils.pci), 474
get_number_of_tests() (avo-

cado.core.varianter.Varianter method), 407
get_or_die() (avo-

cado.core.parameters.AvocadoParam method),
377

get_owner_id() (in module avocado.utils.process),
484

get_package_info() (avo-
cado.plugins.distro.DistroPkgInfoLoader
method), 507

get_package_info() (avo-
cado.plugins.distro.DistroPkgInfoLoaderDeb
method), 507

get_package_info() (avo-
cado.plugins.distro.DistroPkgInfoLoaderRpm
method), 508

get_package_management() (avo-
cado.utils.software_manager.inspector.SystemInspector
method), 423

get_packages_info() (avo-
cado.plugins.distro.DistroPkgInfoLoader
method), 507

get_page_size() (in module avo-
cado.utils.memory), 465

get_parent_pid() (in module avo-
cado.utils.process), 484

get_parents() (avocado.core.tree.TreeNode
method), 405

get_path() (avocado.core.tree.TreeNode method),
405

get_path() (avocado.core.tree.TreeNodeEnvOnly
method), 406

get_path() (in module avocado.utils.path), 472
get_path_status() (in module avo-

cado.utils.multipath), 469
get_paths() (in module avocado.utils.multipath), 469
get_pci_addresses() (in module avo-

cado.utils.pci), 474
get_pci_class_name() (in module avo-

cado.utils.pci), 475
get_pci_fun_list() (in module avocado.utils.pci),

475
get_pci_id() (in module avocado.utils.pci), 475
get_pci_id_from_sysfs() (in module avo-

cado.utils.pci), 475
get_pci_prop() (in module avocado.utils.pci), 475
get_peer_interface() (avo-

cado.utils.configure_network.PeerInfo
method), 433

get_pid() (avocado.utils.process.SubProcess
method), 482

get_pid_cpus() (in module avocado.utils.cpu), 434
get_policy() (in module avocado.utils.multipath),

469
get_possible_values() (avo-

cado_varianter_cit.Solver.Solver method),
534

get_proc_sys() (in module avocado.utils.linux), 458
get_raw_ssh_command() (avo-

cado.utils.ssh.Session method), 496
get_repo() (in module avocado.utils.git), 454
get_requirement() (in module avo-

cado.core.requirements.cache.backends.sqlite),
342

get_resolutions() (avo-
cado.core.parser.HintParser method), 378

get_root() (avocado.core.tree.TreeNode method),
405

get_row() (avocado_varianter_cit.CombinationMatrix.CombinationMatrix
method), 532

get_runner_from_runnable() (avo-
cado.core.nrunner.BaseRunnerApp method),
367

get_serializable_tags() (avo-
cado.core.nrunner.Runnable method), 369

get_size() (in module avocado.utils.multipath), 469
get_slot_count() (avocado.utils.pmem.PMem

method), 478
get_slot_from_sysfs() (in module avo-

cado.utils.pci), 475
get_slot_list() (in module avocado.utils.pci), 475
get_source() (avo-

cado.utils.software_manager.backends.apt.AptBackend
method), 418

get_source() (avo-
cado.utils.software_manager.backends.yum.YumBackend
method), 421

get_source() (avo-
cado.utils.software_manager.backends.zypper.ZypperBackend
method), 422

get_state() (avocado.core.test.Test method), 401
get_state() (avocado.Test method), 339
get_stderr() (avocado.utils.process.SubProcess

method), 482
get_stdout() (avocado.utils.process.SubProcess

method), 482
get_sub_process_klass() (in module avo-

cado.utils.process), 485
get_submodules() (in module avo-

cado.utils.linux_modules), 459
get_supported_huge_pages_size() (in mod-

558 Index

avocado Documentation, Release 88.1

ule avocado.utils.memory), 465
get_svc_name() (in module avo-

cado.utils.multipath), 469
get_target_files() (avo-

cado.utils.diff_validator.Change method),
441

get_task_data() (avo-
cado.core.status.repo.StatusRepo method),
347

get_task_status() (avo-
cado.core.status.repo.StatusRepo method),
347

get_temp_file_path() (in module avo-
cado.utils.diff_validator), 442

get_test_dir() (in module avocado.core.data_dir),
350

get_thp_value() (in module avo-
cado.utils.memory), 466

get_tmp_dir() (in module avocado.core.data_dir),
351

get_top_commit() (avo-
cado.utils.git.GitRepoHelper method), 454

get_top_tag() (avocado.utils.git.GitRepoHelper
method), 454

get_type_label_mapping() (avo-
cado.core.loader.ExternalLoader static
method), 360

get_type_label_mapping() (avo-
cado.core.loader.FileLoader static method),
360

get_type_label_mapping() (avo-
cado.core.loader.SimpleFileLoader static
method), 361

get_type_label_mapping() (avo-
cado.core.loader.TapLoader static method),
361

get_type_label_mapping() (avo-
cado.core.loader.TestLoader static method),
362

get_type_label_mapping() (avo-
cado.core.loader.TestLoaderProxy method),
362

get_type_label_mapping() (avo-
cado_golang.GolangLoader static method),
529

get_type_label_mapping() (avo-
cado_robot.RobotLoader static method),
537

get_user_id() (avocado.utils.process.SubProcess
method), 482

get_variants_path() (in module avo-
cado.core.jobdata), 359

get_vendor() (in module avocado.utils.cpu), 435
get_version() (avo-

cado.utils.vmimage.ImageProviderBase
method), 499

get_version() (in module avocado.utils.cpu), 435
get_versions() (avo-

cado.utils.vmimage.ImageProviderBase
method), 499

get_versions() (avo-
cado.utils.vmimage.OpenSUSEImageProvider
method), 499

get_versions() (avo-
cado.utils.vmimage.UbuntuImageProvider
method), 500

get_vpd() (in module avocado.utils.pci), 475
getoutput() (in module avocado.utils.process), 485
getstatusoutput() (in module avo-

cado.utils.process), 485
git_cmd() (avocado.utils.git.GitRepoHelper method),

454
GitRepoHelper (class in avocado.utils.git), 453
GolangCLI (class in avocado_golang), 528
GolangLoader (class in avocado_golang), 528
GolangResolver (class in avocado_golang), 529
GolangRunner (class in avocado_golang.runner), 528
GolangTest (class in avocado_golang), 529
goto() (avocado.utils.external.spark.GenericParser

method), 411
gotoST() (avocado.utils.external.spark.GenericParser

method), 411
gotoT() (avocado.utils.external.spark.GenericParser

method), 412
graft() (avocado.utils.external.gdbmi_parser.GdbDynamicObject

method), 409
GZIP_MAGIC (in module avocado.utils.archive), 425
gzip_uncompress() (in module avo-

cado.utils.archive), 425

H
handle() (avocado.core.messages.BaseMessageHandler

method), 363
handle() (avocado.core.messages.FinishMessageHandler

method), 364
handle() (avocado.core.messages.LogMessageHandler

method), 364
handle() (avocado.core.messages.StartMessageHandler

method), 365
handle() (avocado.core.messages.StderrMessageHandler

method), 365
handle() (avocado.core.messages.StdoutMessageHandler

method), 365
handle() (avocado.core.messages.WhiteboardMessageHandler

method), 366
handle_default() (avocado.plugins.config.Config

static method), 505

Index 559

avocado Documentation, Release 88.1

handle_exception() (in module avo-
cado.core.main), 363

handle_fetch() (avocado.plugins.assets.Assets
static method), 504

handle_list() (avocado.plugins.assets.Assets
method), 504

handle_list_command() (avo-
cado.plugins.jobs.Jobs static method), 511

handle_output_files_command() (avo-
cado.plugins.jobs.Jobs method), 511

handle_purge() (avocado.plugins.assets.Assets
method), 504

handle_reference() (avo-
cado.plugins.config.Config static method),
505

handle_register() (avocado.plugins.assets.Assets
static method), 504

handle_show_command() (avo-
cado.plugins.jobs.Jobs method), 511

handle_starttag() (avo-
cado.utils.vmimage.VMImageHtmlParser
method), 500

has_capability() (in module avo-
cado.utils.process), 486

has_exec_permission() (avo-
cado.utils.path.PathInspector method), 472

hash_file() (in module avocado.utils.crypto), 436
header_str() (avocado.core.output.TermSupport

method), 376
healthy_str() (avocado.core.output.TermSupport

method), 376
HintParser (class in avocado.core.parser), 378
Host (class in avocado.utils.network.hosts), 413
hotplug() (in module avocado.utils.memory), 466
hotunplug() (in module avocado.utils.memory), 466
HTML_ENCODING (avo-

cado.utils.vmimage.FedoraImageProviderBase
attribute), 498

HTML_ENCODING (avo-
cado.utils.vmimage.ImageProviderBase at-
tribute), 499

HTML_ENCODING (avo-
cado.utils.vmimage.OpenSUSEImageProvider
attribute), 499

Human (class in avocado.plugins.human), 510
HumanJob (class in avocado.plugins.human), 510

I
Image (class in avocado.utils.vmimage), 498
IMAGE_PROVIDERS (in module avo-

cado.utils.vmimage), 498
ImageProviderBase (class in avo-

cado.utils.vmimage), 499
ImageProviderError, 499

imported_objects (avo-
cado.core.safeloader.PythonModule attribute),
386

Init (class in avocado.core.plugin_interfaces), 379
init() (avocado.utils.git.GitRepoHelper method), 454
init_dir() (in module avocado.utils.path), 473
INIT_TIMEOUT (avocado.utils.gdb.GDBServer at-

tribute), 450
InitDispatcher (class in avocado.core.dispatcher),

352
initialize() (avocado.core.plugin_interfaces.Init

method), 380
initialize() (avo-

cado.plugins.dict_variants.DictVariants
method), 505

initialize() (avo-
cado.plugins.dict_variants.DictVariantsInit
method), 506

initialize() (avo-
cado.plugins.jobscripts.JobScriptsInit method),
511

initialize() (avo-
cado.plugins.json_variants.JsonVariants
method), 512

initialize() (avo-
cado.plugins.json_variants.JsonVariantsInit
method), 513

initialize() (avocado.plugins.jsonresult.JSONInit
method), 513

initialize() (avocado.plugins.run.RunInit method),
516

initialize() (avo-
cado.plugins.runner_nrunner.RunnerInit
method), 518

initialize() (avo-
cado.plugins.spawners.podman.PodmanSpawnerInit
method), 502

initialize() (avocado.plugins.sysinfo.SysinfoInit
method), 519

initialize() (avocado.plugins.tap.TAPInit method),
519

initialize() (avo-
cado.plugins.testlogs.TestLogsUIInit method),
520

initialize() (avocado.plugins.xunit.XUnitInit
method), 523

initialize() (avocado_varianter_cit.VarianterCit
method), 535

initialize() (avocado_varianter_pict.VarianterPict
method), 526

initialize() (avo-
cado_varianter_yaml_to_mux.YamlToMux
method), 525

initialize() (avo-

560 Index

avocado Documentation, Release 88.1

cado_varianter_yaml_to_mux.YamlToMuxInit
method), 525

initialize_mux() (avo-
cado_varianter_yaml_to_mux.mux.MuxPlugin
method), 523

initialize_plugin_infrastructure() (in
module avocado.core), 408

initialize_plugins() (in module avocado.core),
408

install() (avocado.utils.kernel.KernelBuild method),
458

install() (avocado.utils.software_manager.backends.apt.AptBackend
method), 418

install() (avocado.utils.software_manager.backends.yum.YumBackend
method), 421

install() (avocado.utils.software_manager.backends.zypper.ZypperBackend
method), 422

install_distro_packages() (in module avo-
cado.utils.software_manager), 424

install_distro_packages() (in module avo-
cado.utils.software_manager.distro_packages),
423

install_what_provides() (avo-
cado.utils.software_manager.backends.base.BaseBackend
method), 418

INSTALLED_OUTPUT (avo-
cado.utils.software_manager.backends.dpkg.DpkgBackend
attribute), 419

interfaces (avocado.utils.network.hosts.Host at-
tribute), 413

interrupt_str() (avo-
cado.core.output.TermSupport method),
376

InvalidDataSize, 437
InvalidLoaderPlugin, 360
is_admin_link_up() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 415

is_archive() (in module avocado.utils.archive), 425
is_available() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 415

is_bytes() (in module avocado.utils.astring), 429
is_capable() (avo-

cado.utils.software_manager.manager.SoftwareManager
method), 423

is_capable() (avo-
cado.utils.software_manager.SoftwareManager
method), 424

is_empty() (avocado.utils.path.PathInspector
method), 472

is_empty_variant() (in module avo-
cado.core.varianter), 408

is_full (avocado_varianter_cit.Solver.Parameter at-

tribute), 534
is_gzip_file() (in module avocado.utils.archive),

425
is_hot_pluggable() (in module avo-

cado.utils.memory), 466
is_interface_link_up() (in module avo-

cado.utils.configure_network), 434
is_kind_supported_by_runner_command()

