avocado Documentation
Release 90.0

Avocado Development Team

Jul 27, 2021

Quick Start

How does it work? 3
Why should I use it? 5
2.1 Multiple result formats L e e e e e e e e e e e e e 5
2.2 Sysinfodatacollector e e e e e e e 5
2.3 JobReplayandJob Diff e e 6
24 Extensible by plugins e 7
2.5 Utlity libraries o L e e e e e e e 7
Avocado Python API 9
How to install 11
Documentation 13
Bugs/Requests 15
Changelog 17
License 19
Build and Quality Status 21
9.1 Welcome to Avocado o L e e e e e e 21
9.1.1 Howdoesit work? e e e e e e e e e 21
9.1.2 WhyshouldTuseit? e e e e e 22
9.1.3 Avocado Python API e 24
9.1.4 Howtoinstall e e e e e 24
9.1.5 Documentation it e e e e e e e e e e e e e e e 25
9.1.6 Bugs/Requests e 25
9.1.7 Changelog e 25
9.1.8 LiCense e e e 25
9.1.9 Build and Quality Status L. e e 25
9.2 Avocado User’'s Guide o o i e e e e e e e e 25
9.2.1 About Avocado e e e e e e e e e e 25
9.22 Installing e e 26
9.23 Introduction e e e e 28
0.2.4 BasicCONCePtS v v v v v e e e e e e e e e e e e e e e e e e e 38
9.2.5 BasicOperations i e e e e e e 43

9.3

9.4

9.5

9.6

9.7

9.2.6 Results Specification e e e e e e 48
9.2.7 Filtering tests by tags e e e e e e e e e e 52
0.2.8 Configuring o e e e e e e 54
9.2.9 Managing Requirements oL e 58
9.2.10 Managing ASSetS e e 60
9.2.11 Avocado Data Directories ot v i it e e e e 61
9.2.12 Avocado log@ing SyStem e e e e e e e e e e e e e e 62
9.2.13 Understanding the plugin system i i e e e 63
9.2.14 Understanding the test discovery (Avocado Loaders) 67
9.2.15 Advanced usage e 70
9.2.16 What’'s nexXt? L e e e e e 71
Avocado Test Writer’'s Guide L 72
93.1 WritingaSimple Test e e e e e 72
9.3.2 Writing Avocado Tests with Python o L 0oL 72
9.3.3 Advanced logging capabilities oL 0oL 100
934 TeStparameters o .. i i e e e e e e e e e e e e e e e e e 101
9.3.5 Utility Libraries o e e e 106
9.3.6 Subclassing Avocado L e e e e e e e e 110
9.3.7 Integrating Avocado e e e e e e e e e 112
Avocado Contributor’s Guide L L e e e e e 112
9.4.1 Briefintroduction e e 113
9.4.2 Howecanlcontribute?. 113
9.4.3 Development enVIFONMENT v v v v v v v v e e e e e e e e e e e e e e e e 117
9.4.4 Styleguides e e e e e 118
9.4.5 Writingan Avocado plugin oL 119
9.4.6 The “nrunner” and “runner” tESLTUNNET v v b vt b e e e e 127
9.4.7 Implementing other result formats 138
9.4.8 Request for Comments (RFCs) ittt 139
9.49 Releasing Avocado oL e e e e e e e e 144
9.4.10 Avocado development tips oo e e e e e e 147
9.4.11 Contact information i e e e e e e e e e e 148
Optional plugins e e e 148
9.5.1 Avocado-ec2 Plugin 148
952 Golang Plugin e e e e e 149
953 Resultplugins o L e e e e 150
9.5.4 RobotPlugin e 152
9.5.5 CIT Varianter Plugin o 152
9.5.6 PICT Varianter plugin. it e e e e 160
0.5.77 Multiplexer e e e e e e e e e e e e e 161
0.5.8 Multiplexer ConCept v v v i e e e e e e e e e e e e e e e 162
9.5.9 Yaml to_muxplugin L e 164
Avocado Releases e e e 174
9.6.1 Howwerelease Avocado 174
9.6.2 Long Term Stability Releases it 174
9.6.3 RegularReleases e e e e e 195
BPO00 . . . e e 282
9.7.1 TL;DR. . . o e e 283
9.7.2 Motivation e e e 283
9.7.3 Specification e e e e e e e e e e e e e 284
9.7.4 Backwards Compatibility e e e 287
9.7.5 Security Implications L e e e e e e 287
976 HowtoTeachThis e e 287
9777 RelatedIssues o . o e e e e e 287
9.7.8 References e 287

9.8

9.9

9.10

9.11

9.12

BPOO1 . . . e 287
9.8.1 TL;DR. . . . o 288
9.8.2 Motivation e e e e e 289
9.8.3 Specification e e 290
9.8.4 Backwards Compatibility 294
9.8.5 Security Implications 295
9.8.6 HowtoTeachThis ettt e 295
9.8.7 RelatedIssues e e e 295
9.8.8 References e 296
BPO02 . . . e 296
9.9.1 TL;DR. . . o o 297
9.9.2 Motivation e e e e e e e 297
9.9.3 Specification e e e e e e e e e e e 297
9.9.4 Backward Compatibility e 300
9.9.5 Security Implications Lo e 300
99.6 HowtoTeachThis e e e e e e e e e 300
9.9.7 Related Issues e 301
9.9.8 References e 301
BPO03 . . . e e 301
9.10.1 TL;DR . . . o o e 302
9.10.2 MOUVALIONS v v i e 303
9.10.3 Goalsof this BluePrint e 303
9.10.4 ReqUIrEMENtS v v v v v e 303
9.10.5 Suggested Terminology for the Task Phases 306
9.10.6 Tasklife-cycleexample e 307
9.10.7 Implementation Example L oo 311
9.10.8 Backwards Compatibility 316
9.10.9 Security Implications L. e e e e e e e e e e e 316
9.10.10 Howto Teach This o s et e e e e 316
9.10.11 Related Issues o o v i i e e e e e e 316
9.10.12 Future work e e e e e e e e e e e e e e 316
9.10.13 References o 0 i e e e e e e e e e e 317
Other Resources ot i e e e e e e e e e e e e e e e 317
9.11.1 Open Source Projects Relyingon Avocado 317
9.11.2 Avocado eXtensions v v v vttt e e e e e e e e e e e e e e 318
O.11.3 Presentations v o it it e e e e e e e e e e e e e e 319
Avocado’s Configuration Reference oL oo oo oo 319
9.12.1 assets.fetch.ignore_errors e e e e e e 319
9.12.2 assets.fetch.references L. 320
0.12.3 assets.dist.days.o e e e e e e 320
9.12.4 assets.distoverall_limit L e 320
9.12.5 assets.list.size_filter e 320
9.12.6 assets.purge.dayst e e e e 320
9.12.7 assets.purge.overall_limit 320
9.12.8 assets.purge.size_filter e e e e 321
9.12.9 aSSets.register.Name e e e e e e e e e e e e 321
9.12.10 assets.register.shal_hash L 321
9.12.11 assets.register.urlo e 321
9.12.12 config.datadir e 321
9.12.13 corednput_encoding e e e e e e e e e e e e 321
0.12.14 core.paginator v v v v e 321
9.12.15 core.show oL e e e e e 322
9.12.16 core.verbose L e e e e e e e e e e e e 322
9.12.17 datadir.paths.base_dir L e 322

9.12.18 datadir.paths.cache_dirs e e e e 322

9.12.19 datadir.paths.data_dir L e e e e 322
9.12.20 datadir.pathslogs_dir e 322
9.12.21 datadir.paths.test_ dir L. e 323
9.12.22 diff.create_reports oL .. o e e e e e e e e 323
9.12.23 difffilter e 323
9.12.24 diffhtml oo e 323
9.12.25 diffjobids 323
9.12.26 diff.open_browser Lo e 323
9.12.27 diffsstrip_id L e e 323
9.12.28 distro.distro_def arch e 324
9.12.29 distro.distro_def create e e e e e e 324
9.12.30 distro.distro_def name e 324
9.12.31 distro.distro_def path 324
9.12.32 distro.distro_def _release e 324
9.12.33 distro.distro_def_type e 324
9.12.34 distro.distro_def version e e e e e e e e 324
9.12.35 filter.by_tags.include_empty e e e e e 325
9.12.36 filter.by_tags.include_empty_key L 325
9.12.37 filterby_tags.tags e 325
9.12.38 job.outputloglevel 325
9.12.39 job.output.testlogs.logfiles 325
9.12.40 job.output.testlogs.Statises . . v v v v v v v e e e e e e e e e e e e e e e e e e 325
9.12.41 job.replay.source_job_id L L e e e 326
9.12.42 job.run.result.htmlenabled Lo 326
9.12.43 job.run.result.html.open_browser oL oo 326
9.12.44 job.run.result.htmloutput 326
9.12.45 job.run.result.json.enabled L e 326
9.12.46 job.run.result.jsOn.OULPUL ot o e e e e e e e e e e e e e e 326
9.12.47 job.run.result.tap.enabled L. oL 327
9.12.48 job.run.result.tap.include_logs Lo Lo 327
9.12.49 job.run.result.tap.output L e 327
9.12.50 job.run.result.xunit.enabled 327
9.12.51 job.run.result.xunitjob_name L e e e 327
9.12.52 job.run.result.xunit.max_test_log _chars oo, 327
9.12.53 job.run.result.xunit.output Lo e 327
9.12.54 job.run.store_logging stream oo e e e e e e e e e 328
9.12.55 job.run.timeout e e e e e e e 328
9.12.56 jobs.get.output_files.destination 328
9.12.57 jobs.get.output_files.job_id Lo 328
9.12.58 jobs.show.job_id e 328
9.12.59 json.variants.doado oL 328
9.12.60 listexternal_Iunner v v v v v et e e e e e e e e e e e 329
9.12.61 listexternal_runner_chdir. e e e 329
9.12.62 list.external_runner_testdiro e 329
9.12.63 listloaders e e 329
9.12.64 list.recipes.write_to_direCtory o i e e e e e e e 329
9.12.65 listreferenceso e e e 329
9.12.66 List.resolver L e e e e e 330
9.12.67 list.write_to_json_file L e e e e e 330
9.12.68 nrunner.max_parallel_tasks L e 330
9.12.69 nrunnershuffle L 330
9.12.70 NrunnerSpawnero e e e e e e e e e 330
9.12.71 nrunner.status_server_buffer size 330

9.12.72 nrunner.status_server_liStEN e e e e e e e e e e e e e 331

9.12.73 nrunner.status_SEIVET_UIT v v v v v v o e e e e e e e e e e e e e e 331
9.12.74 plugins.cli.emd.order L e e e 331
9.12.75 plugins.cliorder e 331
9.12.76 plugins.disable L 331
9.12.77 plugins.initorder L e e e e 331
9.12.78 plugins.job.prepost.order e e e e e e e e e e e 331
9.12.79 plugins.jobsCripts.pOSt v o o i e e e e e e e e e e e e e e e 332
9.12.80 plugins.jobsCripts.pre o v v it e e e e e e e e e e e e 332
9.12.81 plugins.jobscripts.warn_non_existing_dir o000 L. 332
9.12.82 plugins.jobscripts.warn_non_zero_statlso it e e e e e e e 332
9.12.83 plugins.resolver.order L e e e e 332
9.12.84 plugins.result.order L. L e e e e e e e e e e 332
9.12.85 plugins.result_events.order L. oL e 332
9.12.86 plugins.result_upload.cmd 0oL 333
9.12.87 plugins.result_upload.url 333
9.12.88 plugins.resultsdb.api_url 333
9.12.89 plugins.resultsdb.dogs_url e 333
9.12.90 plugins.resultsdb.note_size_limit L L 333
9.12.91 plugins.runnable.runnerorder. oL o 333
9.12.92 plugins.runner.order L e e e e e e e e 333
9.12.93 plugins.skip_broken_plugin_notification oL 334
9.12.94 plugins.spawner.order it e e e e e e e e e e e e e e e e e 334
9.12.95 plugins.varianter.order e e e e e e e e e e e e e 334
9.12.96 run.cit.combination_ordero e e e 334
9.12.97 run.cit.parameter_file L Lo 334
0.12.98 run.dict_variantS e e e e e e e e e e e e e e 334
9.12.99 run.dry_run.enabled L L e e e e 334
9.12.100run.dry_run.no_cleanup e e e e e e e e e e e e e e 335
9.12.101run.execution_order L. e e e e e 335
9.12.102run.external_runnero e e e e e e e e e e e e e 335
9.12.103run.external_runner_chdir 335
9.12.104run.external_runner_testdir e e e e e e e e e e e e e 335
9.12.105run.failfast oL e e 335
9.12.106run.ignore_missing_references oo e 336
9.12.107run.job_categoryo e e e e e e 336
9.12.108run.journal.enabled oL Lo 336
9.12.109run.keep_tmpo e e e e 336
9.12.110run.Joaderso e e e e e 336
9.12.111run.log_test_data_directories o v v it e e e e e e e e e e 336
9.12.112run.output_check L e 337
9.12.113run.output_check_record L 337
9.12. 114run.pict_binary e e e e e 337
9.12.115run.pict_combinations_ordero e 337
9.12.116run.pict_parameter_file L 337
9.12.117run.pict_parameter_path L e 337
912 118runreferences Lo e e e e e e e e e e 338
9.12.110%run.replay.ignore e e e e e e e 338
9.12.120run.replay.job_id L. 338
012 121run.replay.reSUme e 338
9.12.122run.replay.test_Status o o L e e e e e e e e e e e e e e e e e 338
9.12.123run.results.archive L e e 338
9.12.124runresults_dir L L e e e e e e 338
9.12.1251run.teSt_parameters e e i e e e e e e e e e e e e e e e e e e 339

0.12.126runteSt_TUNNET . . . v v v v o v e e e e e e e e e e e e e e e e e 339

9.12.127run.unique_job_id e e e e e e 339
0.12.1281run. WIapper.WIapPeTS . . « ¢ v v v v v e 339
9.12.129runner.exectest.exitcodes.skip oL Lo o 339
9.12.130runner.output.color oL e 339
9.12.131runner.output.colored e e e 340
9.12.132runner.output.utf®o L e e e e e e e e e e 340
9.12.133runner.timeout.after_interrupted oL e 340
9.12.134runner.timeout.process_alive oL e 340
9.12.135runner.timeout.process_died oL oL oL e 340
9.12.136simpletests.status.failure_fields oo 340
9.12.137simpletests.status.skip_location oL oL 340
9.12.138simpletests.status.SKip_1regex o . o e e e e e e e e e e e 341
9.12.139simpletests.status.warn_locationo oo 341
9.12.140simpletests.status.Warn_regeX o v v bt e e e e e e e e e e 341
9.12.141spawner.podman.bin L. 341
9.12.142spawner.podman.dmage u et e e e e e e e e e e 341
9.12.143sysinfo.collect.commands_timeout v v v v bt e e e e e e e e 341
9.12.144sysinfo.collect.enabled L e e 341
9.12.145sysinfo.collect.installed_packages oo oL 342
9.12.146sysinfo.collect.locale 342
9.12.147sysinfo.collect.optimize L. e e 342
9.12.148sysinfo.collect.per_test v v v i e e e e e e e e e e e e e e e 342
9.12.149sysinfo.collect.profiler L L e e 342
9.12.150sysinfo.collect.sysinfodir L 342
9.12.151sysinfo.collectibles.commands o o 343
9.12.152sysinfo.collectibles.fail_commands oo 343
9.12.153sysinfo.collectibles.fail_files e 343
9.12.154sysinfo.collectibles.files L e e e 343
9.12.155sysinfo.collectibles.profilers oL 343
9.12.156task.timeout.running oL L. L e e e e e e 343
9.12.157variants.cit.combination_ordert e e e e e e e e 344
9.12.158variants.cit.parameter_file oL 344
9.12.159variants.Contentso e e e e e e e e e e e e e e e 344
9.12.160variants.debug oL e e e e e e e e e e 344
9.12.161variants.inherit oL e 344
9.12.162variants.json_variants_dump Lo 344
9.12.163variants.pict_binary L 344
9.12.164variants.pict_combinations_order. e e e e e e e 345
9.12.165variants.pict_parameter_file L 345
9.12.166variants.pict_parameter_path oL oo 345
9.12.167variantS.SUmMmaryo L e e e e e e e e 345
9.12.168variantS.treeo L e e e e e e e e e e e e e 345
9.12.169variantS.variants oo e e e e e e e e e e e e e e e e 345
9.12.170vmimage.get.arch L e e e e e e e e e 345
9.12.171vmimage.get.distro e e e e 346
9.12.172vmimage.get.version L. e e e e e e e 346
9.12.173yaml_to_mux.files e e 346
9.12.174yaml_to_mux.filter_only 346
9.12.175yaml_to_mux.filter_out L. e e e 346
9.12.176yaml_to_mux.inject e e e e e e e e e e e e e e e e 346
9.12.177yaml_to_mux.parameter_paths oL 346
10 Test API 347

vi

10.1 Test APIS o o o e e e 347

10.2

10.3

10.1.1 Module contents e e e e e e e e e 347
Internal (Core) APIS e e e e 351
10.2.1 Subpackages L 351
10.2.2 Submodules e e e e 366
10.2.3 avocado.core.appmoduleo e 366
10.2.4 avocado.core.data_dirmodule e e 366
10.2.5 avocado.core.decorators module e 368
10.2.6 avocado.core.dispatchermoduleo o oL oL 369
10.2.7 avocado.core.enabled_extension_managermodule L. 370
10.2.8 avocado.core.exceptionsmoduleo 370
10.2.9 avocado.core.exit_codesmodule e e e e 372
10.2.10 avocado.core.extension_managermodule L. 373
10.2.11 avocado.corejobmodule oL 374
10.2.12 avocado.corejob_idmodule Lo 376
10.2.13 avocado.corejobdatamodule L. 376
10.2.14 avocado.core.loadermodule 376
10.2.15 avocado.coremainmodule e e 380
10.2.16 avocado.core.messagesmodule e e 380
10.2.17 avocado.core.nrunnermodule L L L L 384
10.2.18 avocado.core.outputmoduleo 392
10.2.19 avocado.core.parameters module o o 397
10.2.20 avocado.core.parsermodule L. Lo e e e 398
10.2.21 avocado.core.parser_common_argsmodule oL 399
10.2.22 avocado.core.plugin_interfacesmoduleo oL 0oL L. 399
10.2.23 avocado.core.referencesmodule e 403
10.2.24 avocado.core.resolvermodule 403
10.2.25 avocado.coreresultmodule L 404
10.2.26 avocado.core.runner module L. e e 405
10.2.27 avocado.core.settingsmodule oL oL e 406
10.2.28 avocado.core.settings_dispatcher module oL oo L. 410
10.2.29 avocado.core.streamsmodule L. L e e e e e 410
10.2.30 avocado.core.suite module e e e 410
10.2.31 avocado.core.sysinfomodule L. e 412
10.2.32 avocado.coretagsmodule Lo e e e e 413
10.2.33 avocado.core.tapparser module L. Lo e 414
10.2.34 avocado.core.testmodule L. 415
10.2.35 avocado.core.test_idmodule e 421
10.2.36 avocado.core.teststatus module 421
10.2.37 avocado.core.treemodule e e e e e 422
10.2.38 avocado.core.utils module e 424
10.2.39 avocado.core.variantermodule 424
10.2.40 avocado.core.versionmodule e e 426
10.2.41 Module contents e e e e e e e e e e e 426
Utilities APIS e e e e e e e e e 427
10.3.1 Subpackages e e e e e e e e 427
10.3.2 Submodules e e e e e e e 443
10.3.3 avocado.utils.archive module 443
10.3.4 avocado.utils.assetmodule e 445
10.3.5 avocado.utils.astringmodule e e e 447
10.3.6 avocado.utils.aurlmodule 450
10.3.7 avocado.utils.build module e 450
10.3.8 avocado.utils.cloudinitmodule 451
10.3.9 avocado.utils.configure_network module oL Lo 452

vii

10.3.10 avocado.utils.cpumoduleo 453
10.3.11 avocado.utils.cryptomodule L e e e 455
10.3.12 avocado.utils.data_factorymodule L L 455
10.3.13 avocado.utils.data_structuresmodule oL L 456
10.3.14 avocado.utils.datadrainermoduleo Lo 457
10.3.15 avocado.utils.debugmoduleo 459
10.3.16 avocado.utils.diff_validatormodule e 459
10.3.17 avocado.utils.disk module 461
10.3.18 avocado.utils.distromodule 462
10.3.19 avocado.utils.dmesgmodule oo 464
10.3.20 avocado.utils.downloadmodule oL 465
10.3.21 avocado.utils.exit_codesmodule e e e e 466
10.3.22 avocado.utils.file_utils module e 466
10.3.23 avocado.utils.filelockmodule oo oo 467
10.3.24 avocado.utils.gdbmoduleo oo 467
10.3.25 avocado.utils.geniomodule Lo 471
10.3.26 avocado.utils.gitmodule o 473
10.3.27 avocado.utils.iso9660 module 474
10.3.28 avocado.utils.kernel module oL 477
10.3.29 avocado.utils.linux module Lo 478
10.3.30 avocado.utils.linux_modulesmodule 478
10.3.31 avocado.utils.lv_utils module 479
10.3.32 avocado.utils.smemory module e 484
10.3.33 avocado.utils.multipathmodule 487
10.3.34 avocado.utils.outputmoduleo oL 489
10.3.35 avocado.utils.partitionmoduleo 490
10.3.36 avocado.utils.pathmodule Lo 491
10.3.37 avocado.utils.pcimodule L 492
10.3.38 avocado.utils.pmem module e 495
10.3.39 avocado.utils.processmoduleo oL o 499
10.3.40 avocado.utils.scriptmodule 509
10.3.41 avocado.utils.servicemodule L. 510
10.3.42 avocado.utils.softwareraid module Lo 513
10.3.43 avocado.utils.sshmodule oL 514
10.3.44 avocado.utils.stacktrace module o L 516
10.3.45 avocado.utils.vmimagemodule 0oL 0oL 516
10.3.46 avocado.utils.waitmodule Lo e 520
10.3.47 Module contents e e e e e e e e e 520
10.4 Extension (plugin) APIs e e 520
10.4.1 Subpackages e e e e e e e 521
1042 Submodules e 523
10.4.3 avocado.plugins.archive module 0 oL 0oL 523
10.4.4 avocado.plugins.assetsmodule Lo 523
10.4.5 avocado.plugins.configmodule L. 524
10.4.6 avocado.plugins.dict_variantsmodule L Lo 525
10.4.7 avocado.plugins.diff module L oo 525
10.4.8 avocado.plugins.distromoduleo oo o 526
10.4.9 avocado.plugins.exec_pathmodule oo o 528
10.4.10 avocado.plugins.expected_files_merge module 529
10.4.11 avocado.plugins.humanmodule 529
10.4.12 avocado.plugins.jobsmodule L. e 530
10.4.13 avocado.plugins.jobscriptsmoduleo o oL oo 530
10.4.14 avocado.plugins.journal module oL o oL oL 531
10.4.15 avocado.plugins.json_variants module Lo oo 532

viii

10.4.16 avocado.plugins.jsonresultmodule oL oo 532
10.4.17 avocado.plugins.listmodule e 533
10.4.18 avocado.plugins.pluginsmodule e 534
10.4.19 avocado.plugins.replaymodule oL oo 534
10.4.20 avocado.plugins.resolversmodule 534
10.4.21 avocado.plugins.runmodule oL 535
10.4.22 avocado.plugins.runnermodule e 536
10.4.23 avocado.plugins.runner_nrunnermodule oL oL 537
10.4.24 avocado.plugins.sysinfomodule oL o oL oo 537
10.4.25 avocado.plugins.tapmodule 538
10.4.26 avocado.plugins.testlogsmodule oo o 539
10.4.27 avocado.plugins.teststmpdirmodule L. oL 540
10.4.28 avocado.plugins.variantsmodule L e 540
10.4.29 avocado.plugins.vmimagemodule oL oL 541
10.4.30 avocado.plugins.wrappermodule oo 0oL 541
10.4.31 avocado.plugins.xunitmodule Lo 542
10.4.32 Module contents e e e e e e e e e 542

10.5 Optional Plugins APL. e e e e 542
10.5.1 avocado_varianter_yaml_to_mux packageo 543

10.5.2 avocado_varianter_pictpackage o oo 545
10.5.3 avocado_resultsdbpackage oL o 546
10.5.4 avocado_golang package 547
10.5.5 avocado_varianter_citpackage e e e 549
10.5.6 avocado_robotpackage L e e e e e e e 555
10.5.7 avocado_result_upload package oo 557

10.6 Indicesand tables e e e e e e e e 557
Python Module Index 559
Index 563

avocado Documentation, Release 90.0

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

Quick Start 1

avocado Documentation, Release 90.0

2 Quick Start

CHAPTER 1

How does it work?

You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

$ avocado run /bin/true

JOB ID : 3a5c4c51ceb5369f23702efb10b42090111141b2
JOB LOG : SHOME/avocado/ job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests.

Tip: See more at the Test types section on the Avocado User’s Guide.

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/concepts.html#test-types
https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html

avocado Documentation, Release 90.0

4 Chapter 1. How does it work?

CHAPTER 2

Why should | use it?

2.1 Multiple result formats

A regular run of Avocado will present the test results on standard output, a nice and colored report useful for human
beings. But results for machines can also be generated.

Check the job-results folder (SHOME /avocado/ job—-results/latest/) to see the outputs.
Currently we support, out of box, the following output formats:

e xUnit: an XML format that contains test results in a structured form, and are used by other test automation
projects, such as jenkins.

¢ JSON: a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to
the xunit output plugin.

* TAP: Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado
machine readable outputs this one is streamlined (per test results).

Note: You can see the results of the latest job inside the folder $SHOME /avocado/job-results/latest/. You
can also specify at the command line the options ——xunit, ——json or ——tap followed by a filename. Avocado
will write the output on the specified filename.

When it comes to outputs, Avocado is very flexible. You can check the various output plugins. If you need something
more sophisticated, visit our plugins section.

2.2 Sysinfo data collector

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very helpful when trying to identify the cause of a test failure.

Check out the files stored at SHOME /avocado/ job-results/latest/sysinfo/:

https://testanything.org/
https://avocado-framework.readthedocs.io/en/latest/plugins/index.html

avocado Documentation, Release 90.0

$ 1s SHOME/avocado/job-results/latest/sysinfo/pre/

'brctl show' hostname modules

cmdline 'ifconfig -a' mounts

cpuinfo installed_packages 'numactl --hardware show'
current_clocksource interrupts partitions

'df -mP' 'ip link' scaling_governor

dmesg 'ld --version' 'uname -a'

dmidecode lscpu uptime

'fdisk -1" 'lspci —vvnn' version

'gcc —--version' meminfo

For more information about sysinfo collector, please consult the Avocado User’s Guide.

2.3 Job Replay and Job Diff

In order to reproduce a given job using the same data, one can use the replay subcommand, informing the hash id
from the original job to be replayed. The hash id can be partial, as long as the provided part corresponds to the initial
characters of the original job id and it is also unique enough. Or, instead of the job id, you can use the string latest and
Avocado will replay the latest job executed.

Example:

$ avocado replay 825b86

JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956¢c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323£f8d7cad
JOB LOG : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log

(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.11 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

$ avocado diff 7025aaba 384b949c

—-—— 7025aaba9c2ab8bidbba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d9%a761£d07672ff
@@ -1,15 +1,15 Q@

COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
—l-sleeptest.py:SleepTest.test: PASS
+1l-passtest.py:PassTest.test: PASS

6 Chapter 2. Why should | use it?

https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html

avocado Documentation, Release 90.0

2.4 Extensible by plugins

Avocado has a plugin system that can be used to extend it in a clean way. The avocado command line tool has a
builtin plugins command that lets you list available plugins. The usage is pretty simple:

$ avocado plugins

Plugins that add new commands (avocado.plugins.cli.cmd):

exec-path Returns path to Avocado bash libraries and exits.

run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information

Plugins that add new options to commands (avocado.plugins.cli):
remote Remote machine options for 'run' subcommand
journal Journal options for the 'run' subcommand

For more information about plugins, please visit the Plugin System section on the Avocado User’s Guide.

2.5 Utility libraries

When writing tests, developers often need to perform basic tasks on OS and end up having to implement these routines
just to run they tests.