(avocado.core.nrunner.Runnable method), 369
is_leaf (avocado.core.tree.TreeNode attribute), 405
is_link_up() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 415

is_lzma_file() (in module avocado.utils.archive),
426

is_matching_klass() (avo-
cado.core.safeloader.PythonModule method),
386

is_mpath_dev() (in module avo-
cado.utils.multipath), 469

is_operational_link_up() (avo-
cado.utils.network.interfaces.NetworkInterface
method), 415

is_parsed() (avocado.core.varianter.Varianter
method), 407

is_path_a_multipath() (in module avo-
cado.utils.multipath), 469

is_pattern_in_file() (in module avo-
cado.utils.genio), 452

is_port_free() (in module avo-
cado.utils.network.ports), 417

is_python() (avocado.utils.path.PathInspector
method), 472

is_recovering() (avo-
cado.utils.softwareraid.SoftwareRaid method),
494

is_region_legacy() (avocado.utils.pmem.PMem
static method), 478

is_root_device() (in module avocado.utils.disk),
443

is_script() (avocado.utils.path.PathInspector
method), 472

is_selinux_enforcing() (in module avo-
cado.utils.linux), 458

is_software_package() (avo-
cado.plugins.distro.DistroPkgInfoLoader
method), 507

is_software_package() (avo-
cado.plugins.distro.DistroPkgInfoLoaderDeb
method), 508

is_software_package() (avo-
cado.plugins.distro.DistroPkgInfoLoaderRpm
method), 508

is_sudo_enabled() (avo-

Index 561

avocado Documentation, Release 88.1

cado.utils.process.SubProcess method),
482

is_task_alive() (avo-
cado.core.plugin_interfaces.Spawner static
method), 382

is_task_alive() (avo-
cado.core.spawners.mock.MockRandomAliveSpawner
method), 346

is_task_alive() (avo-
cado.core.spawners.mock.MockSpawner
method), 346

is_task_alive() (avo-
cado.plugins.spawners.podman.PodmanSpawner
static method), 502

is_task_alive() (avo-
cado.plugins.spawners.process.ProcessSpawner
static method), 503

is_text() (in module avocado.utils.astring), 429
is_url() (in module avocado.utils.aurl), 430
is_valid() (avocado_varianter_cit.CombinationRow.CombinationRow

method), 533
is_valid_combination() (avo-

cado_varianter_cit.CombinationMatrix.CombinationMatrix
method), 532

is_valid_solution() (avo-
cado_varianter_cit.CombinationMatrix.CombinationMatrix
method), 532

isatty() (avocado.core.output.LoggingFile static
method), 373

isnullable() (avo-
cado.utils.external.spark.GenericParser
method), 412

iso() (in module avocado.utils.cloudinit), 432
iso9660() (in module avocado.utils.iso9660), 455
Iso9660IsoInfo (class in avocado.utils.iso9660),

455
Iso9660IsoRead (class in avocado.utils.iso9660),

455
Iso9660Mount (class in avocado.utils.iso9660), 456
ISO9660PyCDLib (class in avocado.utils.iso9660),

456
items() (avocado_varianter_yaml_to_mux.mux.ValueDict

method), 524
iter_children_preorder() (avo-

cado.core.tree.TreeNode method), 405
iter_classes() (avo-

cado.core.safeloader.PythonModule method),
386

iter_leaves() (avocado.core.tree.TreeNode
method), 405

iter_parents() (avocado.core.tree.TreeNode
method), 405

iter_tabular_output() (in module avo-
cado.utils.astring), 429

iter_variants() (avo-
cado_varianter_yaml_to_mux.mux.MuxTree
method), 524

iteritems() (avocado.core.parameters.AvocadoParam
method), 377

iteritems() (avocado.core.parameters.AvocadoParams
method), 378

itertests() (avocado.core.varianter.Varianter
method), 407

J
JeosImageProvider (class in avo-

cado.utils.vmimage), 499
Job (class in avocado.core.job), 356
JobBaseException, 353
JobError, 353
JobPost (class in avocado.core.plugin_interfaces), 380
JobPostTests (class in avo-

cado.core.plugin_interfaces), 380
JobPre (class in avocado.core.plugin_interfaces), 380
JobPrePostDispatcher (class in avo-

cado.core.dispatcher), 352
JobPreTests (class in avo-

cado.core.plugin_interfaces), 380
Jobs (class in avocado.plugins.jobs), 510
JobScripts (class in avocado.plugins.jobscripts), 511
JobScriptsInit (class in avo-

cado.plugins.jobscripts), 511
JobTestSuiteEmptyError, 353
JobTestSuiteError, 353
JobTestSuiteReferenceResolutionError,

353
Journal (class in avocado.plugins.journal), 511
JournalctlWatcher (class in avocado.core.sysinfo),

394
JournalResult (class in avocado.plugins.journal),

512
json_base64_decode() (in module avo-

cado.core.status.utils), 347
json_dumps() (in module avocado.core.nrunner), 372
json_loads() (in module avocado.core.status.utils),

347
JSONCLI (class in avocado.plugins.jsonresult), 513
JSONInit (class in avocado.plugins.jsonresult), 513
JSONResult (class in avocado.plugins.jsonresult), 514
JsonVariants (class in avo-

cado.plugins.json_variants), 512
JsonVariantsCLI (class in avo-

cado.plugins.json_variants), 513
JsonVariantsInit (class in avo-

cado.plugins.json_variants), 513

K
k (avocado.utils.data_structures.DataSize attribute), 437

562 Index

avocado Documentation, Release 88.1

KernelBuild (class in avocado.utils.kernel), 457
key (avocado.core.settings.ConfigOption attribute), 388
kill() (avocado.utils.process.SubProcess method),

482
kill_process_by_pattern() (in module avo-

cado.utils.process), 486
kill_process_tree() (in module avo-

cado.utils.process), 486
klass (avocado.core.safeloader.PythonModule at-

tribute), 386
klass_imports (avo-

cado.core.safeloader.PythonModule attribute),
386

L
late (avocado.core.tapparser.TapParser.Plan attribute),

397
lazy_init_journal() (avo-

cado.plugins.journal.JournalResult method),
512

LazyProperty (class in avo-
cado.utils.data_structures), 437

LineLogger (class in avocado.utils.datadrainer), 439
LinuxDistro (class in avocado.utils.distro), 443
List (class in avocado.plugins.list), 514
list() (avocado.utils.archive.ArchiveFile method), 425
list_all() (avocado.utils.software_manager.backends.dpkg.DpkgBackend

static method), 419
list_all() (avocado.utils.software_manager.backends.rpm.RpmBackend

method), 420
list_downloaded_images() (in module avo-

cado.plugins.vmimage), 522
list_files() (avo-

cado.utils.software_manager.backends.dpkg.DpkgBackend
method), 419

list_files() (avo-
cado.utils.software_manager.backends.rpm.RpmBackend
static method), 420

list_mount_devices() (avo-
cado.utils.partition.Partition static method),
471

list_mount_points() (avo-
cado.utils.partition.Partition static method),
471

list_providers() (in module avo-
cado.utils.vmimage), 500

ListOfNodeObjects (class in avo-
cado_varianter_yaml_to_mux), 525

load() (avocado.core.varianter.Varianter method), 407
load_config() (avo-

cado.plugins.legacy.replay.Replay static
method), 501

load_distro() (in module avocado.plugins.distro),
508

load_from_tree() (in module avo-
cado.plugins.distro), 508

load_module() (in module avo-
cado.utils.linux_modules), 459

load_plugins() (avo-
cado.core.loader.TestLoaderProxy method),
362

load_test() (avocado.core.loader.TestLoaderProxy
static method), 362

loaded_module_info() (in module avo-
cado.utils.linux_modules), 459

LoaderError, 360
LoaderUnhandledReferenceError, 361
LocalHost (class in avocado.utils.network.hosts), 413
lock (avocado.core.task.statemachine.TaskStateMachine

attribute), 348
LockFailed, 448
log (avocado.core.output.MemStreamHandler at-

tribute), 374
log (avocado.core.test.Test attribute), 401
log (avocado.Test attribute), 339
log_calls() (in module avocado.utils.debug), 439
log_calls_class() (in module avo-

cado.utils.debug), 440
log_exc_info() (in module avo-

cado.utils.stacktrace), 496
LOG_JOB (in module avocado.core.output), 373
log_message() (avo-

cado.utils.cloudinit.PhoneHomeServerHandler
method), 432

log_message() (in module avocado.utils.stacktrace),
497

log_plugin_failures() (in module avo-
cado.core.output), 377

LOG_UI (in module avocado.core.output), 373
logdir (avocado.core.job.Job attribute), 358
logdir (avocado.core.test.Test attribute), 401
logdir (avocado.Test attribute), 339
logfile (avocado.core.test.Test attribute), 401
logfile (avocado.Test attribute), 339
Logfile (class in avocado.core.sysinfo), 395
LoggingFile (class in avocado.core.output), 373
LogMessageHandler (class in avo-

cado.core.messages), 364
LogWatcher (class in avocado.core.sysinfo), 394
lv_check() (in module avocado.utils.lv_utils), 461
lv_create() (in module avocado.utils.lv_utils), 461
lv_list() (in module avocado.utils.lv_utils), 461
lv_mount() (in module avocado.utils.lv_utils), 461
lv_reactivate() (in module avocado.utils.lv_utils),

461
lv_remove() (in module avocado.utils.lv_utils), 462
lv_revert() (in module avocado.utils.lv_utils), 462

Index 563

avocado Documentation, Release 88.1

lv_revert_with_snapshot() (in module avo-
cado.utils.lv_utils), 462

lv_take_snapshot() (in module avo-
cado.utils.lv_utils), 462

lv_umount() (in module avocado.utils.lv_utils), 463
LVException, 460
lzma_uncompress() (in module avo-

cado.utils.archive), 426

M
m (avocado.utils.data_structures.DataSize attribute), 437
main() (in module avocado.core.main), 363
main() (in module avocado.core.nrunner), 372
main() (in module avo-

cado.core.runners.avocado_instrumented),
343

main() (in module avo-
cado.core.runners.requirement_package),
344

main() (in module avocado.core.runners.tap), 345
main() (in module avo-

cado.utils.software_manager.main), 423
main() (in module avocado_golang.runner), 528
main() (in module avocado_robot.runner), 536
make() (in module avocado.utils.build), 431
make_dir_and_populate() (in module avo-

cado.utils.data_factory), 436
make_script() (in module avocado.utils.script), 490
make_temp_file_copies() (in module avo-

cado.utils.diff_validator), 442
make_temp_script() (in module avo-

cado.utils.script), 490
makeNewRules() (avo-

cado.utils.external.spark.GenericParser
method), 412

makeRE() (avocado.utils.external.spark.GenericScanner
method), 412

makeSet() (avocado.utils.external.spark.GenericParser
method), 412

makeSet_fast() (avo-
cado.utils.external.spark.GenericParser
method), 412

makeState() (avocado.utils.external.spark.GenericParser
method), 412

makeState0() (avo-
cado.utils.external.spark.GenericParser
method), 412

map_method() (avo-
cado.core.extension_manager.ExtensionManager
method), 356

map_method_with_return() (avo-
cado.core.dispatcher.VarianterDispatcher
method), 352

map_method_with_return() (avo-
cado.core.extension_manager.ExtensionManager
method), 356

map_method_with_return() (avo-
cado.core.varianter.FakeVariantDispatcher
method), 406

map_method_with_return_copy() (avo-
cado.core.dispatcher.VarianterDispatcher
method), 352

map_verbosity_level() (in module avo-
cado.plugins.variants), 521

MASTER_OPTIONS (avocado.utils.ssh.Session at-
tribute), 495

match() (avocado.utils.external.spark.GenericASTMatcher
method), 411

match_r() (avocado.utils.external.spark.GenericASTMatcher
method), 411

measure_duration() (in module avo-
cado.utils.debug), 440

MemError, 464
MemInfo (class in avocado.utils.memory), 464
MemStreamHandler (class in avocado.core.output),

373
memtotal() (in module avocado.utils.memory), 466
memtotal_sys() (in module avocado.utils.memory),

466
merge() (avocado.core.tree.TreeNode method), 405
merge() (avocado_varianter_yaml_to_mux.mux.MuxTreeNode

method), 524
merge_expected_files() (in module avo-

cado.plugins.expected_files_merge), 509
merge_with_arguments() (avo-

cado.core.settings.Settings method), 390
merge_with_configs() (avo-

cado.core.settings.Settings method), 390
message (avocado.core.tapparser.TapParser.Bailout at-

tribute), 396
message (avocado.core.tapparser.TapParser.Error at-

tribute), 396
MessageHandler (class in avocado.core.messages),

364
METADATA_TEMPLATE (in module avo-

cado.utils.cloudinit), 432
metavar (avocado.core.settings.ConfigOption at-

tribute), 388
METHODS (avocado.core.spawners.common.SpawnerMixin

attribute), 345
METHODS (avocado.core.spawners.mock.MockSpawner

attribute), 346
METHODS (avocado.plugins.spawners.podman.PodmanSpawner

attribute), 502
METHODS (avocado.plugins.spawners.process.ProcessSpawner

attribute), 503
MissingTest (class in avocado.core.loader), 361

564 Index

avocado Documentation, Release 88.1

mkfs() (avocado.utils.partition.Partition method), 471
mnt_dir (avocado.utils.iso9660.Iso9660Mount at-

tribute), 456
MockingTest (class in avocado.core.test), 398
MockRandomAliveSpawner (class in avo-

cado.core.spawners.mock), 346
MockSpawner (class in avocado.core.spawners.mock),

346
mod (avocado.core.safeloader.PythonModule attribute),

386
mod_imports (avocado.core.safeloader.PythonModule

attribute), 386
module (avocado.core.safeloader.PythonModule at-

tribute), 386
MODULE (avocado.utils.linux_modules.ModuleConfig at-

tribute), 459
module_is_loaded() (in module avo-

cado.utils.linux_modules), 460
ModuleConfig (class in avocado.utils.linux_modules),