Avocado has more than 40 utility modules that helps you to perform basic operations.
Bellow a small subset of our utility modules:

* utils.vmimage: This utility provides a API to download/cache VM images (QCOW) from the official distribu-
tions repositories.

* utils.memory: Provides information about memory usage.

e utils.cpu: Get information from the current’s machine CPU.

* utils.software_manager: Software package management library.
* utils.download: Methods to download URLs and regular files.

« utils.archive: Module to help extract and create compressed archives.

2.4. Extensible by plugins 7

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/plugins.html
https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html

avocado Documentation, Release 90.0

8 Chapter 2. Why should | use it?

CHAPTER 3

Avocado Python API

If the command-line is limiting you, then you can use our new API and create custom jobs and test suites:

import sys
from avocado.core. job import Job

with Job.from_config({'run.references': ['/bin/true']l}) as job:
sys.exit (job.run())

avocado Documentation, Release 90.0

10 Chapter 3. Avocado Python API

CHAPTER 4

How to install

It is super easy, just run the follow command:

$ pip3 install --user avocado-framework

This will install the avocado command in your home directory.

Note: For more details and alternative methods, please visit the Installing section on Avocado User’s Guide

11

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/installing.html#installing

avocado Documentation, Release 90.0

12 Chapter 4. How to install

CHAPTER B

Documentation

Please use the following links for full documentation, including installation methods, tutorials and API or browse this
site for more content.

e Jatest release

* development version

13

https://avocado-framework.readthedocs.io/
https://avocado-framework.readthedocs.io/en/latest/

avocado Documentation, Release 90.0

14 Chapter 5. Documentation

CHAPTER O

Bugs/Requests

Please use the GitHub issue tracker to submit bugs or request features.

15

https://github.com/avocado-framework/avocado/issues

avocado Documentation, Release 90.0

16 Chapter 6. Bugs/Requests

CHAPTER /

Changelog

Please consult the Avocado Releases for fixes and enhancements of each version.

17

https://avocado-framework.readthedocs.io/en/latest/releases/index.html

avocado Documentation, Release 90.0

18 Chapter 7. Changelog

CHAPTER 8

License

Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed under the
GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree that these contributions are your own (or approved by your employer) and you grant a full,
complete, irrevocable copyright license to all users and developers of the Avocado project, present and future, pursuant
to the license of the project.

19

https://www.gnu.org/licenses/gpl-2.0.html

avocado Documentation, Release 90.0

20 Chapter 8. License

CHAPTER 9

Build and Quality Status

buila

Contents:

9.1 Welcome to Avocado

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

9.1.1 How does it work?
You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

21

https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/
https://cirrus-ci.com/github/avocado-framework/avocado
https://lgtm.com/projects/g/avocado-framework/avocado/alerts/
https://codeclimate.com/github/avocado-framework/avocado/maintainability
https://lgtm.com/projects/g/avocado-framework/avocado/context:python
https://lgtm.com/projects/g/avocado-framework/avocado/context:javascript
https://avocado-framework.readthedocs.io/en/latest/

avocado Documentation, Release 90.0

$ avocado run /bin/true

JOB ID : 3a5c4c51ceb5369f23702efb10b42090111141b2
JOB LOG : SHOME/avocado/ job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests.

Tip: See more at the Test types section on the Avocado User’s Guide.

9.1.2 Why should | use it?

Multiple result formats

A regular run of Avocado will present the test results on standard output, a nice and colored report useful for human
beings. But results for machines can also be generated.

Check the job-results folder (SHOME /avocado/ job-results/latest/) to see the outputs.

Currently we support, out of box, the following output formats:

e xUnit: an XML format that contains test results in a structured form, and are used by other test automation
projects, such as jenkins.

¢ JSON: a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to
the xunit output plugin.

* TAP: Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado
machine readable outputs this one is streamlined (per test results).

Note: You can see the results of the latest job inside the folder $SHOME /avocado/job-results/latest/. You
can also specify at the command line the options ——xunit, ——json or ——tap followed by a filename. Avocado
will write the output on the specified filename.

When it comes to outputs, Avocado is very flexible. You can check the various output plugins. If you need something
more sophisticated, visit our plugins section.

Sysinfo data collector

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very helpful when trying to identify the cause of a test failure.

Check out the files stored at SHOME /avocado/ job-results/latest/sysinfo/:

$ 1ls S$HOME/avocado/job-results/latest/sysinfo/pre/

'brctl show' hostname modules

cmdline 'ifconfig -a' mounts

cpuinfo installed_packages 'numactl --hardware show'
current_clocksource interrupts partitions

'df —mP' 'ip link' scaling_governor

dmesg 'ld —-version' 'uname -a'

(continues on next page)

22 Chapter 9. Build and Quality Status

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/concepts.html#test-types
https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html
https://testanything.org/
https://avocado-framework.readthedocs.io/en/latest/plugins/index.html

avocado Documentation, Release 90.0

(continued from previous page)

dmidecode lscpu uptime
'fdisk -1" 'lspci —vvnn' version
'gcc --version' meminfo

For more information about sysinfo collector, please consult the Avocado User’s Guide.

Job Replay and Job Diff

In order to reproduce a given job using the same data, one can use the replay subcommand, informing the hash id
from the original job to be replayed. The hash id can be partial, as long as the provided part corresponds to the initial
characters of the original job id and it is also unique enough. Or, instead of the job id, you can use the string latest and
Avocado will replay the latest job executed.

Example:

$ avocado replay 825b86

JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956¢c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323£f8d7cad
JOB LOG : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log

(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.11 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

$ avocado diff 7025aaba 384b949c

——— 7025aaba9c2ab8bidbba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67¢c9d9%a761fd07672fF
@@ -1,15 +1,15 Q@

COMMAND LINE
—/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
—l-sleeptest.py:SleepTest.test: PASS
+l-passtest.py:PassTest.test: PASS

Extensible by plugins

Avocado has a plugin system that can be used to extend it in a clean way. The avocado command line tool has a
builtin plugins command that lets you list available plugins. The usage is pretty simple:

$ avocado plugins
Plugins that add new commands (avocado.plugins.cli.cmd) :
exec-path Returns path to Avocado bash libraries and exits.

(continues on next page)

9.1. Welcome to Avocado 23

https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html

avocado Documentation, Release 90.0

(continued from previous page)

run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information

Plugins that add new options to commands (avocado.plugins.cli):
remote Remote machine options for 'run' subcommand
journal Journal options for the 'run' subcommand

For more information about plugins, please visit the Plugin System section on the Avocado User’s Guide.

Utility libraries

When writing tests, developers often need to perform basic tasks on OS and end up having to implement these routines
just to run they tests.

Avocado has more than 40 utility modules that helps you to perform basic operations.

Bellow a small subset of our utility modules:

* utils.vmimage: This utility provides a API to download/cache VM images (QCOW) from the official distribu-
tions repositories.

* utils.memory: Provides information about memory usage.

e utils.cpu: Get information from the current’s machine CPU.

* utils.software_manager: Software package management library.
« utils.download: Methods to download URLs and regular files.

* utils.archive: Module to help extract and create compressed archives.

9.1.3 Avocado Python API

If the command-line is limiting you, then you can use our new API and create custom jobs and test suites:

import sys
from avocado.core.job import Job

with Job.from_config({'run.references': ['/bin/true']l}) as job:
sys.exit (job.run())

9.1.4 How to install

It is super easy, just run the follow command:

$ pip3 install --user avocado-framework

This will install the avocado command in your home directory.

Note: For more details and alternative methods, please visit the Installing section on Avocado User’s Guide

24 Chapter 9. Build and Quality Status

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/plugins.html
https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html
https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/installing.html#installing

avocado Documentation, Release 90.0

9.1.5 Documentation

Please use the following links for full documentation, including installation methods, tutorials and API or browse this
site for more content.

e Jatest release

* development version

9.1.6 Bugs/Requests

Please use the GitHub issue tracker to submit bugs or request features.

9.1.7 Changelog

Please consult the Avocado Releases for fixes and enhancements of each version.

9.1.8 License

Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed under the
GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree that these contributions are your own (or approved by your employer) and you grant a full,
complete, irrevocable copyright license to all users and developers of the Avocado project, present and future, pursuant
to the license of the project.

9.1.9 Build and Quality Status

9.2 Avocado User’s Guide

9.2.1 About Avocado

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

9.2. Avocado User’s Guide 25

https://avocado-framework.readthedocs.io/
https://avocado-framework.readthedocs.io/en/latest/
https://github.com/avocado-framework/avocado/issues
https://avocado-framework.readthedocs.io/en/latest/releases/index.html
https://www.gnu.org/licenses/gpl-2.0.html
https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/
https://cirrus-ci.com/github/avocado-framework/avocado
https://lgtm.com/projects/g/avocado-framework/avocado/alerts/
https://codeclimate.com/github/avocado-framework/avocado/maintainability
https://lgtm.com/projects/g/avocado-framework/avocado/context:python
https://lgtm.com/projects/g/avocado-framework/avocado/context:javascript
https://avocado-framework.readthedocs.io/en/latest/
https://docs.python.org/3/library/unittest.html#module-unittest

avocado Documentation, Release 90.0

Avocado is composed of:

* A test runner that lets you execute tests. Those tests can be either written in your language of choice, or be
written in Python and use the available libraries. In both cases, you get facilities such as automated log and
system information collection.

e Libraries that help you write tests in a concise, yet expressive and powerful way. You can find more information
about what libraries are intended for test writers at Utility Libraries.

* Plugins that can extend and add new functionality to the Avocado Framework.
* A Python API for creating custom jobs and test suites for more advanced users.
Avocado is built on the experience accumulated with Autotest, while improving on its weaknesses and shortcomings.

Avocado tries as much as possible to comply with standard Python testing technology. Tests written using the Avocado
API are derived from the unittest class, while other methods suited to functional and performance testing were added.
The test runner is designed to help people to run their tests while providing an assortment of system and logging
facilities, with no effort, and if you want more features, then you can start using the API features progressively.

9.2.2 Installing

Avocado is primarily written in Python, so a standard Python installation is possible and often preferable. You can
also install from your Linux distribution repository, if available.

Note: Please note that this installs the Avocado core functionality. Many Avocado features are distributed as non-core
plugins. Visit the Avocado Plugin section on the left menu.

Tip: If you are looking for Virtualization specific testing, also consider looking at Avocado-VT installation instruc-
tions after finishing the Avocado installation.

Installing from PyPI

The simplest installation method is through pip. On most POSIX systems with Python 3.4 (or later) and pip avail-
able, installation can be performed with a single command:

$ pip3 install --user avocado-framework

This will fetch the Avocado package (and possibly some of its dependencies) from the PyPI repository, and will
attempt to install it in the user’s home directory (usually under ~/ . local), which you might want to add to your
PATH variable if not done already.

Tip: If you want to perform a system-wide installation, drop the ——user switch.

If you want even more isolation, Avocado can also be installed in a Python virtual environment. with no additional
steps besides creating and activating the “venv” itself:

$ python3 -m venv /path/to/new/virtual_environment
$ source /path/to/new/virtual_environment/bin/activate
$ pip3 install avocado-framework

26 Chapter 9. Build and Quality Status

http://autotest.github.io/
https://avocado-vt.readthedocs.io/en/latest/GetStartedGuide.html#installing-avocado-vt

avocado Documentation, Release 90.0

Installing from packages

Fedora

Avocado modules are available on standard Fedora repos starting with version 29. To subscribe to the latest version
stream, run:

$ dnf module enable avocado:latest

Or, to use the LTS (Long Term Stability) version stream, run:

$ dnf module enable avocado:691ts

Then proceed to install a module profile or individual packages. If you’re unsure about what to do, simply run:

$ dnf module install avocado

Enterprise Linux

Avocado modules are also available on EPEL (Extra Packages for Enterprise Linux) repos, starting with version 8. To
enable the EPEL repository, run:

$ dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Then to enable the module, run:

$ dnf module enable avocado:latest

And finally, install any number of packages, such as:

$ dnf install python3-avocado python3-avocado-plugins-output-html python3-avocado-
—plugins-varianter-yaml-to-mux

Latest Development RPM Packages from COPR

Avocado provides a repository of continuously built packages from the GitHub repository’s master branch. These
packages are currently available for some of the latest Enterprise Linux and Fedora versions, for a few different
architectures.

If you’re interested in using the very latest development version of Avocado from RPM packages, you can do so by
running:

$ dnf copr enable @avocado/avocado-latest
$ dnf install pythonx—-avocadox

The following image shows the status of the Avocado packages building on COPR:

build succeaded

9.2. Avocado User’s Guide 27

https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/

avocado Documentation, Release 90.0

OpenSUSE

The OpenSUSE project provides packages for Avocado. Check the Virtualization:Tests project in OpenSUSE build
service to get the packages from there.

Debian

DEB package support is available in the source tree (look at the contrib/packages/debian directory. No
actual packages are provided by the Avocado project or the Debian repos.

Installing from source code

First make sure you have a basic set of packages installed. The following applies to Fedora based distributions, please
adapt to your platform:

$ sudo dnf install -y python3 git gcc python3-devel python3-pip libvirt-devel libffi-
—devel openssl-devel libyaml-devel redhat-rpm-config xz-devel

Then to install Avocado from the git repository run:

$ git clone git://github.com/avocado-framework/avocado.git
$ cd avocado
$ sudo python3 setup.py install

9.2.3 Introduction

Avocado Hello World
You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

$ avocado run /bin/true

JOB ID : 3a5c4c51cebb369£23702e£fb10b4209b0111141b2
JOB LOG : SHOME/avocado/job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)
RESULTS : PASS 1 | ERROR 0 | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests. See more at test-types
or just keep reading.

Running a job with multiple tests

You can run any number of test in an arbitrary order, as well as mix and match instrumented and simple tests:

28 Chapter 9. Build and Quality Status

https://build.opensuse.org/project/show/Virtualization:Tests
https://build.opensuse.org/project/show/Virtualization:Tests

avocado Documentation, Release 90.0

$ avocado run failtest.py sleeptest.py synctest.py failtest.py synctest.py /tmp/
—simple_test.sh

JOB ID : 86911ed49b5f2c36caececadl307ceedfecdcdfal2l

JOB LOG : SHOME/avocado/job-results/job-2014-08-12T15.42-86911e49/job.log
(1/6) failtest.py:FailTest.test: FAIL (0.00 s)

(2/6) sleeptest.py:SleepTest.test: PASS (1.00 s)
(3/6) synctest.py:SyncTest.test: PASS (2.43 s)
(4/6) failtest.py:FailTest.test: FAIL (0.00 s)
(5/6) synctest.py:SyncTest.test: PASS (2.44 s)
(6/6) /tmp/simple_test.sh.l: PASS (0.02 s)
RESULTS : PASS 4 | ERROR O | FAIL 2 | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 5.98 s
Note: Although in most cases running avocado run S$testl S$test3 ... is fine, it can lead to argument

vs. test name clashes. The safest way to execute tests is avocado run —--$argumentl --$argument2 —-
Stestl S$test2. Everything after —— will be considered positional arguments, therefore test names (in case of
avocado run)

Using a different runner

Currently Avocado has two test runners: nrunner (the new runner) and runner (legacy). You can find a list of
current runners installed with the avocado plugins command:

$ avocado plugins

Plugins that run test suites on a job (runners):

nrunner nrunner based implementation of job compliant runner
runner The conventional test runner

During the test execution, you can select the runner using the option ——test-runner, where the default is the
legacy one:

$ avocado run —--test-runner='nrunner' /bin/true

Interrupting tests

Sending Signals

To interrupt a job execution a user can press ctr1+c which after a single press sends SIGTERM to the main test’s
process and waits for it to finish. If this does not help user can press ctr1+c again (after 2s grace period) which
destroys the test’s process ungracefully and safely finishes the job execution always providing the test results.

To pause the test execution a user can use ctr1+z which sends SIGSTOP to all processes inherited from the test’s
PID. We do our best to stop all processes, but the operation is not atomic and some new processes might not be stopped.
Another ctrl+z sends SIGCONT to all processes inherited by the test’s PID resuming the execution. Note the test
execution time (concerning the test timeout) are still running while the test’s process is stopped.

Interrupting the job on first fail (failfast)

The Avocado run command has the option ——failfast to exit the job on first failed test:

9.2. Avocado User’s Guide 29

avocado Documentation, Release 90.0

$ avocado run —--failfast /bin/true /bin/false /bin/true /bin/true
JOB ID : eaf51b8c7d6be966bdf5562c9611blec2db3f68a
JOB LOG : SHOME/avocado/job-results/job-2016-07-19T09.43-eaf51b8/job.log

(1/4) /bin/true: PASS (0.01 s)

(2/4) /bin/false: FAIL (0.01 s)
Interrupting job (failfast).
RESULTS : PASS 1 ERROR 0 | FAIL 1
JOB TIME : 0.12 s

SKIP 2 | WARN O | INTERRUPT O | CANCEL O

The default behavior, that is, when ——failfast is not set, is to try to execute all tests in a job, regardless individual
of test failures.

Note: Avocado versions 80.0 and earlier allowed replayed jobs to override the failfast configuration by setting
-—failfast=offinaavocado replay .. command line. This is no longer possible.

The hint files
Avocado team has added support to the “hint files”. This feature is present since Avocado #78 and is a configuration
file that you can add to your project root folder to help Avocado on the “test resolution” phase.

The idea is that, you know more about your tests than anybody else. And you can specify where your tests are, and
what type (kind) they are. You just have to add a . avocado.hint in your root folder with the section [kinds]
and one section for each kind that you are using.

On the specific test type section, you can specify 3 options: uri, args and kwargs.

Note: Some test types will convert kwargs into variable environments. Please check the documentation of the test
type that you are using.

You can also use the keyworkd $testpath in any of the options inside the test type section. Avocado will replace
Stestpath with your test path, after the expansion.

For instance, bellow you will find a hint file example where we have only one test type TAP:

[kinds]
tap = ./tests/unit/*.sh

[tap]

uri = S$testpath
args = ——tap
kwargs = DEBUG=1

Let’s suppose that you have 2 tests that matches . /tests/unit/*.sh:
e ./tests/unit/foo.sh
e ./tests/unit/bar.sh

Avocado will run each one as a TAP test, as you desired.

Note: Please, keep in mind that hint files needs absolute paths when defining tests inside the [kinds] section.

30 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Note: Also, note that hint files are only supported when using the next runner (-—test-runner="'nrunner"').

Since Avocado’s next runner is capable of running tests not only in a subprocess but also in more isolated environments
such as Podman containers, sending custom environment variables to the task executor can be achieved by using the
kwargs parameter. Use a comma-separated list of variables here and Avocado will make sure your tests will receive
those variables (regardless of the spawner type).

Ignoring missing test references

When you provide a list of test references, Avocado will try to resolve all of them to tests. If one or more test references
can not be resolved to tests, the Job will not be created. Example:

$ avocado run passtest.py badtest.py
Unable to resolve reference(s) 'badtest.py' with plugins(s) 'file', 'robot', 'external
—', try running 'avocado -V list badtest.py' to see the details.

But if you want to execute the Job anyway, with the tests that could be resolved, you can use
-—ignore-missing-references, a boolean command-line option. The same message will appear in the Ul,
but the Job will be executed:

$ avocado run passtest.py badtest.py —-—-ignore-missing-references
Unable to resolve reference(s) 'badtest.py' with plugins(s) 'file', 'robot', 'external
—', try running 'avocado list -V badtest.py' to see the details.
JOB ID : 85927¢113074b9defd64eab595d6dlc3fdfclf58E
JOB LOG : SHOME/avocado/job-results/job-2017-05-17T10.54-85927c1/job.log
(1/1) passtest.py:PassTest.test: PASS (0.02 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.11 s
JOB HTML : SHOME/avocado/Jjob-results/job-2017-05-17T10.54-85927cl/html/results.html

Running tests with an external runner
It’s quite common to have organically grown test suites in most software projects. These usually include a custom
built, very specific test runner that knows how to find and run their own tests.

Still, running those tests inside Avocado may be a good idea for various reasons, including being able to have results
in different human and machine readable formats, collecting system information alongside those tests (the Avocado’s
sysinfo functionality), and more.

Avocado makes that possible by means of its “external runner” feature. The most basic way of using it is:

$ avocado run -—-external-runner=/path/to/external_runner foo bar baz

In this example, Avocado will report individual test results for tests foo, bar and baz. The actual results will
be based on the return code of individual executions of /path/to/external_runner foo, /path/to/
external_runner bar and finally /path/to/external_runner baz.

As another way to explain and show how this feature works, think of the “external runner” as some kind of interpreter
and the individual tests as anything that this interpreter recognizes and is able to execute. A UNIX shell, say /bin/sh
could be considered an external runner, and files with shell code could be considered tests:

$ echo "exit 0" > /tmp/pass
$ echo "exit 1" > /tmp/fail

(continues on next page)

9.2. Avocado User’s Guide 31

avocado Documentation, Release 90.0

(continued from previous page)

$ avocado run --external-runner=/bin/sh /tmp/pass /tmp/fail
JOB ID : 4a2a1d259690cc7b226e33facdded4£628ab30741
JOB LOG : /home/<user>/avocado/job-results/job-<date>-<shortid>/job.log

(1/2) /tmp/pass: PASS (0.01 s)
(2/2) /tmp/fail: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.11 s
JOB HTML : /home/<user>/avocado/job-results/job-<date>-<shortid>/html/results.html

This example is pretty obvious, and could be achieved by giving /tmp/pass and /tmp/fail shell “shebangs” (# !
/bin/sh), making them executable (chmod +x /tmp/pass /tmp/fail), and running them as “SIMPLE”
tests.

But now consider the following example:

$ avocado run --external-runner=/bin/curl https://google.com/

JOB ID : 56016alffffaba02492£fdbd5662ac0b958f51ell

JOB LOG : /home/<user>/avocado/job-results/job-<date>-<shortid>/job.log

(1/1) https://google.com/: PASS (0.02 s)

RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 3.14 s

JOB HTML : /home/<user>/avocado/job-results/job-<date>-<shortid>/html/results.html

This effectively makes /bin/curl an “external test runner”, responsible for trying to fetch those URLs, and report-
ing PASS or FAIL for each of them.

Warning: The external runner is incompatible with loaders from Understanding the test discovery (Avocado
Loaders). If you use external runner and loader together the job will use the external runner and ignore the loader.

Runner outputs

A test runner must provide an assortment of ways to clearly communicate results to interested parties, be them humans
or machines.

Note: There are several optional result plugins, you can find them in Result plugins.

Results for human beings

Avocado has two different result formats that are intended for human beings:
e Its default UI, which shows the live test execution results on a command line, text based, Ul.

e The HTML report, which is generated after the test job finishes running.

Note: The HTML report needs the htm1 plugin enabled that is an optional plugin.

A regular run of Avocado will present the test results in a live fashion, that is, the job and its test(s) results are constantly
updated:

32 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

$ avocado run sleeptest.py failtest.py synctest.py

JOB ID : 5ffed79262ea9025f2e4e84c4e92055b5¢c79bdc9

JOB LOG : SHOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/job.log
(1/3) sleeptest.py:SleepTest.test: PASS (1.01 s)
(2/3) failtest.py:FailTest.test: FAIL (0.00 s)
(3/3) synctest.py:SyncTest.test: PASS (1.98 s)

RESULTS : PASS 1 | ERROR 1 | FAIL 1 | SKIP O

JOB TIME : 3.27 s

JOB HTML : $HOME/avocado/Jjob-results/job-2014-08-12T15.57-5ffed4792/html/results.html

| WARN O | INTERRUPT O | CANCEL O

The most important thing is to remember that programs should never need to parse human output to figure out what
happened to a test job run.

As you can see, Avocado will print a nice UI with the job summary on the console. If you would like to inspect a
detailed output of your tests, you can visit the folder: $SHOME/avocado/job-results/latest/ or a specific
job folder.

Results for machine

Another type of results are those intended to be parsed by other applications. Several standards exist in the test
community, and Avocado can in theory support pretty much every result standard out there.

Out of the box, Avocado supports a couple of machine readable results. They are always generated and stored in the
results directory in results. $type files, but you can ask for a different location too.

Currently, you can find three different formats available on this folder: xUnit (XML), JSON and TAP.
1. xUnit:
The default machine readable output in Avocado is xunit.

xUnit is an XML format that contains test results in a structured form, and are used by other test automation projects,
such as jenkins. If you want to make Avocado to generate xunit output in the standard output of the runner, simply
use:

$ avocado run sleeptest.py failtest.py synctest.py —--xunit -
<?xml version="1.0" encoding="UTF-8"7?>
<testsuite name="avocado" tests="3" errors="0" failures="1" skipped="0" time="3.
—5769162178" timestamp="2016-05-04 14:46:52.803365">
<testcase classname="SleepTest" name="l-sleeptest.py:SleepTest.test" time="1.
—00204920769" />
<testcase classname="FailTest" name="2-failtest.py:FailTest.test" time="0.
—00120401382446">
<failure type="TestFail" message="This test is supposed to fail"><!
— [CDATA[Traceback (most recent call last):
File "S$HOME/Work/Projekty/avocado/avocado/avocado/core/test.py", line 490, in _run_
—avocado
raise test_exception
TestFail: This test is supposed to fail
]11></failure>
<system-out><![CDATA[14:46:53 ERROR|
14:46:53 ERROR| Reproduced traceback from: $HOME/Work/Projekty/avocado/avocado/
—~avocado/core/test.py:435
14:46:53 ERROR| Traceback (most recent call last):

14:46:53 ERROR| File "SHOME/Work/Projekty/avocado/avocado/examples/tests/failtest.py
—", line 17, in test
14:46:53 ERROR| self.fail ('This test is supposed to fail')

(continues on next page)

9.2. Avocado User’s Guide 33

http://help.catchsoftware.com/display/ET/JUnit+Format
http://jenkins-ci.org/

avocado Documentation, Release 90.0

(continued from previous page)

14:46:53 ERROR| File "S$SHOME/Work/Projekty/avocado/avocado/avocado/core/test.py",
—~line 585, in fail
14:46:53 ERROR| raise exceptions.TestFail (message)

14:46:53 ERROR| TestFail: This test is supposed to fail
14:46:53 ERROR|
14:46:53 ERROR| FAIL 2-failtest.py:FailTest.test -> TestFail: This test is supposed,
—to fail
14:46:53 INFO |
]1></system-out>
</testcase>
<testcase classname="SyncTest" name="3-synctest.py:SyncTest.test" time="2.
—57366299629" />
</testsuite>

Note: The dash - in the option ——xunit, it means that the xunit result should go to the standard output.

Note: In case your tests produce very long outputs, you can limit the number of embedded characters by
-—-xunit-max-test-log-chars. If the output in the log file is longer it only attaches up-to max-test-log-chars
characters one half starting from the beginning of the content, the other half from the end of the content.

2. JSON:

JSON is a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to the
Xunit output plugin:

$ avocado run sleeptest.py failtest.py synctest.py —--Jjson -
{

"cancel": O,

"debuglog": "/home/user/avocado/job-results/job-2016-08-09T13.53-10715c4/job.log",

"errors": O,

"failures": 1,

"jJob_id": "10715c4645d2d2b57889d7a4317£fcd01451b600e",

"pass": 2,

"skip": O,

"tests": [

{
"end": 1470761623.176954,

"fail_reason": "None",

"logdir": "/home/user/avocado/job-results/job-2016-08-09T13.53-10715c4/
—test-results/l-sleeptest.py:SleepTest.test",

"logfile": "/home/user/avocado/job-results/job-2016-08-09T13.53-10715c4/

—test-results/l-sleeptest.py:SleepTest.test/debug.log",
"start": 1470761622.174918,
"status": "PASS",
"id": "l-sleeptest.py:SleepTest.test",
"time": 1.0020360946655273,
"whiteboard": ""

"end": 1470761623.193472,

"fail_reason": "This test is supposed to fail",

"logdir": "/home/user/avocado/job-results/job-2016-08-09T13.53-10715c4/
—test-results/2-failtest.py:FailTest.test",

(continues on next page)

34 Chapter 9. Build and Quality Status

https://www.json.org/

avocado Documentation, Release 90.0

(continued from previous page)

"logfile": "/home/user/avocado/job-results/job-2016-08-09T13.53-10715c4/
—test-results/2-failtest.py:FailTest.test/debug.log",

"start": 1470761623.192334,

"status": "FAIL",

"id": "2-failtest.py:FailTest.test",

"time": 0.0011379718780517578,

"whiteboard": ""

"end": 1470761625.656061,

"fail_ reason": "None",

"logdir": "/home/user/avocado/job-results/job-2016-08-09T13.53-10715c4/
—test-results/3-synctest.py:SyncTest.test",

"logfile": "/home/user/avocado/job-results/job-2016-08-09T13.53-10715c4/

—test-results/3-synctest.py:SyncTest.test/debug.log",
"start": 1470761623.208165,
"status": "PASS",
"id": "3-synctest.py:SyncTest.test",
"time": 2.4478960037231445,
"whiteboard": ""

1,
"time": 3.4510700702667236,
"total": 3

Note: The dash — in the option ——json, it means that the xunit result should go to the standard output.