459
modules_imported_as() (in module avo-

cado.core.safeloader), 387
monitor() (avocado.core.task.statemachine.Worker

method), 349
mount() (avocado.utils.partition.Partition method),

471
MOVE_BACK (avocado.core.output.TermSupport at-

tribute), 375
MOVE_FORWARD (avocado.core.output.TermSupport at-

tribute), 375
MOVES (avocado.core.output.Throbber attribute), 376
MPException, 467
MtabLock (class in avocado.utils.partition), 470
MULTIPLIERS (avocado.utils.data_structures.DataSize

attribute), 437
MuxPlugin (class in avo-

cado_varianter_yaml_to_mux.mux), 523
MuxTree (class in avo-

cado_varianter_yaml_to_mux.mux), 524
MuxTreeNode (class in avo-

cado_varianter_yaml_to_mux.mux), 524

N
n_list() (avocado.utils.external.gdbmi_parser.GdbMiInterpreter

static method), 409
n_record_list() (avo-

cado.utils.external.gdbmi_parser.GdbMiInterpreter
static method), 409

n_result() (avocado.utils.external.gdbmi_parser.GdbMiInterpreter
static method), 409

n_result_header() (avo-
cado.utils.external.gdbmi_parser.GdbMiInterpreter
method), 409

n_result_list() (avo-
cado.utils.external.gdbmi_parser.GdbMiInterpreter
static method), 409

n_result_record() (avo-
cado.utils.external.gdbmi_parser.GdbMiInterpreter
static method), 409

n_stream_record() (avo-
cado.utils.external.gdbmi_parser.GdbMiInterpreter
method), 409

n_tuple() (avocado.utils.external.gdbmi_parser.GdbMiInterpreter
static method), 409

n_value_list() (avo-
cado.utils.external.gdbmi_parser.GdbMiInterpreter
static method), 409

name (avocado.core.loader.ExternalLoader attribute),
360

name (avocado.core.loader.FileLoader attribute), 360
name (avocado.core.loader.SimpleFileLoader attribute),

361
name (avocado.core.loader.TapLoader attribute), 362
name (avocado.core.loader.TestLoader attribute), 362
name (avocado.core.plugin_interfaces.CLICmd at-

tribute), 379
name (avocado.core.requirements.resolver.RequirementsResolver

attribute), 342
name (avocado.core.tapparser.TapParser.Test attribute),

397
name (avocado.core.test.Test attribute), 401
name (avocado.plugins.archive.Archive attribute), 503
name (avocado.plugins.archive.ArchiveCLI attribute),

504
name (avocado.plugins.assets.Assets attribute), 504
name (avocado.plugins.assets.FetchAssetJob attribute),

505
name (avocado.plugins.config.Config attribute), 505
name (avocado.plugins.dict_variants.DictVariants at-

tribute), 505
name (avocado.plugins.dict_variants.DictVariantsInit

attribute), 506
name (avocado.plugins.diff.Diff attribute), 506
name (avocado.plugins.distro.Distro attribute), 506
name (avocado.plugins.exec_path.ExecPath attribute),

509
name (avocado.plugins.expected_files_merge.FilesMerge

attribute), 509
name (avocado.plugins.human.Human attribute), 510
name (avocado.plugins.human.HumanJob attribute),

510
name (avocado.plugins.jobs.Jobs attribute), 511
name (avocado.plugins.jobscripts.JobScripts attribute),

511
name (avocado.plugins.jobscripts.JobScriptsInit at-

tribute), 511
name (avocado.plugins.journal.Journal attribute), 511

Index 565

avocado Documentation, Release 88.1

name (avocado.plugins.journal.JournalResult attribute),
512

name (avocado.plugins.json_variants.JsonVariants at-
tribute), 512

name (avocado.plugins.json_variants.JsonVariantsCLI
attribute), 513

name (avocado.plugins.json_variants.JsonVariantsInit
attribute), 513

name (avocado.plugins.jsonresult.JSONCLI attribute),
513

name (avocado.plugins.jsonresult.JSONInit attribute),
513

name (avocado.plugins.jsonresult.JSONResult attribute),
514

name (avocado.plugins.legacy.replay.Replay attribute),
501

name (avocado.plugins.list.List attribute), 514
name (avocado.plugins.plugins.Plugins attribute), 514
name (avocado.plugins.replay.Replay attribute), 515
name (avocado.plugins.resolvers.AvocadoInstrumentedResolver

attribute), 515
name (avocado.plugins.resolvers.ExecTestResolver at-

tribute), 515
name (avocado.plugins.resolvers.PythonUnittestResolver

attribute), 516
name (avocado.plugins.resolvers.TapResolver attribute),

516
name (avocado.plugins.run.Run attribute), 516
name (avocado.plugins.run.RunInit attribute), 517
name (avocado.plugins.runner.TestRunner attribute),

517
name (avocado.plugins.runner_nrunner.Runner at-

tribute), 517
name (avocado.plugins.runner_nrunner.RunnerCLI at-

tribute), 518
name (avocado.plugins.runner_nrunner.RunnerInit at-

tribute), 518
name (avocado.plugins.spawners.podman.PodmanCLI

attribute), 502
name (avocado.plugins.sysinfo.SysInfo attribute), 518
name (avocado.plugins.sysinfo.SysinfoInit attribute), 519
name (avocado.plugins.sysinfo.SysInfoJob attribute),

518
name (avocado.plugins.tap.TAP attribute), 519
name (avocado.plugins.tap.TAPInit attribute), 519
name (avocado.plugins.tap.TAPResult attribute), 519
name (avocado.plugins.teststmpdir.TestsTmpDir at-

tribute), 521
name (avocado.plugins.variants.Variants attribute), 521
name (avocado.plugins.vmimage.VMimage attribute),

521
name (avocado.plugins.wrapper.Wrapper attribute), 522
name (avocado.plugins.xunit.XUnitCLI attribute), 522
name (avocado.plugins.xunit.XUnitInit attribute), 523

name (avocado.plugins.xunit.XUnitResult attribute), 523
name (avocado.Test attribute), 339
name (avocado.utils.datadrainer.BaseDrainer attribute),

438
name (avocado.utils.datadrainer.BufferFDDrainer at-

tribute), 439
name (avocado.utils.datadrainer.FDDrainer attribute),

439
name (avocado.utils.datadrainer.LineLogger attribute),

439
name (avocado.utils.vmimage.CentOSImageProvider at-

tribute), 497
name (avocado.utils.vmimage.CirrOSImageProvider at-

tribute), 497
name (avocado.utils.vmimage.DebianImageProvider at-

tribute), 497
name (avocado.utils.vmimage.FedoraImageProvider at-

tribute), 498
name (avocado.utils.vmimage.FedoraSecondaryImageProvider

attribute), 498
name (avocado.utils.vmimage.JeosImageProvider

attribute), 499
name (avocado.utils.vmimage.OpenSUSEImageProvider

attribute), 499
name (avocado.utils.vmimage.UbuntuImageProvider at-

tribute), 500
name (avocado_golang.GolangCLI attribute), 528
name (avocado_golang.GolangLoader attribute), 529
name (avocado_golang.GolangResolver attribute), 529
name (avocado_result_upload.ResultUpload attribute),

537
name (avocado_result_upload.ResultUploadCLI at-

tribute), 538
name (avocado_resultsdb.ResultsdbCLI attribute), 527
name (avocado_resultsdb.ResultsdbResult attribute), 527
name (avocado_resultsdb.ResultsdbResultEvent at-

tribute), 527
name (avocado_robot.RobotCLI attribute), 536
name (avocado_robot.RobotLoader attribute), 537
name (avocado_robot.RobotResolver attribute), 537
name (avocado_varianter_cit.VarianterCit attribute),

535
name (avocado_varianter_cit.VarianterCitCLI at-

tribute), 535
name (avocado_varianter_pict.VarianterPict attribute),

526
name (avocado_varianter_pict.VarianterPictCLI at-

tribute), 526
name (avocado_varianter_yaml_to_mux.YamlToMux at-

tribute), 525
name (avocado_varianter_yaml_to_mux.YamlToMuxCLI

attribute), 525
name (avocado_varianter_yaml_to_mux.YamlToMuxInit

attribute), 525

566 Index

avocado Documentation, Release 88.1

name_for_file() (avocado.utils.distro.Probe
method), 444

name_for_file_contains() (avo-
cado.utils.distro.Probe method), 444

name_or_tags (avocado.core.settings.ConfigOption
attribute), 388

name_scheme (avocado.utils.asset.Asset attribute),
427

name_url (avocado.utils.asset.Asset attribute), 427
names() (avocado.core.extension_manager.ExtensionManager

method), 356
NAMESPACE_PREFIX (avo-

cado.core.extension_manager.ExtensionManager
attribute), 356

NamespaceNotRegistered, 388
NetworkInterface (class in avo-

cado.utils.network.interfaces), 414
node_size() (in module avocado.utils.memory), 466
NoMatchError, 378
nonterminal() (avo-

cado.utils.external.gdbmi_parser.GdbMiParser
method), 409

nonterminal() (avo-
cado.utils.external.spark.GenericASTBuilder
method), 411

NoOpRunner (class in avocado.core.nrunner), 368
NOT_SET (avocado.utils.linux_modules.ModuleConfig

attribute), 459
NOT_TEST_STR (avocado.core.loader.FileLoader at-

tribute), 360
NOT_TEST_STR (avo-

cado.core.loader.SimpleFileLoader attribute),
361

NotATest (class in avocado.core.loader), 361
NOTFOUND (avocado.core.resolver.ReferenceResolutionResult

attribute), 383
NotGolangTest (class in avocado_golang), 529
NotRobotTest (class in avocado_robot), 536
numa_nodes() (in module avocado.utils.memory), 466
numa_nodes_with_memory() (in module avo-

cado.utils.memory), 466
number (avocado.core.tapparser.TapParser.Test at-

tribute), 397
NWException, 412, 433, 495

O
objects() (avocado.core.parameters.AvocadoParams

method), 378
offline() (in module avocado.utils.cpu), 435
online() (in module avocado.utils.cpu), 435
online_count() (in module avocado.utils.cpu), 435
online_cpus_count() (in module avo-

cado.utils.cpu), 435
online_list() (in module avocado.utils.cpu), 435

open() (avocado.utils.archive.ArchiveFile class
method), 425

OpenSUSEImageProvider (class in avo-
cado.utils.vmimage), 499

OptionValidationError, 353
ordered_list_unique() (in module avo-

cado.utils.data_structures), 438
OUTPUT_CHECK_RECORD_MODE (in module avo-

cado.utils.process), 481
outputdir (avocado.core.test.Test attribute), 401
outputdir (avocado.Test attribute), 339
OutputList (class in avo-

cado_varianter_yaml_to_mux.mux), 524
OutputValue (class in avo-

cado_varianter_yaml_to_mux.mux), 524

P
p_output() (avocado.utils.external.gdbmi_parser.GdbMiParser

method), 409
PACKAGE_TYPE (avo-

cado.utils.software_manager.backends.dpkg.DpkgBackend
attribute), 419

PACKAGE_TYPE (avo-
cado.utils.software_manager.backends.rpm.RpmBackend
attribute), 419

Paginator (class in avocado.core.output), 374
Parameter (class in avocado_varianter_cit.Solver),

534
params (avocado.core.test.Test attribute), 401
params (avocado.Test attribute), 339
parents (avocado.core.tree.TreeNode attribute), 405
parse() (avocado.core.tapparser.TapParser method),

397
parse() (avocado.core.varianter.Varianter method),

408
parse() (avocado.utils.external.gdbmi_parser.session

method), 410
parse() (avocado.utils.external.spark.GenericParser

method), 412
parse() (avocado_varianter_cit.Parser.Parser static

method), 533
parse_lsmod_for_module() (in module avo-

cado.utils.linux_modules), 460
parse_name() (avocado.utils.asset.Asset static

method), 427
parse_pict_output() (in module avo-

cado_varianter_pict), 526
parse_test() (avocado.core.tapparser.TapParser

method), 397
parse_unified_diff_output() (in module avo-

cado.utils.diff_validator), 442
parsed_name (avocado.utils.asset.Asset attribute),