Bear in mind that there’s no documented standard for the Avocado JSON result format. This means that it will probably
grow organically to accommodate newer Avocado features. A reasonable effort will be made to not break backwards
compatibility with applications that parse the current form of its JSON result.

3. TAP:

Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado machine
readable outputs this one is streamlined (per test results):

$ avocado run sleeptest.py —--tap -

1..1

debug.log of sleeptest.py:SleepTest.test:

12:04:38 DEBUG| PARAMS (key=sleep_length, path=«%, default=1l) => 1
12:04:38 DEBUG| Sleeping for 1.00 seconds

12:04:39 INFO | PASS l-sleeptest.py:SleepTest.test

12:04:39 INFO |

ok 1 sleeptest.py:SleepTest.test

Using the option —show

Probably, you frequently want to look straight at the job log, without switching screens or having to “tail” the job log.

In order to do that, you can use avocado --show=test run

$ avocado —--show=test run examples/tests/sleeptest.py

(continues on next page)

9.2. Avocado User’s Guide 35

https://testanything.org/

avocado Documentation, Release 90.0

(continued from previous page)

Job ID: f9eal742134e5352dec82335af584d1£151d4b85
START l-sleeptest.py:SleepTest.test

PARAMS (key=timeout, path=x, default=None) => None
PARAMS (key=sleep_length, path=x, default=1l) => 1
Sleeping for 1.00 seconds

PASS l-sleeptest.py:SleepTest.test

Test results available in $HOME/avocado/job-results/job-2015-06-02T10.45-f%eal’74

As you can see, the Ul output is suppressed and only the job log is shown, making this a useful feature for test
development and debugging.

It’s possible to silence all output to stdout (while keeping the error messages being printed to stderr). One can then use
the return code to learn about the result:

$ avocado —--show=none run failtest.py
$ echo $7
1

In practice, this would usually be used by scripts that will in turn run Avocado and check its results:

#!/bin/bash

$ avocado —--show=none run /path/to/my/test.py
if [$? == 1; then

echo "great success!"
elif

more details regarding exit codes in Exit Codes section.

Multiple results at once

You can have multiple results formats at once, as long as only one of them uses the standard output. For example, it is
fine to use the xunit result on stdout and the JSON result to output to a file:

$ avocado run sleeptest.py synctest.py —-xunit - --json /tmp/result.json
<?xml version="1.0" encoding="UTF-8"7?>
<testsuite name="avocado" tests="2" errors="0" failures="0" skipped="0" time="3.
—64848303795" timestamp="2016-05-04 17:26:05.645665">

<testcase classname="SleepTest" name="l-sleeptest.py:SleepTest.test" time="1.
—00270605087"/>

<testcase classname="SyncTest" name="2-synctest.py:SyncTest.test" time="2.
—~64577698708" />
</testsuite>

$ cat /tmp/result.json
{
"debuglog": "/home/user/avocado/job-results/job-2016-08-09T13.55-1a94ad6/job.log

"errors": O,

36 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

But you won’t be able to do the same without the ——json flag passed to the program:

$ avocado run sleeptest.py synctest.py --xunit - --json -

avocado run: error: argument —--json: Options —--xunit --json are trying to
use stdout simultaneously. Please set at least one of them to a file to
avoid conflicts

That’s basically the only rule, and a sane one, that you need to follow.

Note: Avocado support “paginator” option, which, on compatible terminals, basically pipes the colored output to
less to simplify browsing of the produced output. You an enable it with ——enable-paginator.

Running simple tests with arguments

This used to be supported out of the box by running avocado run "test argl arg2" but it was quite con-
fusing and removed. It is still possible to achieve that by using shell and one can even combine normal tests and the
parametrized ones:

$ avocado run —--loaders file external:/bin/sh —- existing_file.py existing-file
—nonexisting-file

This will run 3 tests, the first one is a normal test defined by existing_file.py (most probably an instrumented
test) and will be executed by the “file” loader. Then we have two script files which are going to be executed with
/bin/sh.

Sysinfo collection

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very useful when later we want to know what caused the test’s failure. This system is config-
urable but we provide a sane set of defaults for you.

In the default Avocado configuration (/etc/avocado/avocado.conf) there is a section sysinfo.collect
where you can enable/disable the sysinfo collection as well as configure the basic environment. In sysinfo.
collectibles section you can define basic paths of where to look for what commands/tasks should be performed
before/during the sysinfo collection. Avocado supports three types of tasks:

1. commands - file with new-line separated list of commands to be executed before and after the job/test (sin-
gle execution commands). It is possible to set a timeout which is enforced per each executed command in
[sysinfo.collect] by setting “commands_timeout” to a positive number. You can also use the environ-
ment variable AVOCADO_SYSINFODIR which points to the sysinfo directory in results.

fail_commands - similar to commands, but gets executed only when the test fails.
files - file with new-line separated list of files to be copied.

fail_files - similar to files, but copied only when the test fails.

Al

profilers - file with new-line separated list of commands to be executed before the job/test and killed at the end
of the job/test (follow-like commands).

Additionally this plugin tries to follow the system log via journalctl if available.

By default these are collected per-job but you can also run them per-test by setting per_test = True in the
sysinfo.collect section.

The sysinfo is enabled by default and can also be disabled on the cmdline if needed by ——disable-sysinfo.

9.2. Avocado User’s Guide 37

avocado Documentation, Release 90.0

After the job execution you can find the collected information in S$SRESULTS/sysinfo of SRESULTS/
test-results/S$STEST/sysinfo. They are categorized into pre, post and profile folders and the file-
names are safely-escaped executed commands or file-names. You can also see the sysinfo in html results when you
have html results plugin enabled.

It is also possible to save only the files / commands which were changed during the course of the test, in the post
directory, using the setting optimize = True in the sysinfo.collect section. This collects all sysinfo on
pre, but saves only changed ones on post. It is set to False by default.

Warning: If you are using Avocado from sources, you need to manually place the
commands/fail_commands/fail_files/files/profilers into the /etc/avocado/sysinfo
directories or adjust the paths in $AVOCADO_SRC/etc/avocado/avocado.conf.

9.2.4 Basic Concepts

Attention: TODO: This section needs attention! Please, help us contributing to this document.

It is important to understand some basic concepts before start using Avocado.

Test Resolution

Note: Some definitions here may be out of date. The current runner can still be using some of these definitions in
its design, however, we are working on an improved version of the runner, the NextRunner that will use an alternative
strategy.

When you use the Avocado runner, frequently you’ll provide paths to files, that will be inspected, and acted upon
depending on their contents. The diagram below shows how Avocado analyzes a file and decides what to do with it:

It’s important to note that the inspection mechanism is safe (that is, Python classes and files are not actually loaded
and executed on discovery and inspection stage). Due to the fact Avocado doesn’t actually load the code and classes,
the introspection is simple and will not catch things like buggy test modules, missing imports and miscellaneous bugs
in the code you want to list or run. We recommend only running tests from sources you trust, use of static checking
and reviews in your test development process.

Due to the simple test inspection mechanism, Avocado will not recognize test classes that inherit from a class derived
from avocado. Test. Please refer to the WritingTests documentation on how to use the tags functionality to mark
derived classes as Avocado test classes.

Identifiers and references

Job ID

The Job ID is a random SHA1 string that uniquely identifies a given job.

The full form of the SHA1 string is used is most references to a job:

$ avocado run sleeptest.py
JOB ID : 49ec339%9a6cca’73397be21866453985£88713ac34

38 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

File

(Is it a Python file? J
No Does it implement classes that inherit
Is it an executable file? from avocado.Test and functions whose
name start with test?
/ \ Yes
(Not a test } (Run it (simple) (Run it (instrumented) }

~

But a shorter version is also used at some places, such as in the job results location:

JOB LOG : SHOME/avocado/job-results/job-2015-06-10T10.44-49ec339/job.log

Test References

Warning: TODO: We are talking here about Test Resolver, but the reader was not introduced to this concept yet.

A Test Reference is a string that can be resolved into (interpreted as) one or more tests by the Avocado Test Resolver. A
given resolver plugin is free to interpret a test reference, it is completely abstract to the other components of Avocado.

When the test references are about Instrumented Tests, Avocado will find any Instrumented test that starts with the
reference, like a “wildcard”. For instance:

$ avocado run ./test.py:MyTest:test_foo

This command will resolve all tests (methods) that starts with fest_foo. For more information about this type of tests,
please visit the Instrumented section of this document.

Note: Mapping the Test References to tests can be affected by command-line switches like -——external-runner,
which completely changes the meaning of the given strings.

9.2. Avocado User’s Guide 39

avocado Documentation, Release 90.0

Conventions

Even though each resolver implementation is free to interpret a reference string as it sees fit, it’s a good idea to set
common user expectations.

It’s common for a single file to contain multiple tests. In that case, information about the specific test to reference can
be added after the filesystem location and a colon, that is, for the reference:

passtest.py:PassTest.test

Unless a file with that exact name exists, most resolvers will split it into passtest .py as the filesystem path, and
PassTest.test as an additional specification for the individual test. It’s also possible that some resolvers will
support regular expressions and globs for the additional information component.

Test Name

A test name is an arbitrarily long string that unambiguously points to the source of a single test. In other words the
Avocado Test Resolver, as configured for a particular job, should return one and only one test as the interpretation of
this name.

This name can be as specific as necessary to make it unique. Therefore it can contain an arbitrary number of variables,
prefixes, suffixes, tags, etc. It all depends on user preferences, what is supported by Avocado via its Test Resolvers
and the context of the job.

The output of the Test Resolver when resolving Test References should always be a list of unambiguous Test Names
(for that particular job).

Notice that although the Test Name has to be unique, one test can be run more than once inside a job.

By definition, a Test Name is a Test Reference, but the reciprocal is not necessarily true, as the latter can represent
more than one test.

Examples of Test Names:

'/bin/true’

'passtest.py:Passtest.test'

'file:///tmp/passtest.py:Passtest.test’
'multiple_tests.py:MultipleTests.test_hello’
'type_specific.io-github-autotest—-gemu.systemtap_tracing.gemu.gemu_free'

Variant IDs

The varianter component creates different sets of variables (known as “variants”), to allow tests to be run individually
in each of them.

A Variant ID is an arbitrary and abstract string created by the varianter plugin to identify each variant. It should be
unique per variant inside a set. In other words, the varianter plugin generates a set of variants, identified by unique
IDs.

A simpler implementation of the varianter uses serial integers as Variant IDs. A more sophisticated implementation
could generate Variant IDs with more semantic, potentially representing their contents.

40 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Test ID

A test ID is a string that uniquely identifies a test in the context of a job. When considering a single job, there are no
two tests with the same ID.

A test ID should encapsulate the Test Name and the Variant ID, to allow direct identification of a test. In other words,
by looking at the test ID it should be possible to identify:

e What’s the test name
* What’s the variant used to run this test (if any)

Test IDs don’t necessarily keep their uniqueness properties when considered outside of a particular job, but two
identical jobs run in the exact same environment should generate a identical sets of Test IDs.

Syntax:

<unique-id>-<test-name>[; <variant-id>]

Example of Test IDs:

'l1-/bin/true’

'2-passtest.py:Passtest.test;quiet-'
'3-file:///tmp/passtest.py:Passtest.test’
'4-multiple_tests.py:MultipleTests.test_hello;maximum_debug-df2f'
'5-type_specific.io—github—autotest—gemu.systemtap_tracing.gemu.gemu_free'

Test types

Avocado at its simplest configuration can run three different types of tests:
* simple
* python unittest
* instrumented

You can mix and match those in a single job.

Avocado plugins can also introduce additional test types.

Simple

Any executable in your box. The criteria for PASS/FAIL is the return code of the executable. If it returns 0, the test
PASSes, if it returns anything else, it FAILSs.

Python unittest

The discovery of classical Python unittest is also supported, although unlike Python unittest we still use static analysis
to get individual tests so dynamically created cases are not recognized. Also note that test result SKIP is reported as
CANCEL in Avocado as SKIP test meaning differs from our definition. Apart from that there should be no surprises
when running unittests via Avocado.

9.2. Avocado User’s Guide 41

avocado Documentation, Release 90.0

Instrumented

These are tests written in Python or BASH with the Avocado helpers that use the Avocado test APL

To be more precise, the Python file must contain a class derived from avocado.test.Test. This means that an
executable written in Python is not always an instrumented test, but may work as a simple test.

The instrumented tests allows the writer finer control over the process including logging, test result status and other
more sophisticated test APIs.

Test statuses PASS, WARN and SKIP are considered successful. The ERROR, FAIL and INTERRUPTED signal
failures.

TAP

TAP tests are pretty much like Simple tests in the sense that they are programs (either binaries or scripts) that will
executed. The difference is that the test result will be decided based on the produced output, that should be in Test
Anything Protocol format.

Test statuses

Avocado sticks to the following definitions of test statuses:
* PASS: The test passed, which means all conditions being tested have passed.

e FATL: The test failed, which means at least one condition being tested has failed. Ideally, it should mean a
problem in the software being tested has been found.

* ERROR: An error happened during the test execution. This can happen, for example, if there’s a bug in the test
runner, in its libraries or if a resource breaks unexpectedly. Uncaught exceptions in the test code will also result
in this status.

e SKIP: The test runner decided a requested test should not be run. This can happen, for example, due to missing
requirements in the test environment or when there’s a job timeout.

* WARN: The test ran and something might have gone wrong but didn’t explicitly failed.
¢ CANCEL: The test was canceled and didn’t run.

e INTERRUPTED: The test was explicitly interrupted. Usually this means that a user hit CTRL+C while the job
was still running or did not finish before the timeout specified.