427
Parser (class in avocado.core.parser), 378

Index 567

avocado Documentation, Release 88.1

Parser (class in avocado_varianter_cit.Parser), 533
partial_str() (avocado.core.output.TermSupport

method), 376
Partition (class in avocado.utils.partition), 470
PartitionError, 471
PASS (avocado.core.tapparser.TestResult attribute), 397
pass_str() (avocado.core.output.TermSupport

method), 376
PASSWORD_TEMPLATE (in module avo-

cado.utils.cloudinit), 432
path (avocado.core.safeloader.PythonModule attribute),

386
path (avocado.core.tree.TreeNode attribute), 405
path (avocado.utils.vmimage.Image attribute), 498
path_parent() (in module avo-

cado_varianter_yaml_to_mux.mux), 525
PathInspector (class in avocado.utils.path), 472
paths (avocado_varianter_yaml_to_mux.mux.MuxPlugin

attribute), 523
PATTERN (avocado.plugins.assets.FetchAssetHandler

attribute), 504
PeerInfo (class in avocado.utils.configure_network),

433
perform_setup() (avo-

cado.utils.software_manager.backends.rpm.RpmBackend
method), 420

phase (avocado.core.test.Test attribute), 401
phase (avocado.Test attribute), 339
PHONE_HOME_TEMPLATE (in module avo-

cado.utils.cloudinit), 432
PhoneHomeServer (class in avocado.utils.cloudinit),

432
PhoneHomeServerHandler (class in avo-

cado.utils.cloudinit), 432
pick_runner_class() (avo-

cado.core.nrunner.Runnable method), 369
pick_runner_class_from_entry_point()

(avocado.core.nrunner.Runnable method), 370
pick_runner_command() (avo-

cado.core.nrunner.Runnable method), 370
pid_exists() (in module avocado.utils.process), 487
ping_check() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 415

ping_check() (in module avo-
cado.utils.configure_network), 434

Plugin (class in avocado.core.plugin_interfaces), 380
plugin_type() (avo-

cado.core.extension_manager.ExtensionManager
method), 356

Plugins (class in avocado.plugins.plugins), 514
PMem (class in avocado.utils.pmem), 476
PMemException, 480
PodmanCLI (class in avo-

cado.plugins.spawners.podman), 502
PodmanSpawner (class in avo-

cado.plugins.spawners.podman), 502
PodmanSpawnerInit (class in avo-

cado.plugins.spawners.podman), 502
poll() (avocado.utils.process.SubProcess method),

482
PORT_RANGE (avocado.utils.gdb.GDBServer attribute),

450
PortTracker (class in avocado.utils.network.ports),

416
post() (avocado.core.nrunner.TaskStatusService

method), 372
post() (avocado.core.plugin_interfaces.JobPost

method), 380
post() (avocado.plugins.expected_files_merge.FilesMerge

method), 509
post() (avocado.plugins.human.HumanJob method),

510
post() (avocado.plugins.jobscripts.JobScripts

method), 511
post() (avocado.plugins.testlogs.TestLogsUI method),

520
post() (avocado.plugins.teststmpdir.TestsTmpDir

method), 521
post_tests() (avocado.core.job.Job method), 358
post_tests() (avo-

cado.core.plugin_interfaces.JobPostTests
method), 380

post_tests() (avocado.plugins.human.Human
method), 510

post_tests() (avo-
cado.plugins.journal.JournalResult method),
512

post_tests() (avocado.plugins.sysinfo.SysInfoJob
method), 518

post_tests() (avocado.plugins.tap.TAPResult
method), 519

post_tests() (avocado.plugins.testlogs.TestLogging
method), 520

post_tests() (avo-
cado_resultsdb.ResultsdbResultEvent method),
527

postorder() (avocado.utils.external.spark.GenericASTTraversal
method), 411

pre() (avocado.core.plugin_interfaces.JobPre method),
380

pre() (avocado.plugins.human.HumanJob method),
510

pre() (avocado.plugins.jobscripts.JobScripts method),
511

pre() (avocado.plugins.testlogs.TestLogsUI method),
520

pre() (avocado.plugins.teststmpdir.TestsTmpDir

568 Index

avocado Documentation, Release 88.1

method), 521
pre_tests() (avocado.core.job.Job method), 358
pre_tests() (avocado.core.plugin_interfaces.JobPreTests

method), 380
pre_tests() (avocado.plugins.assets.FetchAssetJob

method), 505
pre_tests() (avocado.plugins.human.Human

method), 510
pre_tests() (avocado.plugins.journal.JournalResult

method), 512
pre_tests() (avocado.plugins.sysinfo.SysInfoJob

method), 519
pre_tests() (avocado.plugins.tap.TAPResult

method), 519
pre_tests() (avocado.plugins.testlogs.TestLogging

method), 520
pre_tests() (avocado_resultsdb.ResultsdbResultEvent

method), 527
predecessor() (avo-

cado.utils.external.spark.GenericParser
method), 412

preorder() (avocado.utils.external.spark.GenericASTTraversal
method), 411

prepare_exc_info() (in module avo-
cado.utils.stacktrace), 497

prepare_source() (avo-
cado.utils.software_manager.backends.rpm.RpmBackend
static method), 420

prepare_status() (avo-
cado.core.nrunner.BaseRunner static method),
366

prepend_base_path() (in module avo-
cado.core.utils), 406

preprocess() (avo-
cado.utils.external.spark.GenericASTBuilder
method), 411

preprocess() (avo-
cado.utils.external.spark.GenericASTMatcher
method), 411

preprocess() (avo-
cado.utils.external.spark.GenericParser static
method), 412

print_records() (avocado.core.output.StdOutput
method), 375

PRINTABLE (avocado.plugins.xunit.XUnitResult at-
tribute), 523

Probe (class in avocado.utils.distro), 444
process() (avocado.utils.external.gdbmi_parser.session

method), 410
process_config_path() (avo-

cado.core.settings.Settings method), 390
process_in_ptree_is_defunct() (in module

avocado.utils.process), 487
process_message() (avo-

cado.core.messages.BaseMessageHandler
method), 363

process_message() (avo-
cado.core.messages.MessageHandler method),
364

process_message() (avo-
cado.core.messages.RunningMessageHandler
method), 364

process_message() (avo-
cado.core.status.repo.StatusRepo method),
347

process_raw_message() (avo-
cado.core.status.repo.StatusRepo method),
347

ProcessSpawner (class in avo-
cado.plugins.spawners.process), 503

PROG_DESCRIPTION (avo-
cado.core.nrunner.BaseRunnerApp attribute),
366

PROG_DESCRIPTION (avo-
cado.core.nrunner.RunnerApp attribute),
370

PROG_DESCRIPTION (avo-
cado.core.runners.avocado_instrumented.RunnerApp
attribute), 343

PROG_DESCRIPTION (avo-
cado.core.runners.requirement_package.RunnerApp
attribute), 344

PROG_DESCRIPTION (avo-
cado.core.runners.tap.RunnerApp attribute),
344

PROG_DESCRIPTION (avo-
cado_golang.runner.RunnerApp attribute),
528

PROG_DESCRIPTION (avo-
cado_robot.runner.RunnerApp attribute),
536

PROG_NAME (avocado.core.nrunner.BaseRunnerApp at-
tribute), 366

PROG_NAME (avocado.core.nrunner.RunnerApp at-
tribute), 370

PROG_NAME (avocado.core.runners.avocado_instrumented.RunnerApp
attribute), 343

PROG_NAME (avocado.core.runners.requirement_package.RunnerApp
attribute), 344

PROG_NAME (avocado.core.runners.tap.RunnerApp at-
tribute), 344

PROG_NAME (avocado_golang.runner.RunnerApp
attribute), 528

PROG_NAME (avocado_robot.runner.RunnerApp at-
tribute), 536

ProgressBar (class in avocado.utils.output), 470
ProgressStreamHandler (class in avo-

cado.core.output), 374

Index 569

avocado Documentation, Release 88.1

PROTOCOLS (in module avocado.utils.network.ports),
416

provides() (avocado.utils.software_manager.backends.apt.AptBackend
method), 418

provides() (avocado.utils.software_manager.backends.yum.YumBackend
method), 421

provides() (avocado.utils.software_manager.backends.zypper.ZypperBackend
method), 422

prune() (avocado.utils.external.spark.GenericASTTraversal
static method), 411

PYTHON_CLASS (avo-
cado.core.spawners.common.SpawnMethod
attribute), 345

python_resolver() (in module avo-
cado.plugins.resolvers), 516

PythonModule (class in avocado.core.safeloader),
385

PythonUnittest (class in avocado.core.test), 398
PythonUnittestResolver (class in avo-

cado.plugins.resolvers), 515
PythonUnittestRunner (class in avo-

cado.core.nrunner), 368

Q
QEMU_IMG (in module avocado.utils.vmimage), 499
quit() (avocado.utils.ssh.Session method), 496

R
rate (avocado.core.result.Result attribute), 384
RawFileHandler (class in avocado.core.test), 398
read() (avocado.utils.datadrainer.BaseDrainer

method), 438
read() (avocado.utils.datadrainer.FDDrainer method),

439
read() (avocado.utils.iso9660.Iso9660IsoInfo method),

455
read() (avocado.utils.iso9660.Iso9660IsoRead

method), 456
read() (avocado.utils.iso9660.Iso9660Mount method),

456
read() (avocado.utils.iso9660.ISO9660PyCDLib

method), 457
read_all_lines() (in module avocado.utils.genio),

452
read_constraints() (avo-

cado_varianter_cit.Solver.Solver method),
535

read_file() (in module avocado.utils.genio), 453
read_from_meminfo() (in module avo-

cado.utils.memory), 466
read_from_numa_maps() (in module avo-

cado.utils.memory), 466
read_from_smaps() (in module avo-

cado.utils.memory), 466

read_from_vmstat() (in module avo-
cado.utils.memory), 467

read_gdb_response() (avocado.utils.gdb.GDB
method), 449

read_hash_from_file() (avo-
cado.utils.asset.Asset class method), 427

read_infoblock() (avocado.utils.pmem.PMem
method), 478

read_one_line() (in module avocado.utils.genio),
453

READ_ONLY_MODE (in module avocado.utils.script),
489

read_until_break() (avocado.utils.gdb.GDB
method), 449

readline() (avocado.core.sysinfo.Collectible
method), 394

ready (avocado.core.task.statemachine.TaskStateMachine
attribute), 348

reconfigure() (in module avocado.core.output), 377
reconfigure_dax_device() (avo-

cado.utils.pmem.PMem method), 478
record() (in module avocado.core.jobdata), 359
records (avocado.core.output.StdOutput attribute),

375
reference_split() (in module avo-

cado.core.references), 383
ReferenceResolution (class in avo-

cado.core.resolver), 383
ReferenceResolutionAction (class in avo-

cado.core.resolver), 383
ReferenceResolutionResult (class in avo-

cado.core.resolver), 383
references (avocado.core.suite.TestSuite attribute),

393
reflect() (avocado.utils.external.spark.GenericScanner

method), 412
register() (avocado.utils.data_structures.CallbackRegister

method), 437
register_core_options() (in module avo-

cado.core), 408
register_job_options() (in module avo-

cado.core.job), 359
register_option() (avocado.core.settings.Settings

method), 390
register_plugin() (avo-

cado.core.loader.TestLoaderProxy method),
363

register_port() (avo-
cado.utils.network.ports.PortTracker method),
416

register_probe() (in module avocado.utils.distro),
444

reinstate_path() (in module avo-
cado.utils.multipath), 469

570 Index

avocado Documentation, Release 88.1

relative_dir (avocado.utils.asset.Asset attribute),
428

release() (avocado.utils.distro.Probe method), 444
release_port() (avo-

cado.utils.network.ports.PortTracker method),
416

RemoteHost (class in avocado.utils.network.hosts),
413

remove() (avocado.utils.script.Script method), 490
remove() (avocado.utils.script.TemporaryScript

method), 490
remove() (avocado.utils.software_manager.backends.apt.AptBackend

method), 418
remove() (avocado.utils.software_manager.backends.yum.YumBackend

method), 421
remove() (avocado.utils.software_manager.backends.zypper.ZypperBackend

method), 422
remove_asset_by_path() (avo-

cado.utils.asset.Asset class method), 428
remove_assets_by_overall_limit() (avo-

cado.utils.asset.Asset class method), 428
remove_assets_by_size() (avo-

cado.utils.asset.Asset class method), 428
remove_assets_by_unused_for_days() (avo-

cado.utils.asset.Asset class method), 428
remove_cfg_file() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 415

remove_disk() (avo-
cado.utils.softwareraid.SoftwareRaid method),
494

remove_ipaddr() (avo-
cado.utils.network.interfaces.NetworkInterface
method), 415

remove_link() (avo-
cado.utils.network.interfaces.NetworkInterface
method), 415

remove_mpath() (in module avo-
cado.utils.multipath), 469

remove_path() (in module avocado.utils.multipath),
469

remove_repo() (avo-
cado.utils.software_manager.backends.apt.AptBackend
method), 418

remove_repo() (avo-
cado.utils.software_manager.backends.yum.YumBackend
method), 421

remove_repo() (avo-
cado.utils.software_manager.backends.zypper.ZypperBackend
method), 422

render() (avocado.core.output.Throbber method), 376
render() (avocado.core.plugin_interfaces.Result