Exit codes

Avocado exit code tries to represent different things that can happen during an execution. That means exit codes can
be a combination of codes that were ORed together as a single exit code. The final exit code can be de-bundled so
users can have a good idea on what happened to the job.

The single individual exit codes are:

* AVOCADO_ALL_OK (0)
AVOCADO_TESTS_FAIL (1)
AVOCADO_JOB_FAIL (2)
AVOCADO_FAIL (4)
AVOCADO_JOB_INTERRUPTED (8)

42 Chapter 9. Build and Quality Status

https://testanything.org
https://testanything.org

avocado Documentation, Release 90.0

If a job finishes with exit code 9, for example, it means we had at least one test that failed and also we had at some
point a job interruption, probably due to the job timeout or a CTRL+C.

9.2.5 Basic Operations
Job Replay

The process of replaying an Avocado Job is simply about loading the source Job’s configuration and running a new
Job based on that configuration.

For users, this is available as the avocado replay command. Its usage is straightforward. Suppose you’ve just
run a simple job, also from the command line, such as:

$ avocado run /bin/true /bin/false

JOB ID : 42c60bea72e6d55756bfc784eb2b354£788541cf
JOB LOG : SHOME/avocado/ job-results/job-2020-08-13T11.23-42c60be/job.log

(1/2) /bin/true: PASS (0.01 s)

(2/2) /bin/false: FAIL: Exited with status: 'l', stdout: '' stderr: '' (0.08 s)
RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB HTML : SHOME/avocado/Jjob-results/job-2020-08-13T11.23-42c60be/results.html
JOB TIME : 0.41 s

To run a new job with the configuration used by the previously executed job, it’s possible to simply execute:

$ avocado replay latest

Resulting in:

JOB ID : £3139826f1b169%9a0b456e0e880ffb83ed26d9858
SRC JOB ID : latest
JOB LOG : SHOME/avocado/job-results/job-2020-08-13T11.24-£313982/job.log

(1/2) /bin/true: PASS (0.01 s)

(2/2) /bin/false: FAIL: Exited with status: 'l', stdout: '' stderr: '' (0.07 s)
RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB HTML : SHOME/avocado/job-results/job-2020-08-13T11.24-£313982/results.html
JOB TIME : 0.39 s

It’s also possible to use the other types of references to jobs, like the full directory path of the job results, or the Job
IDs. That is, you can use the same references used in other commands such as avocado jobs show.

Legacy Job Replay

Note: This legacy version is expected to be removed in future versions.

Avocado’s first, and now legacy, job replay version is based on the run command. It supports more command line
options and use cases than the newer implementation discussed earlier, but it has some cons:

* It’s not clear if options given to avocado run --replay are about the replayed job or if overriding aspects
of the source job

* The implementation has to account for each of the options capable of being overridden

It’s expected that more complex use cases for Jobs, including replays, should instead use the Job API directly. Regard-
less, the remainder of this section documents its behavior.

9.2. Avocado User’s Guide 43

avocado Documentation, Release 90.0

In order to reproduce a given job using the same data, one can use the ——replay option for the run command,
informing the hash id from the original job to be replayed. The hash id can be partial, as long as the provided part
corresponds to the initial characters of the original job id and it is also unique enough. Or, instead of the job id, you
can use the string 1atest and Avocado will replay the latest job executed.

Let’s see an example. First, running a simple job with two test references:

$ avocado run /bin/true /bin/false

JOB 1D : 825b860b0c2f6ecd48953c638432e3e323f8d7cad

JOB LOG : SHOME/avocado/job-results/job-2016-01-11T16.14-825b860/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.12 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-11T16.14-825b860/html/results.html

Now we can replay the job by running:

$ avocado run --replay 825b86

JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956¢c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323£f8d7cad
JOB LOG : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log

(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.11 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

The replay feature will retrieve the original test references, the variants and the configuration. Let’s see another
example, now using a mux YAML file:

$ avocado run /bin/true /bin/false —--mux-yaml mux-environment.yaml
JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : SHOME/avocado/job-results/job-2016-01-11T21.56-bd6aa3b/job.log

(1/4) /bin/true;first-c49a: PASS (0.01 s)
(2/4) /bin/true;second-f05f: PASS (0.01 s)
(3/4) /bin/false;first-c49a: FAIL (0.04 s)
(4/4) /bin/false;second-f05f: FAIL (0.04 s)

RESULTS : PASS 2 | ERROR 0 | FAIL 2 | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.19 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-11T21.56-bd6aal3b/html/results.html

We can replay the job as is, using $ avocado run —--replay latest, orreplay the job ignoring the variants,
as below:

$ avocado run --replay bdé6aa3b —--replay-ignore variants

Ignoring variants from source job with --replay-ignore.

JOB ID : d5a46186ee0fb4645e3£7758814003d76c980bf9

SRC JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d

JOB LOG : SHOME/avocado/job-results/job-2016-01-11T22.01-d5a4618/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.12 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-11T22.01-d5a4618/html/results.html

Also, it is possible to replay only the variants that faced a given result, using the option ——-replay-test-status.
See the example below:

44 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

$ avocado run --replay bdéaa3b —--replay-test-status FAIL

JOB ID : 2eldc4laf6ed64895f3bb45e3820c5ccb62a9bbeb
SRC JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : SHOME/avocado/job-results/job-2016-01-12T00.38-2eldc41l/job.log

(1/4) /bin/true; first-cd49a: SKIP

(2/4) /bin/true;second-f05f: SKIP

(3/4) /bin/false;first-c49a: FAIL (0.03 s)
(4/4) /bin/false;second-f05f: FAIL (0.04 s)

RESULTS : PASS 0 | ERROR O | FAIL 24 | SKIP 24 | WARN O | INTERRUPT O
JOB TIME : 0.29 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-12T00.38-2eldc41l/html/results.html

Of which one special example is ——replay-test—-status INTERRUPTED or simply -—replay-resume,
which SKIPs the executed tests and only executes the ones which were CANCELED or not executed after a CAN-
CELED test. This feature should work even on hard interruptions like system crash.

Note: Avocado versions 80.0 and earlier allowed replayed jobs to override the failfast configuration by setting
-—failfastinaavocado run --replay .. command line. This is no longer possible.

To be able to replay a job, Avocado records the job data in the same job results directory, inside a subdirectory named
replay. If a given job has a non-default path to record the logs, when the replay time comes, we need to inform
where the logs are. See the example below:

$ avocado run /bin/true --job-results-dir /tmp/avocado_results/
JOB ID : £f1b1c870ad892eac6064a5332flbbe38cdalaat3
JOB LOG : /tmp/avocado_results/job-2016-01-11T22.10-f1blc87/job.log
(1/1) /bin/true: PASS (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL O | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.11 s
JOB HTML : /tmp/avocado_results/job-2016-01-11T22.10-f1blc87/html/results.html

Trying to replay the job, it fails:

$ avocado run --replay flbl
can't find job results directory in 'S$HOME/avocado/job-results'

In this case, we have to inform where the job results directory is located:

$ avocado run —--replay flbl —--replay-data-dir /tmp/avocado_results
JOB ID : 19¢c76abb29f29fed410a9a3f4£f4b66387570edffa
SRC JOB ID : flblc870ad892eac6064a5332flbbe38cdalaaf3
JOB LOG : SHOME/avocado/job-results/job-2016-01-11T22.15-19c76ab/job.log
(1/1) /bin/true: PASS (0.01 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.11 s
JOB HTML : SHOME/avocado/Jjob-results/job-2016-01-11T22.15-19c76ab/html/results.html
Job Diff

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

$ avocado diff 7025aaba 384b949c
——— 7025aaba9c2ab8bi4bba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d9%a761fd07672ff

(continues on next page)

9.2. Avocado User’s Guide 45

avocado Documentation, Release 90.0

(continued from previous page)

@@ -1,15 +1,15 Q@

COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
—l-sleeptest.py:SleepTest.test: PASS
+l-passtest.py:PassTest.test: PASS

Avocado Diff can compare and create an unified diff of:
e Command line.
* Job time.
* Variants and parameters.
* Tests results.
* Configuration.

* Sysinfo pre and post.

Note: Avocado Diff will ignore files containing non UTF-8 characters, like binaries, as an example.

Only sections with different content will be included in the results. You can also enable/disable those sections with
——diff-filter. Please see avocado diff —-help for more information.

Jobs can be identified by the Job ID, by the results directory or by the key Latest. Example:

$ avocado diff ~/avocado/job-results/job-2016-08-03T15.56-4b3cb5b/ latest
——— 4b3cbbbbbb2435c91c7b557eebc09997d4a0£544

+++ 57e5bbb3991718b216d787848171b446£60b3262

@@ -1,9 +1,9 @@

COMMAND LINE
-/usr/bin/avocado run perfmon.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-11.91 s
+0.00 s

TEST RESULTS
-l-test.py:Perfmon.test: FAIL
+1l-examples/tests/passtest.py:PassTest.test: PASS

Along with the unified diff, you can also generate the html (option ——htm1) diff file and, optionally, open it on your
preferred browser (option ——open-browser):

46 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

$ avocado diff 7025aaba 384b949c --html /tmp/myjobdiff.html
/tmp/myjobdiff.html

If the option ——open-browser is used without the ——html, a temporary html file will be created.

For those wiling to use a custom diff tool instead of the Avocado Diff tool, there is an option ——create-reports
that will, create two temporary files with the relevant content. The file names are printed and user can copy/paste to
the custom diff tool command line:

$ avocado diff 7025aaba 384b949c --create-reports
/var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_ 384b949_AcWg02.txt

$ diff -u /var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_384b949_
—AcWg02.txt

-—— /var/tmp/avocado_diff_7025aab_zQJjJh.txt 2016-08-10 21:48:43.547776715 +0200
+++ /var/tmp/avocado_diff_384b949_AcWgl2.txt 2016-08-10 21:48:43.547776715 +0200
@@ -1,250 +1,19 @@

COMMAND LINE

-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME

Listing tests

Avocado can list your tests without run it. This can be handy sometimes.

There are two ways of discovering the tests. One way is to simulate the execution by using the ——dry-run argument:

$ avocado run /bin/true —--dry-run

JOB ID : 00

JOB LOG : /var/tmp/avocado-dry-run-k2i_uigx/job—-2020-09-02T09.09-0000000/job.log
(1/1) /bin/true: CANCEL: Test cancelled due to —-—-dry-run (0.01 s)

RESULTS : PASS O | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT 0O | CANCEL 1

JOB HTML : /var/tmp/avocado-dry-run-k2i_uiqgx/job-2020-09-02T09.09-0000000/results.
—html

JOB TIME : 0.29 s

which supports all run arguments, simulates the run and even lists the test params.

The other way is to use 1ist subcommand that lists the discovered tests If no arguments provided, Avocado lists
“default” tests per each plugin. The output might look like this:

$ avocado list

INSTRUMENTED /usr/share/doc/avocado/tests/abort.py
INSTRUMENTED /usr/share/doc/avocado/tests/datadir.py
INSTRUMENTED /usr/share/doc/avocado/tests/doublefail.py
INSTRUMENTED /usr/share/doc/avocado/tests/doublefree.py
INSTRUMENTED /usr/share/doc/avocado/tests/errortest.py
INSTRUMENTED /usr/share/doc/avocado/tests/failtest.py

(continues on next page)

9.2. Avocado User’s Guide 47

avocado Documentation, Release 90.0

(continued from previous page)

INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED

/usr/share/doc/avocado/tests/fiotest.py
/usr/share/doc/avocado/tests/gdbtest.py
/usr/share/doc/avocado/tests/gendata.py
/usr/share/doc/avocado/tests/linuxbuild.py
/usr/share/doc/avocado/tests/multiplextest.py
/usr/share/doc/avocado/tests/passtest.py
/usr/share/doc/avocado/tests/sleeptenmin.py
/usr/share/doc/avocado/tests/sleeptest.py
/usr/share/doc/avocado/tests/synctest.py
/usr/share/doc/avocado/tests/timeouttest.py
/usr/share/doc/avocado/tests/warntest.py
/usr/share/doc/avocado/tests/whiteboard.py

These Python files are considered by Avocado to contain INSTRUMENTED tests.

Let’s now list only the executable shell scripts:

$ avocado list | grep "SIMPLE

SIMPLE /usr/share/doc/avocado/tests/env_variables.sh
SIMPLE /usr/share/doc/avocado/tests/output_check.sh
SIMPLE /usr/share/doc/avocado/tests/simplewarning.sh
SIMPLE /usr/share/doc/avocado/tests/failtest.sh
SIMPLE /usr/share/doc/avocado/tests/passtest.sh

Here, as mentioned before, SIMPLE means that those files are executables treated as simple tests. You can also give
the ——verbose or —V flag to display files that were found by Avocado, but are not considered Avocado tests:

$ avocado —--verbose list examples/gdb-prerun—-scripts/
Type Test Tag (s)

NOT_A_TEST examples/gdb-prerun-scripts/README: Not an INSTRUMENTED (avocado.Test,,

—based), PyUNITTEST (unittest.TestCase based) or SIMPLE (executable) test
NOT_A_TEST examples/gdb-prerun-scripts/pass—-sigusrl: Not an INSTRUMENTED (avocado.
—Test based), PyUNITTEST (unittest.TestCase based) or SIMPLE (executable) test

IGLIB examples/gdb-prerun-scripts/: No GLib-like tests found
! GOLANG examples/gdb-prerun-scripts/: No test matching this reference.
IROBOT examples/gdb-prerun-scripts/: No robot-like tests found

NOT_A_TEST
NOT_A_TEST

examples/gdb-prerun-scripts/README: Not a supported test
examples/gdb-prerun-scripts/pass-sigusrl: Not a supported test

TEST TYPES SUMMARY
'glib: 1

!golang: 1

'robot: 1
not_a_test: 4

Notice that the verbose flag also adds summary information.
See also:

To read more about test discovery, visit the section “Understanding the test discovery (Avocado Loaders)”.

9.2.6 Results Specification

On a machine that executed tests, job results are available under [job-results]/job-[timestamp] - [short
job ID], where logdir is the configured Avocado logs directory (see the data dir plugin), and the directory name

48 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

includes a timestamp, such as job-2014-08-12T15.44-565e8de. A typical results directory structure can be

seen below

$SHOME/avocado/job-results/job-2014-08-13T00.45-4a92bc0/

— id

— Jjobdata
args.json
cmdline
config
pwd

test_references
variants. json
— Jjob.log
— results.html
—— results. json
— results.tap
— results.xml
— sysinfo
— post
—— brctl_show
— cmdline
— cpuinfo
—— current_clocksource
— df_-mP
— dmesg_-c
— dmidecode
— fdisk_-1
— gcc_-—-version
— hostname
— ifconfig_-a
— interrupts
— ip_link
—— Jjournalctl.gz
— 1d_—--version
— lscpu
F— lspci_-vvnn
— meminfo
— modules
—— mount
— mounts
—— numactl_--hardware_show
— partitions
— scaling_governor
— uname_-a
— uptime
L— version

— brctl_show
— cmdline

— cpuinfo

—— current_clocksource
— df_-mP

— dmesg_-c

— dmidecode

— fdisk_-1

— gcc_--version
— hostname

— ifconfig_-a

(continues on next page)

9.2. Avocado User’s Guide

49

avocado Documentation, Release 90.0

(continued from previous page)

— interrupts

— ip_link

— 1d_--version

—— lscpu

— lspci_-vvnn

— meminfo

— modules

— mount

—— mounts

—— numactl_—--hardware_show
— partitions

— scaling_governor
— uname_-a

— uptime

L— version
L— profile
—— test-results
L tests
— sleeptest.py.l

data
E debug.log
sysinfo
I: post
pre

— sleeptest.py.2

data
E debug.log
sysinfo
I: post
pre

L— sleeptest.py.3

data
E debug.log
sysinfo
I: post
pre

22 directories, 65 files

From what you can see, the results directory has:

1) A human readable id in the top level, with the job SHAT.

2) A human readable job. log in the top level, with human readable logs of the task

3) Subdirectory jobdata, that contains machine readable data about the job.

4) A machine readable results.xml and results. json in the top level, with a summary of the job infor-

mation in xUnit/json format.

5) Atoplevel sysinfo dir, with sub directories pre, post and profile, that store sysinfo files pre/post/during

job, respectively.

6) Subdirectory test-results, that contains a number of subdirectories (filesystem-friendly test ids). Those

test ids represent instances of test execution results.

50

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Test execution instances specification

The instances should have:

1y
2)

3)

A top level human readable job. log, with job debug information

A sysinfo subdirectory, with sub directories pre, post and profile that store sysinfo files pre test, post
test and profiling info while the test was running, respectively.

A data subdirectory, where the test can output a number of files if necessary.

Test execution environment

Each test is executed in a separate process. Due to how the underlying operating system works, a lot of the attributes
of the parent process (the Avocado test runner) are passed down to the test process.

On GNU/Linux systems, a child process should be “an exact duplicate of the parent process, except” some items that
are documented in the fork (2) man page.

Note:

The next Runner (-—test-runner="nrunner ") has support to different spawners types (podman, pro-

cess, etc..). For more information, visit the nrunner. spawner configuration option.

Besides those operating system exceptions, the Avocado test runner changes the test process in the following ways:

1y

2)

3)

4)

The standard input (STDIN)issettoanull device. This is truth both for sys. stdin and for file descrip-
tor 0. Both will point to the same open null device file.

The standard output (STDOUT), as in sys.stdout, is redirected so that it doesn’t interfere with the test
runner’s own output. All content written to the test’s sys.stdout will be available in the logs under the
output prefix.

Warning: The file descriptor 1 (AKA /dev/stdout, AKA /proc/self/£fd/1, etc) is not currently
redirected for INSTRUMENTED tests. Any attempt to write directly to the file descriptor will interfere with
the runner’s own output stream. This behavior will be addressed in a future version.

The standard error (STDERR), asin sys . stderr, is redirected so that it doesn’t interfere with the test runner’s
own errors. All content written to the test’s sy s . st derr will be available in the logs under the out put prefix.

Warning: The file descriptor 2 (AKA /dev/stderr, AKA /proc/self/£d/2, etc) is not currently
redirected for INSTRUMENTED tests. Any attempt to write directly to the file descriptor will interfere with
the runner’s own error stream. This behavior will be addressed in a future version.

A custom handler for signal STGTERM which will simply raise an exception (with the appropriate message) to
be handled by the Avocado test runner, stating the fact that the test was interrupted by such a signal.

Tip: By following the backtrace that is given alongside the in the test log (look for Runt imeError: Test
interrupted by SIGTERM) a user can quickly grasp at which point the test was interrupted.

Note: If the test handles STGTERM differently and doesn’t finish the test process quickly enough, it will receive
then a STGKILL which is supposed to definitely end the test process.

9.2. Avocado User’s Guide 51

https://docs.python.org/3/library/os.html#os.devnull
https://docs.python.org/3/library/sys.html#sys.stdin
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.stderr

avocado Documentation, Release 90.0

5) A number of environment variables that are set by Avocado, all prefixed with AVOCADO_.

If you want to see for yourself what is described here, you may want to run the example test test_env.py and
examine its log messages.

9.2.7 Filtering tests by tags

Warning: The example perf.py is not distributed with avocado anymore. This is an old example that needs to be
updated.

Avocado allows tests to be given tags, which can be used to create test categories. With tags set, users can select a
subset of the tests found by the test resolver (also known as test loader).

Usually, listing and executing tests with the Avocado test runner would reveal all three tests:

$ avocado list perf.py

INSTRUMENTED perf.py:Disk.test_device
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput
INSTRUMENTED perf.py:Idle.test_idle

If you want to list or run only the network based tests, you can do so by requesting only tests that are tagged with net:

$ avocado list perf.py —--filter-by-tags=net
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

Now, suppose you’re not in an environment where you’re comfortable running a test that will write to your raw disk
devices (such as your development workstation). You know that some tests are tagged with safe while others are
tagged with unsafe. To only select the “safe” tests you can run:

$ avocado list perf.py —--filter-by-tags=safe
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

But you could also say that you do not want the “unsafe” tests (note the minus sign before the tag):

$ avocado list perf.py —--filter-by-tags=-unsafe
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

Tip: The - sign may cause issues with some shells. One know error condition is to use spaces between
-—filter-by-tags and the negated tag, that is, ——filter-by-tags -unsafe will most likely not work.
To be on the safe side, use ——filter-by-tags=-tag.

If you require tests to be tagged with multiple tags, just add them separate by commas. Example:

$ avocado list perf.py ——-filter-by-tags=disk, slow, superuser,unsafe
INSTRUMENTED perf.py:Disk.test_device

If no test contains all tags given on a single ——filter-by—-tags parameter, no test will be included:

52 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

$ avocado list perf.py —-—-filter-by-tags=disk, slow, superuser,safe | wc -1
0

Multiple tags (AND vs OR)

While multiple tags in a single option will require tests with all the given tags (effectively a logical AND operation),
it’s also possible to use multiple ——filter-by-tags (effectively a logical OR operation).

For instance To include all tests that have the disk tag and all tests that have the net tag, you can run:

$ avocado list perf.py —--filter-by-tags=disk --filter-by-tags=net
INSTRUMENTED perf.py:Disk.test_device

INSTRUMENTED perf.py:Network.test_latency

INSTRUMENTED perf.py:Network.test_throughput

Including tests without tags
The normal behavior when using —-filter—-by-tags is to require the given tags on all tests. In some situations,
though, it may be desirable to include tests that have no tags set.

For instance, you may want to include tests of certain types that do not have support for tags (such as SIMPLE tests)
or tests that have not (yet) received tags. Consider this command:

$ avocado list perf.py /bin/true --filter-by-tags=disk
INSTRUMENTED perf.py:Disk.test_device

Since it requires the disk tag, only one test was returned. By using the ——filter-by-tags-include-empty
option, you can force the inclusion of tests without tags:

$ avocado list perf.py /bin/true --filter-by-tags=disk —--filter-by-tags-include-empty
SIMPLE /bin/true

INSTRUMENTED perf.py:Idle.test_idle

INSTRUMENTED perf.py:Disk.test_device

Using further categorization with keys and values

All the examples given so far are limited to “flat” tags. Sometimes, it’s helpful to categorize tests with extra con-
text. For instance, if you have tests that are sensitive to the platform endianess, you may way to categorize them by
endianess, while at the same time, specifying the exact type of endianess that is required.

For instance, your tags can now have a key and value pair, like: endianess:1little orendianess:big.

To list tests without any type of filtering would give you:

$ avocado list byteorder.py

INSTRUMENTED byteorder.py:ByteOrder.test_le
INSTRUMENTED byteorder.py:ByteOrder.test_be
INSTRUMENTED byteorder.py:Generic.test

To list tests that are somehow related to endianess, you can use:

$ avocado list byteorder.py --filter-by-tags endianess
INSTRUMENTED byteorder.py:ByteOrder.test_le
INSTRUMENTED byteorder.py:ByteOrder.test_be

9.2. Avocado User’s Guide 53

avocado Documentation, Release 90.0

And to be even more specific, you can use:

$ avocado list byteorder.py —--filter-by-tags endianess:big
INSTRUMENTED byteorder.py:ByteOrder.test_be

Now, suppose you intend to run tests on a little endian platform, but you’d still want to include tests that are generic
enough to run on either little or big endian (but not tests that are specific to other types of endianess), you could use:

$ avocado list byteorder.py —--filter-by-tags endianess:big —--filter-by-tags-include-
—empty-key

INSTRUMENTED byteorder.py:ByteOrder.test_be

INSTRUMENTED byteorder.py:Generic.test

See also:

If you would like to understand how write plugins and how describe tags inside a plugin, please visit the section:
Writing Tests on Avocado Test Writer’s Guide.

9.2.8 Configuring

Warning: Please, keep in mind that we are doing a significant refactoring on settings to have consistency when
using Avocado. Some options are changing soon.

Avocado utilities have a certain default behavior based on educated, reasonable (we hope) guesses about how users
like to use their systems. Of course, different people will have different needs and/or dislike our defaults, and that’s
why a configuration system is in place to help with those cases

The Avocado config file format is based on the (informal) INI file specification, that is implemented by Python’s
configparser. The format is simple and straightforward, composed by sections, that contain a number of keys and
values. Take for example a basic Avocado config file:

[datadir.paths]

base_dir = /var/lib/avocado

test_dir = /usr/share/doc/avocado/tests
data_dir = /var/lib/avocado/data
logs_dir = ~/avocado/Jjob-results

The datadir.paths section contains a number of keys, all of them related to directories used by the test runner.
The base_dir is the base directory to other important Avocado directories, such as log, data and test directories.
You can also choose to set those other important directories by means of the variables test_dir, data_dir and
logs_dir. You can do this by simply editing the config files available.

Config file parsing order

Avocado starts by parsing what it calls system wide config file, that is shipped to all Avocado users on a system wide
directory, /etc/avocado/avocado.conf (when installed by your Linux distribution’s package manager).

There is another directory that will be scanned by extra config files, /et c/avocado/conf . d. This directory may
contain plugin config files, and extra additional config files that the system administrator/avocado developers might
judge necessary to put there.

Then it’ll verify if there’s a local user config file, that is located usually in ~/.config/avocado/avocado.
conf. The order of the parsing matters, so the system wide file is parsed, then the user config file is parsed last, so
that the user can override values at will.

54 Chapter 9. Build and Quality Status

http://en.wikipedia.org/wiki/INI_file
https://docs.python.org/3/library/configparser.html#module-configparser

avocado Documentation, Release 90.0

The order of files described in this section is only valid if Avocado was installed in the system. For people using
Avocado from git repos (usually Avocado developers), that did not install it in the system, keep in mind that Avocado
will read the config files present in the git repos, and will ignore the system wide config files. Running avocado
config will let you know which files are actually being used.

Configuring via command-line

Besides the configuration files, the most used features can also be configured by command-line arguments. For in-
stance, regardless what you have on your configuration files, you can disable sysinfo logging by running:

$ avocado run --disable-sysinfo /bin/true

So, command-line options always will have the highest precedence during the configuration parsing. Use this if you
would like to change some behavior on just one or a few specific executions.

Parsing order recap

So the file parsing order is:
* /etc/avocado/avocado.conf
* /etc/avocado/conf.d/*.conf
e avocado.plugins.settings plugins (but they can insert to any location)

— For more information about this, visit the “Contributor’s Guide” section named “Writing an Avocado
plugin”

e ~/.config/avocado/avocado.conf

You can see the actual set of files/location by using avocado config which uses » to mark existing and used files:

$ avocado config
Config files read (in order, 'x' means the file exists and had been read):
* /etc/avocado/avocado.conf
* /etc/avocado/conf.d/resultsdb.conf
/etc/avocado/conf.d/result_upload.conf
/etc/avocado/conf.d/jobscripts.conf
/etc/avocado/conf.d/gdb.conf
/etc/avocado_vt/conf.d/vt.conf
x /etc/avocado_vt/conf.d/vt_joblock.conf
SHOME/ .config/avocado/avocado.conf

*

*

*

Section.Key Value
datadir.paths.base_dir /var/lib/avocado
datadir.paths.test_dir /usr/share/doc/avocado/tests

Where the lower config files override values of the upper files and the $SHOME/ . config/avocado/avocado.
conf file missing.

Note: Please note that if Avocado is running from git repos, those files will be ignored in favor of in tree configuration
files. This is something that would normally only affect people developing avocado, and if you are in doubt, avocado
config will tell you exactly which files are being used in any given situation.

9.2. Avocado User’s Guide 55

avocado Documentation, Release 90.0

Note: When Avocado runs inside virtualenv than path for global config files is also changed. For example,
avocado.conf comes from the virual-env path venv/etc/avocado/avocado.conf.

Order of precedence for values used in tests
Since you can use the config system to alter behavior and values used in tests (think paths to test programs, for
example), we established the following order of precedence for variables (from least precedence to most):

¢ default value (from library or test code)

* global config file

* local (user) config file

* command line switch

¢ test parameters

So the least important value comes from the library or test code default, going all the way up to the test parameters
system.

Supported data types when configuring Avocado
As already said before, Avocado allows users to use both: configuration files and command-line options to configure
its behavior. It is important to have a very well defined system type for the configuration file and argument options.

Although config files options and command-line arguments are always considered st rings, you should give a proper
format representation so those values can be parsed into a proper type internally on Avocado.