method), 381
render() (avocado.plugins.archive.Archive method),

503
render() (avocado.plugins.jsonresult.JSONResult

method), 514
render() (avocado.plugins.xunit.XUnitResult

method), 523
render() (avocado_result_upload.ResultUpload

method), 537
render() (avocado_resultsdb.ResultsdbResult

method), 527
render_results() (avocado.core.job.Job method),

358
Replay (class in avocado.plugins.legacy.replay), 501
Replay (class in avocado.plugins.replay), 515
ReplaySkipTest (class in avocado.core.test), 398
repo_config_parser (avo-

cado.utils.software_manager.backends.yum.YumBackend
attribute), 421

REPO_FILE_PATH (avo-
cado.utils.software_manager.backends.yum.YumBackend
attribute), 421

report_state() (avocado.core.test.Test method),
401

report_state() (avocado.Test method), 339
requested (avocado.core.task.statemachine.TaskStateMachine

attribute), 348
REQUIRED_ARGS (avocado.utils.gdb.GDB attribute),

448
REQUIRED_ARGS (avocado.utils.gdb.GDBServer at-

tribute), 450
RequirementPackageRunner (class in avo-

cado.core.runners.requirement_package),
343

RequirementsResolver (class in avo-
cado.core.requirements.resolver), 342

RESOLUTION_NOT_STARTED (avo-
cado.core.suite.TestSuiteStatus attribute),
393

resolutions_to_runnables() (in module avo-
cado.core.suite), 393

resolve() (avocado.core.plugin_interfaces.Resolver
method), 380

resolve() (avocado.core.requirements.resolver.RequirementsResolver
static method), 342

resolve() (avocado.core.resolver.Resolver method),
384

resolve() (avocado.plugins.resolvers.AvocadoInstrumentedResolver
static method), 515

resolve() (avocado.plugins.resolvers.ExecTestResolver
static method), 515

resolve() (avocado.plugins.resolvers.PythonUnittestResolver
static method), 516

resolve() (avocado.plugins.resolvers.TapResolver
static method), 516

resolve() (avocado.utils.external.spark.GenericASTMatcher

Index 571

avocado Documentation, Release 88.1

method), 411
resolve() (avocado.utils.external.spark.GenericParser

static method), 412
resolve() (avocado_golang.GolangResolver static

method), 529
resolve() (avocado_robot.RobotResolver static

method), 537
resolve() (in module avocado.core.resolver), 384
Resolver (class in avocado.core.plugin_interfaces),

380
Resolver (class in avocado.core.resolver), 384
restore_from_backup() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 415

result (avocado.core.tapparser.TapParser.Test at-
tribute), 397

Result (class in avocado.core.plugin_interfaces), 381
Result (class in avocado.core.result), 384
result_events_dispatcher (avo-

cado.core.job.Job attribute), 358
result_stats (avocado.core.status.repo.StatusRepo

attribute), 347
ResultDispatcher (class in avo-

cado.core.dispatcher), 352
ResultEvents (class in avo-

cado.core.plugin_interfaces), 381
ResultEventsDispatcher (class in avo-

cado.core.dispatcher), 352
ResultsdbCLI (class in avocado_resultsdb), 526
ResultsdbResult (class in avocado_resultsdb), 527
ResultsdbResultEvent (class in avo-

cado_resultsdb), 527
ResultUpload (class in avocado_result_upload), 537
ResultUploadCLI (class in avocado_result_upload),

538
resume_mpath() (in module avo-

cado.utils.multipath), 469
retrieve_cmdline() (in module avo-

cado.core.jobdata), 359
retrieve_config() (in module avo-

cado.core.jobdata), 359
retrieve_job_config() (in module avo-

cado.core.jobdata), 359
retrieve_pwd() (in module avocado.core.jobdata),

359
retrieve_references() (in module avo-

cado.core.jobdata), 359
RETURN (avocado.core.resolver.ReferenceResolutionAction

attribute), 383
rm_logger() (avocado.core.output.LoggingFile

method), 373
RobotCLI (class in avocado_robot), 536
RobotLoader (class in avocado_robot), 536
RobotResolver (class in avocado_robot), 537

RobotRunner (class in avocado_robot.runner), 536
RobotTest (class in avocado_robot), 537
root (avocado.core.tree.TreeNode attribute), 405
root (avocado_varianter_yaml_to_mux.mux.MuxPlugin

attribute), 524
rounded_memtotal() (in module avo-

cado.utils.memory), 467
rpm_erase() (avocado.utils.software_manager.backends.rpm.RpmBackend

static method), 420
rpm_install() (avo-

cado.utils.software_manager.backends.rpm.RpmBackend
static method), 420

rpm_verify() (avo-
cado.utils.software_manager.backends.rpm.RpmBackend
static method), 420

RpmBackend (class in avo-
cado.utils.software_manager.backends.rpm),
419

Run (class in avocado.plugins.run), 516
run() (avocado.core.app.AvocadoApp method), 349
run() (avocado.core.job.Job method), 358
run() (avocado.core.nrunner.BaseRunner method), 366
run() (avocado.core.nrunner.BaseRunnerApp method),

367
run() (avocado.core.nrunner.ExecRunner method), 368
run() (avocado.core.nrunner.NoOpRunner method),

368
run() (avocado.core.nrunner.PythonUnittestRunner

method), 368
run() (avocado.core.nrunner.Task method), 372
run() (avocado.core.plugin_interfaces.CLI method),

379
run() (avocado.core.plugin_interfaces.CLICmd

method), 379
run() (avocado.core.runners.avocado_instrumented.AvocadoInstrumentedTestRunner

method), 343
run() (avocado.core.runners.requirement_package.RequirementPackageRunner

method), 344
run() (avocado.core.suite.TestSuite method), 393
run() (avocado.core.sysinfo.Command method), 394
run() (avocado.core.sysinfo.Daemon method), 394
run() (avocado.core.sysinfo.JournalctlWatcher

method), 394
run() (avocado.core.sysinfo.Logfile method), 395
run() (avocado.core.sysinfo.LogWatcher method), 395
run() (avocado.core.task.statemachine.Worker

method), 349
run() (avocado.plugins.archive.ArchiveCLI method),

504
run() (avocado.plugins.assets.Assets method), 504
run() (avocado.plugins.config.Config method), 505
run() (avocado.plugins.diff.Diff method), 506
run() (avocado.plugins.distro.Distro method), 506
run() (avocado.plugins.exec_path.ExecPath method),

572 Index

avocado Documentation, Release 88.1

509
run() (avocado.plugins.jobs.Jobs method), 511
run() (avocado.plugins.journal.Journal method), 511
run() (avocado.plugins.json_variants.JsonVariantsCLI

method), 513
run() (avocado.plugins.jsonresult.JSONCLI method),

513
run() (avocado.plugins.legacy.replay.Replay method),

501
run() (avocado.plugins.list.List method), 514
run() (avocado.plugins.plugins.Plugins method), 514
run() (avocado.plugins.replay.Replay method), 515
run() (avocado.plugins.run.Run method), 516
run() (avocado.plugins.runner_nrunner.RunnerCLI

method), 518
run() (avocado.plugins.spawners.podman.PodmanCLI

method), 502
run() (avocado.plugins.sysinfo.SysInfo method), 518
run() (avocado.plugins.tap.TAP method), 519
run() (avocado.plugins.variants.Variants method), 521
run() (avocado.plugins.vmimage.VMimage method),

521
run() (avocado.plugins.wrapper.Wrapper method), 522
run() (avocado.plugins.xunit.XUnitCLI method), 522
run() (avocado.utils.data_structures.CallbackRegister

method), 437
run() (avocado.utils.gdb.GDB method), 449
run() (avocado.utils.process.SubProcess method), 482
run() (avocado_golang.GolangCLI method), 528
run() (avocado_golang.runner.GolangRunner method),

528
run() (avocado_result_upload.ResultUploadCLI

method), 538
run() (avocado_resultsdb.ResultsdbCLI method), 527
run() (avocado_robot.RobotCLI method), 536
run() (avocado_robot.runner.RobotRunner method),

536
run() (avocado_varianter_cit.VarianterCitCLI

method), 535
run() (avocado_varianter_pict.VarianterPictCLI

method), 526
run() (avocado_varianter_yaml_to_mux.YamlToMuxCLI

method), 525
run() (in module avocado.utils.process), 487
run_avocado() (avocado.core.test.Test method), 401
run_avocado() (avocado.Test method), 339
run_command() (in module avo-

cado.utils.network.common), 412
run_daxctl_list() (avocado.utils.pmem.PMem

method), 479
run_make() (in module avocado.utils.build), 431
run_ndctl_list() (avocado.utils.pmem.PMem

method), 479

run_ndctl_list_val() (avo-
cado.utils.pmem.PMem static method), 479

run_pict() (in module avocado_varianter_pict), 526
run_suite() (avocado.core.plugin_interfaces.Runner

method), 381
run_suite() (avocado.plugins.runner.TestRunner

method), 517
run_suite() (avocado.plugins.runner_nrunner.Runner

method), 517
run_test() (avocado.plugins.runner.TestRunner

method), 517
run_tests() (avocado.core.job.Job method), 358
RunInit (class in avocado.plugins.run), 516
Runnable (class in avocado.core.nrunner), 369
RUNNABLE_KINDS_CAPABLE (avo-

cado.core.nrunner.BaseRunnerApp attribute),
367

RUNNABLE_KINDS_CAPABLE (avo-
cado.core.nrunner.RunnerApp attribute),
370

RUNNABLE_KINDS_CAPABLE (avo-
cado.core.runners.avocado_instrumented.RunnerApp
attribute), 343

RUNNABLE_KINDS_CAPABLE (avo-
cado.core.runners.requirement_package.RunnerApp
attribute), 344

RUNNABLE_KINDS_CAPABLE (avo-
cado.core.runners.tap.RunnerApp attribute),
344

RUNNABLE_KINDS_CAPABLE (avo-
cado_golang.runner.RunnerApp attribute),
528

RUNNABLE_KINDS_CAPABLE (avo-
cado_robot.runner.RunnerApp attribute),
536

runner (avocado.core.suite.TestSuite attribute), 393
Runner (class in avocado.core.plugin_interfaces), 381
Runner (class in avocado.plugins.runner_nrunner), 517
runner_queue (avocado.core.test.Test attribute), 401
runner_queue (avocado.Test attribute), 339
RUNNER_RUN_CHECK_INTERVAL (in module avo-

cado.core.nrunner), 369
RUNNER_RUN_STATUS_INTERVAL (in module avo-

cado.core.nrunner), 369
RunnerApp (class in avocado.core.nrunner), 370
RunnerApp (class in avo-

cado.core.runners.avocado_instrumented),
343

RunnerApp (class in avo-
cado.core.runners.requirement_package),
344

RunnerApp (class in avocado.core.runners.tap), 344
RunnerApp (class in avocado_golang.runner), 528
RunnerApp (class in avocado_robot.runner), 536

Index 573

avocado Documentation, Release 88.1

RunnerCLI (class in avocado.plugins.runner_nrunner),
518

RunnerDispatcher (class in avo-
cado.core.dispatcher), 352

RunnerInit (class in avo-
cado.plugins.runner_nrunner), 518

RunnerLogHandler (class in avo-
cado.core.runners.avocado_instrumented),
343

RUNNERS_REGISTRY_PYTHON_CLASS (in module
avocado.core.nrunner), 368

RUNNERS_REGISTRY_STANDALONE_EXECUTABLE
(in module avocado.core.nrunner), 369

running (avocado.core.test.Test attribute), 401
running (avocado.Test attribute), 339
RunningMessageHandler (class in avo-

cado.core.messages), 364
RuntimeTask (class in avocado.core.task.runtime),

348

S
safe_kill() (in module avocado.utils.process), 487
save() (avocado.utils.network.interfaces.NetworkInterface

method), 415
save() (avocado.utils.script.Script method), 490
save_distro() (in module avocado.plugins.distro),

509
save_recipes() (avocado.plugins.list.List static

method), 514
scan() (avocado.utils.external.gdbmi_parser.session

method), 410
SCHEMA (in module avo-

cado.core.requirements.cache.backends.sqlite),
342

Script (class in avocado.utils.script), 489
section (avocado.core.settings.ConfigOption at-

tribute), 388
send_gdb_command() (avocado.utils.gdb.GDB

method), 449
send_signal() (avocado.utils.process.SubProcess

method), 483
serve_forever() (avo-

cado.core.status.server.StatusServer method),
347

service_manager() (in module avo-
cado.utils.service), 492

ServiceManager() (in module avo-
cado.utils.service), 491

session (class in avo-
cado.utils.external.gdbmi_parser), 410

Session (class in avocado.utils.ssh), 495
set_break() (avocado.utils.gdb.GDB method), 449
set_cpufreq_governor() (in module avo-

cado.utils.cpu), 435

set_cpuidle_state() (in module avo-
cado.utils.cpu), 435

set_dax_memory_offline() (avo-
cado.utils.pmem.PMem method), 479

set_dax_memory_online() (avo-
cado.utils.pmem.PMem method), 479

set_environment_dirty() (avo-
cado.core.tree.TreeNode method), 405

set_extended_mode() (avo-
cado.utils.gdb.GDBRemote method), 451

set_file() (avocado.utils.gdb.GDB method), 450
set_freq_governor() (in module avo-

cado.utils.cpu), 435
set_hwaddr() (avo-

cado.utils.network.interfaces.NetworkInterface
method), 416

set_idle_state() (in module avocado.utils.cpu),
435

set_ip() (in module avo-
cado.utils.configure_network), 434

set_mtu() (avocado.utils.network.interfaces.NetworkInterface
method), 416

set_mtu_host() (in module avo-
cado.utils.configure_network), 434

set_mtu_peer() (avo-
cado.utils.configure_network.PeerInfo
method), 433

set_num_huge_pages() (in module avo-
cado.utils.memory), 467

set_proc_sys() (in module avocado.utils.linux), 459
set_requirement() (in module avo-

cado.core.requirements.cache.backends.sqlite),
342

set_runner_queue() (avocado.core.test.Test
method), 401

set_runner_queue() (avocado.Test method), 339
set_thp_value() (in module avo-

cado.utils.memory), 467
set_value() (avocado.core.settings.ConfigOption

method), 388
Settings (class in avocado.core.plugin_interfaces),

381
Settings (class in avocado.core.settings), 388
settings_section() (avo-

cado.core.extension_manager.ExtensionManager
method), 356

SettingsDispatcher (class in avo-
cado.core.settings_dispatcher), 392

SettingsError, 392
setup() (avocado.core.job.Job method), 358
setUp() (avocado.core.test.DryRunTest method), 398
setup_output_dir() (avocado.core.nrunner.Task

method), 372
shell_escape() (in module avocado.utils.astring),

574 Index

avocado Documentation, Release 88.1

429
should_run_inside_wrapper() (in module avo-

cado.utils.process), 488
SimpleFileLoader (class in avocado.core.loader),

361
SimpleTest (class in avocado.core.test), 399
simplify_constraints() (avo-

cado_varianter_cit.Solver.Solver method),
535

size (avocado.core.job.Job attribute), 358
size (avocado.core.suite.TestSuite attribute), 393
SKIP (avocado.core.tapparser.TestResult attribute), 397
skip() (avocado.utils.external.spark.GenericParser

method), 412
skip() (in module avocado), 340
skip() (in module avocado.core.decorators), 351
skip_dmesg_messages() (in module avo-

cado.utils.dmesg), 445
skip_str() (avocado.core.output.TermSupport

method), 376
skipIf() (in module avocado), 340
skipIf() (in module avocado.core.decorators), 351
skipped (avocado.core.tapparser.TapParser.Plan at-

tribute), 397
skipUnless() (in module avocado), 340
skipUnless() (in module avocado.core.decorators),

351
SOFTWARE_COMPONENT_QRY (avo-

cado.utils.software_manager.backends.rpm.RpmBackend
attribute), 419

software_packages (avo-
cado.plugins.distro.DistroDef attribute),
507

software_packages_type (avo-
cado.plugins.distro.DistroDef attribute),
507

SoftwareManager (class in avo-
cado.utils.software_manager), 424

SoftwareManager (class in avo-
cado.utils.software_manager.manager), 423

SoftwarePackage (class in avocado.plugins.distro),
508

SoftwareRaid (class in avocado.utils.softwareraid),
493

Solver (class in avocado_varianter_cit.Solver), 534
sorted_dict() (in module avocado.core.settings),

392
SOURCE (avocado.utils.kernel.KernelBuild attribute),

457
spawn_task() (avo-

cado.core.plugin_interfaces.Spawner method),
382

spawn_task() (avo-
cado.core.spawners.mock.MockSpawner

method), 346
spawn_task() (avo-

cado.plugins.spawners.podman.PodmanSpawner
method), 502

spawn_task() (avo-
cado.plugins.spawners.process.ProcessSpawner
method), 503

Spawner (class in avocado.core.plugin_interfaces), 382
spawner_handle (avo-

cado.core.task.runtime.RuntimeTask attribute),
348

SpawnerDispatcher (class in avo-
cado.core.dispatcher), 352

SpawnerException, 345
SpawnerMixin (class in avo-

cado.core.spawners.common), 345
spawning_result (avo-

cado.core.task.runtime.RuntimeTask attribute),
348

SpawnMethod (class in avo-
cado.core.spawners.common), 345

specific_service_manager() (in module avo-
cado.utils.service), 492

SpecificServiceManager() (in module avo-
cado.utils.service), 491

SSH_CLIENT_BINARY (in module avocado.utils.ssh),
495

STANDALONE_EXECUTABLE (avo-
cado.core.spawners.common.SpawnMethod
attribute), 345

start() (avocado.core.parser.Parser method), 379
start() (avocado.core.sysinfo.SysInfo method), 395
start() (avocado.core.task.statemachine.Worker

method), 349
start() (avocado.utils.datadrainer.BaseDrainer

method), 438
start() (avocado.utils.process.FDDrainer method),

481
start() (avocado.utils.process.SubProcess method),

483
start_no_ack_mode() (avo-

cado.utils.gdb.GDBRemote method), 452
start_test() (avo-

cado.core.plugin_interfaces.ResultEvents
method), 381

start_test() (avocado.core.result.Result method),
384

start_test() (avocado.plugins.human.Human
method), 510

start_test() (avo-
cado.plugins.journal.JournalResult method),
512

start_test() (avocado.plugins.tap.TAPResult
method), 520

Index 575

avocado Documentation, Release 88.1

start_test() (avocado.plugins.testlogs.TestLogging
method), 520

start_test() (avo-
cado_resultsdb.ResultsdbResultEvent method),
527

started (avocado.core.task.statemachine.TaskStateMachine
attribute), 348

StartMessageHandler (class in avo-
cado.core.messages), 364

statement_import_as() (in module avo-
cado.core.safeloader), 387

stats (avocado.core.suite.TestSuite attribute), 393
status (avocado.core.exceptions.JobBaseException at-

tribute), 353
status (avocado.core.exceptions.JobError attribute),

353
status (avocado.core.exceptions.JobTestSuiteEmptyError

attribute), 353
status (avocado.core.exceptions.JobTestSuiteError at-

tribute), 353
status (avocado.core.exceptions.JobTestSuiteReferenceResolutionError

attribute), 353
status (avocado.core.exceptions.OptionValidationError

attribute), 353
status (avocado.core.exceptions.TestAbortError at-

tribute), 354
status (avocado.core.exceptions.TestBaseException

attribute), 354
status (avocado.core.exceptions.TestCancel attribute),

354
status (avocado.core.exceptions.TestError attribute),

354
status (avocado.core.exceptions.TestFail attribute),

354
status (avocado.core.exceptions.TestInterruptedError

attribute), 354
status (avocado.core.exceptions.TestNotFoundError

attribute), 354
status (avocado.core.exceptions.TestSetupFail at-

tribute), 354
status (avocado.core.exceptions.TestSkipError at-

tribute), 355
status (avocado.core.exceptions.TestTimeoutInterrupted

attribute), 355
status (avocado.core.exceptions.TestWarn attribute),

355
status (avocado.core.suite.TestSuite attribute), 393
status (avocado.core.task.runtime.RuntimeTask

attribute), 348
status (avocado.core.test.Test attribute), 401
status (avocado.Test attribute), 339
status (avocado.TestCancel attribute), 341
status (avocado.TestError attribute), 341
status (avocado.TestFail attribute), 341

status_journal_summary (avo-
cado.core.status.repo.StatusRepo attribute),
347

StatusEncoder (class in avocado.core.nrunner), 370
STATUSES (in module avocado.core.teststatus), 403
STATUSES_MAPPING (in module avo-

cado.core.teststatus), 403
StatusMsgInvalidJSONError, 347
StatusMsgMissingDataError, 346
StatusRepo (class in avocado.core.status.repo), 346
StatusServer (class in avocado.core.status.server),

347
STD_OUTPUT (in module avocado.core.output), 374
stderr (avocado.utils.process.CmdResult attribute),

480
stderr_text (avocado.utils.process.CmdResult at-

tribute), 480
StderrMessageHandler (class in avo-

cado.core.messages), 365
stdout (avocado.utils.process.CmdResult attribute),

480
stdout_text (avocado.utils.process.CmdResult at-

tribute), 481
StdoutMessageHandler (class in avo-

cado.core.messages), 365
StdOutput (class in avocado.core.output), 374
STEPS (avocado.core.output.Throbber attribute), 376
stop() (avocado.core.sysinfo.Daemon method), 394
stop() (avocado.utils.process.SubProcess method),

483
stop() (avocado.utils.softwareraid.SoftwareRaid

method), 494
str_filesystem (avocado.core.test_id.TestID

attribute), 403
str_leaves_variant (avo-

cado.core.parameters.AvocadoParam at-
tribute), 377

str_unpickable_object() (in module avo-
cado.utils.stacktrace), 497

stream_output() (avo-
cado.core.spawners.common.SpawnerMixin
static method), 345

StreamToQueue (class in avo-
cado.core.runners.avocado_instrumented),
343

string_safe_encode() (in module avo-
cado.utils.astring), 429

string_to_bitlist() (in module avo-
cado.utils.astring), 429

string_to_safe_path() (in module avo-
cado.utils.astring), 429

strip_console_codes() (in module avo-
cado.utils.astring), 430

SubProcess (class in avocado.utils.process), 481

576 Index

avocado Documentation, Release 88.1

SUCCESS (avocado.core.resolver.ReferenceResolutionResult
attribute), 383

SUPPORTED_PACKAGE_MANAGERS (in module avo-
cado.utils.software_manager.inspector), 423

suspend_mpath() (in module avo-
cado.utils.multipath), 470

sys_v_init_command_generator() (in module
avocado.utils.service), 493

sys_v_init_result_parser() (in module avo-
cado.utils.service), 493

SysInfo (class in avocado.core.sysinfo), 395
SysInfo (class in avocado.plugins.sysinfo), 518
SysinfoInit (class in avocado.plugins.sysinfo), 519
SysInfoJob (class in avocado.plugins.sysinfo), 518
system() (in module avocado.utils.process), 488
system_output() (in module avocado.utils.process),

488
system_wide_or_base_path() (in module avo-

cado.core.utils), 406
systemd_command_generator() (in module avo-

cado.utils.service), 493
systemd_result_parser() (in module avo-

cado.utils.service), 493
SystemInspector (class in avo-

cado.utils.software_manager.inspector),
423

T
t (avocado.utils.data_structures.DataSize attribute), 437
t_c_string() (avo-

cado.utils.external.gdbmi_parser.GdbMiScannerBase
method), 410

t_default() (avocado.utils.external.gdbmi_parser.GdbMiScannerBase
method), 410

t_default() (avocado.utils.external.spark.GenericScanner
static method), 412

t_nl() (avocado.utils.external.gdbmi_parser.GdbMiScannerBase
method), 410

t_result_type() (avo-
cado.utils.external.gdbmi_parser.GdbMiScannerBase
method), 410

t_stream_type() (avo-
cado.utils.external.gdbmi_parser.GdbMiScannerBase
method), 410

t_string() (avocado.utils.external.gdbmi_parser.GdbMiScannerBase
method), 410

t_symbol() (avocado.utils.external.gdbmi_parser.GdbMiScannerBase
method), 410

t_token() (avocado.utils.external.gdbmi_parser.GdbMiScanner
method), 410

t_whitespace() (avo-
cado.utils.external.gdbmi_parser.GdbMiScannerBase
method), 410

tabular_output() (in module avo-
cado.utils.astring), 430

tags (avocado.core.test.Test attribute), 401
tags (avocado.Test attribute), 339
tags_stats (avocado.core.suite.TestSuite attribute),

393
TAP (class in avocado.plugins.tap), 519
TAPInit (class in avocado.plugins.tap), 519
TapLoader (class in avocado.core.loader), 361
TapParser (class in avocado.core.tapparser), 396
TapParser.Bailout (class in avo-

cado.core.tapparser), 396
TapParser.Error (class in avocado.core.tapparser),

396
TapParser.Plan (class in avocado.core.tapparser),

396
TapParser.Test (class in avocado.core.tapparser),

397
TapParser.Version (class in avo-

cado.core.tapparser), 397
TapResolver (class in avocado.plugins.resolvers),

516
TAPResult (class in avocado.plugins.tap), 519
TAPRunner (class in avocado.core.runners.tap), 344
TapTest (class in avocado.core.test), 399
task (avocado.core.task.runtime.RuntimeTask at-

tribute), 348
Task (class in avocado.core.nrunner), 371
TaskStateMachine (class in avo-

cado.core.task.statemachine), 348
TaskStatusService (class in avo-

cado.core.nrunner), 372
tb_info() (in module avocado.utils.stacktrace), 497
tearDown() (avocado.core.test.Test method), 401
tearDown() (avocado.Test method), 340
TemporaryScript (class in avocado.utils.script), 490
TERM_SUPPORT (in module avocado.core.output), 375
terminal() (avocado.utils.external.gdbmi_parser.GdbMiParser

method), 410
terminal() (avocado.utils.external.spark.GenericASTBuilder

static method), 411
terminate() (avocado.utils.process.SubProcess

method), 483
TermSupport (class in avocado.core.output), 375
Test (class in avocado), 337
Test (class in avocado.core.test), 399
test() (avocado.core.test.ExternalRunnerTest

method), 398
test() (avocado.core.test.MockingTest method), 398
test() (avocado.core.test.PythonUnittest method), 398
test() (avocado.core.test.ReplaySkipTest method), 399
test() (avocado.core.test.SimpleTest method), 399
test() (avocado.core.test.TestError method), 402
test() (avocado.core.test.TimeOutSkipTest method),

Index 577

avocado Documentation, Release 88.1

403
test() (avocado_golang.GolangTest method), 529
test() (avocado_robot.RobotTest method), 537
test_parameters (avocado.core.suite.TestSuite at-

tribute), 393
test_progress() (avo-

cado.core.plugin_interfaces.ResultEvents
method), 381

test_progress() (avocado.plugins.human.Human
method), 510

test_progress() (avo-
cado.plugins.journal.JournalResult method),
512

test_progress() (avocado.plugins.tap.TAPResult
method), 520

test_progress() (avo-
cado.plugins.testlogs.TestLogging method),
520

test_progress() (avo-
cado_resultsdb.ResultsdbResultEvent method),
527

test_results_path (avocado.core.job.Job at-
tribute), 358

TEST_STATE_ATTRIBUTES (in module avo-
cado.core.test), 399

TEST_STATUS_DECORATOR_MAPPING (in module
avocado.core.output), 375

TEST_STATUS_MAPPING (in module avo-
cado.core.output), 375

test_suite (avocado.core.job.Job attribute), 358
TestAbortError, 353
TestBaseException, 354
TestCancel, 341, 354
TestData (class in avocado.core.test), 402
TestError, 341, 354
TestError (class in avocado.core.test), 402
TestFail, 341, 354
TestID (class in avocado.core.test_id), 403
TestInterruptedError, 354
TestLoader (class in avocado.core.loader), 362
TestLoaderProxy (class in avocado.core.loader),

362
TestLogging (class in avocado.plugins.testlogs), 520
TestLogsUI (class in avocado.plugins.testlogs), 520
TestLogsUIInit (class in avocado.plugins.testlogs),

520
TestNotFoundError, 354
TestResult (class in avocado.core.tapparser), 397
TestRunner (class in avocado.plugins.runner), 517
TESTS_FOUND (avocado.core.suite.TestSuiteStatus at-

tribute), 393
TESTS_NOT_FOUND (avo-

cado.core.suite.TestSuiteStatus attribute),
393

TestSetupFail, 354
TestSkipError, 354
TestStatus (class in avocado.core.runner), 384
teststmpdir (avocado.core.test.Test attribute), 401
teststmpdir (avocado.Test attribute), 340
TestsTmpDir (class in avocado.plugins.teststmpdir),

520
TestSuite (class in avocado.core.suite), 392
TestSuiteError, 393
TestSuiteStatus (class in avocado.core.suite), 393
TestTimeoutInterrupted, 355
TestWarn, 355
Throbber (class in avocado.core.output), 376
time_elapsed (avocado.core.job.Job attribute), 358
time_elapsed (avocado.core.test.Test attribute), 401
time_elapsed (avocado.Test attribute), 340
time_end (avocado.core.job.Job attribute), 358
time_end (avocado.core.test.Test attribute), 402
time_end (avocado.Test attribute), 340
time_start (avocado.core.job.Job attribute), 358
time_start (avocado.core.test.Test attribute), 402
time_start (avocado.Test attribute), 340
time_to_seconds() (in module avo-

cado.utils.data_structures), 438
timeout (avocado.core.job.Job attribute), 359
timeout (avocado.core.test.Test attribute), 402
timeout (avocado.Test attribute), 340
TimeOutSkipTest (class in avocado.core.test), 402
to_dict() (avocado.plugins.distro.DistroDef

method), 507
to_dict() (avocado.plugins.distro.SoftwarePackage

method), 508
to_json() (avocado.plugins.distro.DistroDef

method), 507
to_json() (avocado.plugins.distro.SoftwarePackage

method), 508
to_str() (avocado.core.plugin_interfaces.Varianter

method), 382
to_str() (avocado.core.varianter.FakeVariantDispatcher

method), 406
to_str() (avocado.core.varianter.Varianter method),

408
to_str() (avocado.plugins.dict_variants.DictVariants

method), 505
to_str() (avocado.plugins.json_variants.JsonVariants

method), 512
to_str() (avocado_varianter_cit.VarianterCit

method), 535
to_str() (avocado_varianter_pict.VarianterPict

method), 526
to_str() (avocado_varianter_yaml_to_mux.mux.MuxPlugin

method), 524
to_text() (avocado.core.tree.TreeEnvironment

method), 404

578 Index

avocado Documentation, Release 88.1

to_text() (in module avocado.utils.astring), 430
Token (class in avocado.utils.external.gdbmi_parser),

410
tokenize() (avocado.utils.external.gdbmi_parser.GdbMiScannerBase

method), 410
tokenize() (avocado.utils.external.spark.GenericScanner

method), 412
total_count() (in module avocado.utils.cpu), 435
total_cpus_count() (in module avo-

cado.utils.cpu), 435
traceback (avocado.core.test.Test attribute), 402
traceback (avocado.Test attribute), 340
tree_view() (in module avocado.core.tree), 406
TreeEnvironment (class in avocado.core.tree), 404
TreeNode (class in avocado.core.tree), 404
TreeNodeEnvOnly (class in avocado.core.tree), 405
triage() (avocado.core.task.statemachine.Worker

method), 349
triaging (avocado.core.task.statemachine.TaskStateMachine

attribute), 349
typestring() (avo-

cado.utils.external.spark.GenericASTTraversal
static method), 411

typestring() (avo-
cado.utils.external.spark.GenericParser static
method), 412

U
UbuntuImageProvider (class in avo-

cado.utils.vmimage), 500
uncompress() (avocado.utils.kernel.KernelBuild

method), 458
uncompress() (in module avocado.utils.archive), 426
uncover() (avocado_varianter_cit.CombinationMatrix.CombinationMatrix

method), 532
uncover_cell() (avo-

cado_varianter_cit.CombinationRow.CombinationRow
method), 533

uncover_combination() (avo-
cado_varianter_cit.CombinationMatrix.CombinationMatrix
method), 532

uncover_solution_row() (avo-
cado_varianter_cit.CombinationMatrix.CombinationMatrix
method), 532

UNDEFINED_BEHAVIOR_EXCEPTION (in module av-
ocado.utils.process), 483

unique_id (avocado.core.job.Job attribute), 359
unit (avocado.utils.data_structures.DataSize attribute),

437
UNKNOWN (avocado.core.suite.TestSuiteStatus attribute),

393
UNKNOWN (avocado.plugins.xunit.XUnitResult attribute),

523

unload_module() (in module avo-
cado.utils.linux_modules), 460

unmount() (avocado.utils.partition.Partition method),
471

unregister() (avo-
cado.utils.data_structures.CallbackRegister
method), 437

unset_ip() (in module avo-
cado.utils.configure_network), 434

UnsupportedProtocolError, 428
update() (avocado.core.tree.FilterSet method), 404
update_amount() (avocado.utils.output.ProgressBar

method), 470
update_option() (avocado.core.settings.Settings

method), 391
update_percentage() (avo-

cado.utils.output.ProgressBar method), 470
upgrade() (avocado.utils.software_manager.backends.apt.AptBackend

method), 418
upgrade() (avocado.utils.software_manager.backends.yum.YumBackend

method), 421
upgrade() (avocado.utils.software_manager.backends.zypper.ZypperBackend

method), 422
URL (avocado.utils.kernel.KernelBuild attribute), 457
url_download() (in module avo-

cado.utils.download), 446
url_download_interactive() (in module avo-

cado.utils.download), 446
url_old_images (avo-

cado.utils.vmimage.FedoraImageProviderBase
attribute), 498

url_open() (in module avocado.utils.download), 446
urls (avocado.utils.asset.Asset attribute), 428
usable_ro_dir() (in module avocado.utils.path),

473
usable_rw_dir() (in module avocado.utils.path),

473
use_random_algorithm() (avo-

cado_varianter_cit.Cit.Cit method), 531
USERDATA_HEADER (in module avo-

cado.utils.cloudinit), 432
USERNAME_TEMPLATE (in module avo-

cado.utils.cloudinit), 432
UTILITY_FAIL (in module avocado.utils.exit_codes),

447
UTILITY_GENERIC_CRASH (in module avo-

cado.utils.exit_codes), 447
UTILITY_OK (in module avocado.utils.exit_codes), 447

V
validate_kind_section() (avo-

cado.core.parser.HintParser method), 378
value (avocado.core.settings.ConfigOption attribute),

388

Index 579

avocado Documentation, Release 88.1

value (avocado.utils.data_structures.DataSize at-
tribute), 437

ValueDict (class in avo-
cado_varianter_yaml_to_mux.mux), 524

variant_ids (avocado_varianter_yaml_to_mux.mux.MuxPlugin
attribute), 524

variant_to_str() (in module avo-
cado.core.varianter), 408

Varianter (class in avocado.core.plugin_interfaces),
382

Varianter (class in avocado.core.varianter), 406
VarianterCit (class in avocado_varianter_cit), 535
VarianterCitCLI (class in avocado_varianter_cit),

535
VarianterDispatcher (class in avo-

cado.core.dispatcher), 352
VarianterPict (class in avocado_varianter_pict),

526
VarianterPictCLI (class in avo-

cado_varianter_pict), 526
variants (avocado.core.suite.TestSuite attribute), 393
variants (avocado.plugins.json_variants.JsonVariants

attribute), 513
variants (avocado_varianter_yaml_to_mux.mux.MuxPlugin

attribute), 524
Variants (class in avocado.plugins.variants), 521
VENDORS_MAP (in module avocado.utils.cpu), 434
version (avocado.core.tapparser.TapParser.Version at-

tribute), 397
version (avocado.utils.vmimage.ImageProviderBase

attribute), 499
version() (avocado.utils.distro.Probe method), 444
version_pattern (avo-

cado.utils.vmimage.ImageProviderBase at-
tribute), 499

version_pattern (avo-
cado.utils.vmimage.OpenSUSEImageProvider
attribute), 499

vg_check() (in module avocado.utils.lv_utils), 463
vg_create() (in module avocado.utils.lv_utils), 463
vg_list() (in module avocado.utils.lv_utils), 463
vg_ramdisk() (in module avocado.utils.lv_utils), 463
vg_ramdisk_cleanup() (in module avo-

cado.utils.lv_utils), 464
vg_reactivate() (in module avocado.utils.lv_utils),

464
vg_remove() (in module avocado.utils.lv_utils), 464
visit_Assign() (avo-

cado.plugins.assets.FetchAssetHandler
method), 504

visit_Call() (avo-
cado.plugins.assets.FetchAssetHandler
method), 504

visit_ClassDef() (avo-

cado.plugins.assets.FetchAssetHandler
method), 504

visit_FunctionDef() (avo-
cado.plugins.assets.FetchAssetHandler
method), 504

VMimage (class in avocado.plugins.vmimage), 521
VMImageHtmlParser (class in avo-

cado.utils.vmimage), 500
vmlinux (avocado.utils.kernel.KernelBuild attribute),

458

W
wait() (avocado.utils.datadrainer.BaseDrainer

method), 438
wait() (avocado.utils.process.SubProcess method),

483
wait_for() (in module avocado.utils.wait), 501
wait_for_early_status() (avo-

cado.core.runner.TestStatus method), 385
wait_for_phone_home() (in module avo-

cado.utils.cloudinit), 433
wait_task() (avocado.core.plugin_interfaces.Spawner

method), 382
wait_task() (avocado.core.spawners.mock.MockSpawner

method), 346
wait_task() (avocado.plugins.spawners.podman.PodmanSpawner

static method), 502
wait_task() (avocado.plugins.spawners.process.ProcessSpawner

static method), 503
warn_header_str() (avo-

cado.core.output.TermSupport method),
376

warn_str() (avocado.core.output.TermSupport
method), 376

whiteboard (avocado.core.test.Test attribute), 402
whiteboard (avocado.Test attribute), 340
WhiteboardMessageHandler (class in avo-

cado.core.messages), 365
workdir (avocado.core.test.Test attribute), 402
workdir (avocado.Test attribute), 340
Worker (class in avocado.core.task.statemachine), 349
WRAP_PROCESS (in module avocado.utils.process), 483
WRAP_PROCESS_NAMES_EXPR (in module avo-

cado.utils.process), 483
Wrapper (class in avocado.plugins.wrapper), 522
WrapSubProcess (class in avocado.utils.process), 483
write() (avocado.core.output.LoggingFile method),

373
write() (avocado.core.output.Paginator method), 374
write() (avocado.core.runners.avocado_instrumented.StreamToQueue

method), 343
write() (avocado.utils.datadrainer.BaseDrainer

method), 438

580 Index

avocado Documentation, Release 88.1

write() (avocado.utils.datadrainer.BufferFDDrainer
method), 439

write() (avocado.utils.datadrainer.FDDrainer
method), 439

write() (avocado.utils.datadrainer.LineLogger
method), 439

write() (avocado.utils.iso9660.ISO9660PyCDLib
method), 457

write_file() (in module avocado.utils.genio), 453
write_file_or_fail() (in module avo-

cado.utils.genio), 453
write_infoblock() (avocado.utils.pmem.PMem

method), 479
write_json() (avocado.core.nrunner.Runnable

method), 370
write_one_line() (in module avocado.utils.genio),

453

X
XFAIL (avocado.core.tapparser.TestResult attribute),

397
XPASS (avocado.core.tapparser.TestResult attribute),

397
XUnitCLI (class in avocado.plugins.xunit), 522
XUnitInit (class in avocado.plugins.xunit), 522
XUnitResult (class in avocado.plugins.xunit), 523

Y
YamlToMux (class in avo-

cado_varianter_yaml_to_mux), 525
YamlToMuxCLI (class in avo-

cado_varianter_yaml_to_mux), 525
YamlToMuxInit (class in avo-

cado_varianter_yaml_to_mux), 525
yum_base (avocado.utils.software_manager.backends.yum.YumBackend

attribute), 421
YumBackend (class in avo-

cado.utils.software_manager.backends.yum),
421

Z
ZypperBackend (class in avo-

cado.utils.software_manager.backends.zypper),
422

Index 581

	How does it work?
	Why should I use it?
	Multiple result formats
	Sysinfo data collector
	Job Replay and Job Diff
	Extensible by plugins
	Utility libraries

	Avocado Python API
	How to install
	Documentation
	Bugs/Requests
	Changelog
	License
	Build and Quality Status
	Welcome to Avocado
	How does it work?
	Why should I use it?
	Avocado Python API
	How to install
	Documentation
	Bugs/Requests
	Changelog
	License
	Build and Quality Status

	Avocado User’s Guide
	About Avocado
	Installing
	Introduction
	Basic Concepts
	Basic Operations
	Results Specification
	Filtering tests by tags
	Configuring
	Managing Requirements
	Managing Assets
	Avocado Data Directories
	Avocado logging system
	Understanding the plugin system
	Understanding the test discovery (Avocado Loaders)
	Advanced usage
	What’s next?

	Avocado Test Writer’s Guide
	Writing a Simple Test
	Writing Avocado Tests with Python
	Advanced logging capabilities
	Test parameters
	Utility Libraries
	Subclassing Avocado

	Avocado Contributor’s Guide
	Brief introduction
	How can I contribute?
	Development environment
	Style guides
	Writing an Avocado plugin
	The “nrunner” and “runner” test runner
	Implementing other result formats
	Request for Comments (RFCs)
	Releasing Avocado
	Avocado development tips
	Contact information

	Optional plugins
	Avocado-ec2 Plugin
	Golang Plugin
	Result plugins
	Robot Plugin
	CIT Varianter Plugin
	PICT Varianter plugin
	Multiplexer
	Multiplexer concept
	Yaml_to_mux plugin

	Avocado Releases
	How we release Avocado
	Long Term Stability Releases
	Regular Releases

	BP000
	TL;DR
	Motivation
	Specification
	Backwards Compatibility
	Security Implications
	How to Teach This
	Related Issues
	References

	BP001
	TL;DR
	Motivation
	Specification
	Backwards Compatibility
	Security Implications
	How to Teach This
	Related Issues
	References

	BP002
	TL;DR
	Motivation
	Specification
	Backward Compatibility
	Security Implications
	How to Teach This
	Related Issues
	References

	BP003
	TL;DR
	Motivations
	Goals of this BluePrint
	Requirements
	Suggested Terminology for the Task Phases
	Task life-cycle example
	Implementation Example
	Backwards Compatibility
	Security Implications
	How to Teach This
	Related Issues
	Future work
	References

	Other Resources
	Presentations
	Public test repositories

	Avocado’s Configuration Reference
	assets.fetch.ignore_errors
	assets.fetch.references
	assets.list.days
	assets.list.overall_limit
	assets.list.size_filter
	assets.purge.days
	assets.purge.overall_limit
	assets.purge.size_filter
	assets.register.name
	assets.register.sha1_hash
	assets.register.url
	config.datadir
	core.input_encoding
	core.paginator
	core.show
	core.verbose
	datadir.paths.base_dir
	datadir.paths.cache_dirs
	datadir.paths.data_dir
	datadir.paths.logs_dir
	datadir.paths.test_dir
	diff.create_reports
	diff.filter
	diff.html
	diff.jobids
	diff.open_browser
	diff.strip_id
	distro.distro_def_arch
	distro.distro_def_create
	distro.distro_def_name
	distro.distro_def_path
	distro.distro_def_release
	distro.distro_def_type
	distro.distro_def_version
	filter.by_tags.include_empty
	filter.by_tags.include_empty_key
	filter.by_tags.tags
	job.output.loglevel
	job.output.testlogs.logfiles
	job.output.testlogs.statuses
	job.replay.source_job_id
	job.run.result.html.enabled
	job.run.result.html.open_browser
	job.run.result.html.output
	job.run.result.json.enabled
	job.run.result.json.output
	job.run.result.tap.enabled
	job.run.result.tap.include_logs
	job.run.result.tap.output
	job.run.result.xunit.enabled
	job.run.result.xunit.job_name
	job.run.result.xunit.max_test_log_chars
	job.run.result.xunit.output
	job.run.store_logging_stream
	job.run.timeout
	jobs.get.output_files.destination
	jobs.get.output_files.job_id
	jobs.show.job_id
	json.variants.load
	list.external_runner
	list.external_runner_chdir
	list.external_runner_testdir
	list.loaders
	list.recipes.write_to_directory
	list.references
	list.resolver
	list.write_to_json_file
	nrunner.max_parallel_tasks
	nrunner.shuffle
	nrunner.spawner
	nrunner.status_server_buffer_size
	nrunner.status_server_listen
	nrunner.status_server_uri
	plugins.cli.cmd.order
	plugins.cli.order
	plugins.disable
	plugins.init.order
	plugins.job.prepost.order
	plugins.jobscripts.post
	plugins.jobscripts.pre
	plugins.jobscripts.warn_non_existing_dir
	plugins.jobscripts.warn_non_zero_status
	plugins.resolver.order
	plugins.result.order
	plugins.result_events.order
	plugins.result_upload.cmd
	plugins.result_upload.url
	plugins.resultsdb.api_url
	plugins.resultsdb.logs_url
	plugins.resultsdb.note_size_limit
	plugins.runnable.runner.order
	plugins.runner.order
	plugins.skip_broken_plugin_notification
	plugins.spawner.order
	plugins.varianter.order
	run.cit.combination_order
	run.cit.parameter_file
	run.dict_variants
	run.dry_run.enabled
	run.dry_run.no_cleanup
	run.execution_order
	run.external_runner
	run.external_runner_chdir
	run.external_runner_testdir
	run.failfast
	run.ignore_missing_references
	run.job_category
	run.journal.enabled
	run.keep_tmp
	run.loaders
	run.log_test_data_directories
	run.output_check
	run.output_check_record
	run.pict_binary
	run.pict_combinations_order
	run.pict_parameter_file
	run.pict_parameter_path
	run.references
	run.replay.ignore
	run.replay.job_id
	run.replay.resume
	run.replay.test_status
	run.results.archive
	run.results_dir
	run.test_parameters
	run.test_runner
	run.unique_job_id
	run.wrapper.wrappers
	runner.exectest.exitcodes.skip
	runner.output.color
	runner.output.colored
	runner.output.utf8
	runner.timeout.after_interrupted
	runner.timeout.process_alive
	runner.timeout.process_died
	simpletests.status.failure_fields
	simpletests.status.skip_location
	simpletests.status.skip_regex
	simpletests.status.warn_location
	simpletests.status.warn_regex
	spawner.podman.bin
	spawner.podman.image
	sysinfo.collect.commands_timeout
	sysinfo.collect.enabled
	sysinfo.collect.installed_packages
	sysinfo.collect.locale
	sysinfo.collect.optimize
	sysinfo.collect.per_test
	sysinfo.collect.profiler
	sysinfo.collect.sysinfodir
	sysinfo.collectibles.commands
	sysinfo.collectibles.fail_commands
	sysinfo.collectibles.fail_files
	sysinfo.collectibles.files
	sysinfo.collectibles.profilers
	task.timeout.running
	variants.cit.combination_order
	variants.cit.parameter_file
	variants.contents
	variants.debug
	variants.inherit
	variants.json_variants_dump
	variants.pict_binary
	variants.pict_combinations_order
	variants.pict_parameter_file
	variants.pict_parameter_path
	variants.summary
	variants.tree
	variants.variants
	vmimage.get.arch
	vmimage.get.distro
	vmimage.get.version
	yaml_to_mux.files
	yaml_to_mux.filter_only
	yaml_to_mux.filter_out
	yaml_to_mux.inject
	yaml_to_mux.parameter_paths

	Test API
	Test APIs
	Module contents

	Internal (Core) APIs
	Subpackages
	Submodules
	avocado.core.app module
	avocado.core.data_dir module
	avocado.core.decorators module
	avocado.core.dispatcher module
	avocado.core.enabled_extension_manager module
	avocado.core.exceptions module
	avocado.core.exit_codes module
	avocado.core.extension_manager module
	avocado.core.job module
	avocado.core.job_id module
	avocado.core.jobdata module
	avocado.core.loader module
	avocado.core.main module
	avocado.core.messages module
	avocado.core.nrunner module
	avocado.core.output module
	avocado.core.parameters module
	avocado.core.parser module
	avocado.core.parser_common_args module
	avocado.core.plugin_interfaces module
	avocado.core.references module
	avocado.core.resolver module
	avocado.core.result module
	avocado.core.runner module
	avocado.core.safeloader module
	avocado.core.settings module
	avocado.core.settings_dispatcher module
	avocado.core.streams module
	avocado.core.suite module
	avocado.core.sysinfo module
	avocado.core.tags module
	avocado.core.tapparser module
	avocado.core.test module
	avocado.core.test_id module
	avocado.core.teststatus module
	avocado.core.tree module
	avocado.core.utils module
	avocado.core.varianter module
	avocado.core.version module
	Module contents

	Utilities APIs
	Subpackages
	Submodules
	avocado.utils.archive module
	avocado.utils.asset module
	avocado.utils.astring module
	avocado.utils.aurl module
	avocado.utils.build module
	avocado.utils.cloudinit module
	avocado.utils.configure_network module
	avocado.utils.cpu module
	avocado.utils.crypto module
	avocado.utils.data_factory module
	avocado.utils.data_structures module
	avocado.utils.datadrainer module
	avocado.utils.debug module
	avocado.utils.diff_validator module
	avocado.utils.disk module
	avocado.utils.distro module
	avocado.utils.dmesg module
	avocado.utils.download module
	avocado.utils.exit_codes module
	avocado.utils.file_utils module
	avocado.utils.filelock module
	avocado.utils.gdb module
	avocado.utils.genio module
	avocado.utils.git module
	avocado.utils.iso9660 module
	avocado.utils.kernel module
	avocado.utils.linux module
	avocado.utils.linux_modules module
	avocado.utils.lv_utils module
	avocado.utils.memory module
	avocado.utils.multipath module
	avocado.utils.output module
	avocado.utils.partition module
	avocado.utils.path module
	avocado.utils.pci module
	avocado.utils.pmem module
	avocado.utils.process module
	avocado.utils.script module
	avocado.utils.service module
	avocado.utils.softwareraid module
	avocado.utils.ssh module
	avocado.utils.stacktrace module
	avocado.utils.vmimage module
	avocado.utils.wait module
	Module contents

	Extension (plugin) APIs
	Subpackages
	Submodules
	avocado.plugins.archive module
	avocado.plugins.assets module
	avocado.plugins.config module
	avocado.plugins.dict_variants module
	avocado.plugins.diff module
	avocado.plugins.distro module
	avocado.plugins.exec_path module
	avocado.plugins.expected_files_merge module
	avocado.plugins.human module
	avocado.plugins.jobs module
	avocado.plugins.jobscripts module
	avocado.plugins.journal module
	avocado.plugins.json_variants module
	avocado.plugins.jsonresult module
	avocado.plugins.list module
	avocado.plugins.plugins module
	avocado.plugins.replay module
	avocado.plugins.resolvers module
	avocado.plugins.run module
	avocado.plugins.runner module
	avocado.plugins.runner_nrunner module
	avocado.plugins.sysinfo module
	avocado.plugins.tap module
	avocado.plugins.testlogs module
	avocado.plugins.teststmpdir module
	avocado.plugins.variants module
	avocado.plugins.vmimage module
	avocado.plugins.wrapper module
	avocado.plugins.xunit module
	Module contents

	Optional Plugins API
	avocado_varianter_yaml_to_mux package
	avocado_varianter_pict package
	avocado_resultsdb package
	avocado_golang package
	avocado_varianter_cit package
	avocado_robot package
	avocado_result_upload package

	Indices and tables

	Python Module Index
	Index