Currently Avocado supports the following data types for the configuration options: string, integer, float,
bool and 1ist. Besides those primitive data types Avocado also supports custom data types that can be used by a
particular plugin.

Bellow, you will find information on how to set options based on those basic data types using both: configuration files
and command-line arguments.

Strings

Strings are the basic ones and the syntax is the same in both configuration files and command-line arguments: Just the
string that can be inside "" or ' '.

Example using the configuration file:

[foo]
bar = 'hello world'

String and all following types could be used with or without quotes but using quotes for strings is important on the
command line to safely handle empty spaces and distinguish it from a list type. Therefore, the following example will
also be well handled:

[foo]
bar = hello world

Example using the command-line:

56 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

$ avocado run —--foo bar /bin/true

Integers

Integer numbers are as simple as strings.

Example using the configuration file:

[run]
job_timeout = 60

Example using the command-line:

$ avocado run —-—-job-timeout 50 /bin/true

Floats

Float numbers has the same representation as integers, but you should use . (dot) to separate the decimals. i.e: 80.3.

Booleans

When talking about configuration files, accepted values for a boolean option are ‘1°, ‘yes’, ‘true’, and ‘on’, which
cause this method to return True, and ‘0’, ‘no’, ‘false’, and ‘off’, which cause it to return False. But, when talking
about command-line, booleans options don’t need any argument, the option itself will enable or disable the settings,
depending on the context.

Example using the configuration file:

[core]
verbose = true

Example using the command-line:

$ avocado run —--verbose /bin/true

Note: Currently we still have some “old style boolean” options where you should pass “on” or “off”” on the command-
line. i.e: ——json—-job-result=off. Those options are going to be replaced soon.

Lists

Lists are peculiar when configuring. On configuration files you can use the default “python” syntax for lists: ["foo",
"bar"], but when using the command-line arguments lists are strings separated by spaces:

Example using the configuration file:

[assets.fetch]
references = ["foo.py", "bar.py"]

Example using the command-line:

9.2. Avocado User’s Guide 57

avocado Documentation, Release 90.0

$ avocado assets fetch foo.py bar.py

Complete Configuration Reference

For a complete configuration reference, please visit Avocado’s Configuration Reference.

Or you can see in your terminal, typing:

$ avocado config reference

9.2.9 Managing Requirements

Note: Test requirements are supported only on the nrunner runner. To use this feature, remember to use
——test-runner=nrunner argument.

A test’s requirement can be fulfilled by the Requirements Resolver feature.
Test’s requirements are specified in the test definition and are fulfilled based on the supported requirement type.
Test workflow with requirements

When a requirement is defined for a test, it is marked as a dependency for that test. The test will wait for all the
requirements to complete successfully before it is started.

When any of the requirements defined on a test fails, the test is skipped.

Defining a test requirement

A test requirement is described in the JSON format. Following is an example of a requirement of type package:

{"type": "package", "name": "hello"}

To define a requirement for the test, use the test’s docstring with the format of keywords :avocado:
requirement=. The following example shows the same package requirement showed above inside a test docstring:

from avocado import Test

class PassTest (Test) :

mmn

ravocado: requirement={"type": "package", "name": "hello"}

mon

def test (self):

mnn

A success test

mon

It is possible to define multiple requirements for a test. Following is an example using more than one requirement
definition:

58 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

from avocado import Test

class PassTest (Test) :
mmwmn
ravocado: requirement={"type": "package", "name": "hello"}
ravocado: requirement={"type": "package", "name": "bash"}

mon

def test (self):

mmn

A success test

mon

Defining a requirement in the class docstring will fulfill the requirement for every test within a test class. Defining a
requirement in the test docstring will fulfill the requirement for that single test only.

Supported types of requirements

The following types of requirements are supported:

Package

Support managing of packages using the Avocado Software Manager utility. The parameters available to use the
package type of requirements are:

* type: package
* name: the package name (required)
* action: one of install, check, or remove (optional, defaults to install)

Following is an example of a test using the Package requirement:

from avocado import Test

class PassTest (Test) :

mmn

Example test that passes.

ravocado: requirement={"type": "package", "name": "hello"}
mrmmn

def test (self):

mmn

A test simply doesn't have to fail in order to pass

mnn

Asset

Support fetching assets using the Avocado Assets utility. The parameters available to use the asset type of requirements
are:

* type: asset

9.2. Avocado User’s Guide 59

avocado Documentation, Release 90.0

* name: the file name or uri (required)
* asset_has: hash of the file (optional)
* algorithm: hash algorithm (optional)
* locations: location(s) where the file can be fetched from (optional)

* expire: time in seconds for the asset to expire (optional)

9.2.10 Managing Assets

Note: Please note that we are constantly improving on how we handle assets inside Avocado. Probably some changes
will be delivered during the next releases.

Assets are test artifacts that Avocado can download automatically either during the test execution, or before the test
even starts (by parsing the test code or on-demand, manually registering them at the command-line).

Sometimes those assets, depending on your case, can be a bottleneck when it comes to disk space. If you are constantly
using large assets in your tests, it is important to have a good idea of how Avocado stores and handles those artifacts.

Listing assets

If you would like to list assets that are cached in your system, you can run the following command:

’$ avocado assets list

This command supports ——by-size-filter and ——by-days options. When using the former you should pass a
comparison filter and a size in bytes. For instance:

’$ avocado assets list —-by-size-filter=">=2048"

The command above will list only assets bigger than 2Kb. We support the following operators: =, >=, <=, < and >.

Now, if you are looking for assets older (based on the access time) than 10 days, you could use this command:

’$ avocado assets list —--by-days=10

Removing assets

You can remove the files in your cache directories manually. However, we have provided a utility to help you with
that:

$ avocado assets purge —--help

Assets can be removed applying the same filters as described when listing them. You can remove assets by a size filter
(-—by-size-filter) or assets older than N days (-—by-days).

Removing by overall cache limit

Besides the existing features, Avocado is able to set an overall limit, so that it matches the storage limitations of users
(and CI systems).

60 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

For instance it may be the case that a GitLab cache limit is 4 GiB, in that case we can sort by last access, and remove all
that exceeds 4 GiB (that is, keep the last accessed 4 GiB worth of cached files). You can run the following command:

$ avocado assets purge —-by-overall-limit=4g

This would ensure that the cache is automatically being removed of files that were used last (and possibly not used
anymore).

Please, note that at the moment, you can only use ‘b’, ‘k’, ‘m’, ‘g’ and ‘t’ as suffix.
Changing the default cache dirs

Assets are stored inside the datadir.paths.cache_dirs option. You can change this in your configuration file
and discover your current value with the following command:

$ avocado config | grep datadir.paths.cache_dirs

9.2.11 Avocado Data Directories

When running tests, we are frequently looking to:
* Locate tests
* Write logs to a given location
* Grab files that will be useful for tests, such as ISO files or VM disk images
Avocado has a module dedicated to finding those paths, to avoid cumbersome path manipulation magic.

If you want to list all relevant directories for your test, you can use avocado config —--datadir command to
list those directories. Executing it will give you an output similar to the one seen below:

$ avocado config —--datadir
Config files read (in order):

* /etc/avocado/avocado.conf
/etc/avocado/conf.d/resultsdb.conf
/etc/avocado/conf.d/result_upload.conf
/etc/avocado/conf.d/jobscripts.conf
/etc/avocado/conf.d/gdb.conf
SHOME/ .config/avocado/avocado.conf

* X % X

Avocado replaces config dirs that can't be accessed
with sensible defaults. Please edit your local config
file to customize values.

Avocado Data Directories:
base $HOME/avocado
tests $HOME/Code/avocado/examples/tests
data S$HOME/avocado/data
logs $HOME/avocado/job-results
cache $HOME/avocado/data/cache

Note that, while Avocado will do its best to use the config values you provide in the config file, if it can’t write values
to the locations provided, it will fall back to (we hope) reasonable defaults, and we notify the user about that in the
output of the command.

The relevant API documentation and meaning of each of those data directories is in avocado. core.data_dir,
so it’s highly recommended you take a look.

9.2. Avocado User’s Guide 61

avocado Documentation, Release 90.0

You may set your preferred data dirs by setting them in the Avocado config files. The only exception for important
data dirs here is the Avocado tmp dir, used to place temporary files used by tests. That directory will be in normal
circumstances /var/tmp/avocado_XXXXX, (where XXXXX is in actuality a random string) securely created on /
var/tmp/, unless the user has the $TMPD IR environment variable set, since that is customary among unix programs.

The next section of the documentation explains how you can see and set config values that modify the behavior for the
Avocado utilities and plugins.

9.2.12 Avocado logging system

This section describes the logging system used in Avocado.

Tweaking the Ul

Avocado uses Python’s logging system to produce Ul and to store test’s output. The system is quite flexible and allows
you to tweak the output to your needs either by built-in stream sets, or directly by using the stream name.

To tweak them you can use:

$ avocado —--show STREAM[:LEVEL] [, STREAM[:LEVEL], ...]

Built-in streams with description (followed by list of associated Python streams) are listed below:
app The text based Ul (avocado.app)
test Output of the executed tests (avocado.test, “”)
debug Messages useful to debug the Avocado Framework (avocado.app.debug)

early Early logging before the logging system is set. It includes the test output and lots of output produced
by used libraries. (‘*”’, avocado.test)

Additionally you can specify “all” or “none” to enable/disable all of pre-defined streams and you can also supply
custom Python logging streams and they will be passed to the standard output.

Warning: Messages with importance greater or equal WARN in logging stream “avocado.app” are always enabled
and they go to the standard error output.

Storing custom logs

When you run a test, you can also store custom logging streams into the results directory by running:

$ avocado run --store-logging-stream [STREAM[:LEVEL] [STREAM[:LEVEL] ...]]

This will produce $STREAM. SLEVEL files per each (unique) entry in the test results directory.

Note: You have to specify separated logging streams. You can’t use the built-in streams in this function.

Note: Currently the custom streams are stored only per job, not per each individual test.

62 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

9.2.13 Understanding the plugin system

Avocado has a plugin system that can be used to extended it in a clean way.

Note: A large number of out-of-the-box Avocado features are implemented as using the same plugin architecture
available to third-party extensions.

This guide considers “core features”, even though they’re still ‘plugable’, those available with an installation of Av-
ocado by itself (pip install avocado-framework). If a feature is part of an optional or third-party plugin
package, this guide will reference it.”

Listing plugins

The avocado command line tool has a builtin plugins command that lets you list available plugins. The usage is
pretty simple:

$ avocado plugins

Plugins that add new commands (avocado.plugins.cli.cmd) :

exec-path Returns path to Avocado bash libraries and exits.

run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information

Plugins that add new options to commands (avocado.plugins.cli):
journal Journal options for the 'run' subcommand

Since plugins are (usually small) bundles of Python code, they may fail to load if the Python code is broken for any
reason. Example:

$ avocado plugins

Failed to load plugin from module "avocado.plugins.exec_path": ImportError ('No module
—named foo',)

Plugins that add new commands (avocado.plugins.cli.cmd):

run Run one or more tests (native test, test alias, binary or script)

sysinfo Collect system information

Fully qualified named for a plugin

The Avocado plugin system uses namespaces to recognize and categorize plugins. The namespace separator here is
the dot and every plugin that starts with avocado.plugins. will be recognized by the framework.

An example of a plugin’s full qualified name:
avocado.plugins.result. json

This plugin will generate the job result in JSON format.

Note: Inside Avocado we will omit the prefix avocado.plugins to make the things clean.

Note: When listing plugins with avocado plugins pay attention to the namespace inside the parenthesis on each
category description. You will realize that there are, for instance, two plugins with the name ‘JSON’. But when you

9.2. Avocado User’s Guide 63

avocado Documentation, Release 90.0

concatenate the fully qualified name it will become clear that they are actually two different plugins: result. json
and cli. json.

Disabling a plugin

If you, as Avocado user, would like to disable a plugin, you can disable on config files.

The mechanism available to do so is to add entries to the disable key under the plugins section of the Avocado
configuration file. Example:

[plugins]
disable = ['cli.hello', 'job.prepost.jobscripts']

The exact effect on Avocado when a plugin is disabled depends on the plugin type. For instance, by disabling plugins
of type c1i.cmd, the command implemented by the plugin should no longer be available on the Avocado command
line application. Now, by disabling a job.prepost plugin, those won’t be executed before/after the execution of
the jobs.

Plugin execution order
In many situations, such as result generation, not one, but all of the enabled plugin types will be executed. The order
in which the plugins are executed follows the lexical order of the entry point name.

For example, for the JSON result plugin, whose fully qualified name is result. json, has an entry point name of
json.

So, plugins of the same type, a plugin named aut omated will be executed before the plugin named uploader.

In the default Avocado set of result plugins, it means that the JSON plugin (json) will be executed before the XUnit
plugin (xunit). If the HTML result plugin is installed and enabled (htm1) it will be executed before both JSON and
XUnit.

Changing the plugin execution order

On some circumstances it may be necessary to change the order in which plugins are executed. To do so, add a order
entry a configuration file section named after the plugin type. For job.prepost plugin types, the section name has
to be named plugins. job.prepost, and it would look like this:

[plugins. job.prepost]
order = ['myplugin', 'jobscripts']

That configuration sets the job.prepost.myplugin plugin to execute before the standard Avocado job.
prepost. jobscripts does.

Note: If you are interested on how plugins works and how to create your own plugin, visit the Plugin section on
Contributor’s Guide.

Pre and post plugins

Avocado provides interfaces (hooks) with which custom plugins can register to be called at various times. For instance,
it’s possible to trigger custom actions before and after the execution of a job, or before and after the execution of the

64 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

tests from a job.

Let’s discuss each interface briefly.

Before and after jobs

Avocado supports plug-ins which are (guaranteed to be) executed before the first test and after all tests finished.

The pre method of each installed plugin of type job.prepost will be called by the run command, that is, anytime
an avocado run <valid_ test_reference> command is executed.

Note: Conditions such as the SystemExit or KeyboardInterrupt execeptions being raised can interrupt the
execution of those plugins.

Then, immediately after that, the job’s run method is called, which attempts to run all job phases, from test suite
creation to test execution.

Unless a SystemExit or KeyboardInterrupt is raised, or yet another major external event (like a system
condition that Avocado can not control) it will attempt to run the post methods of all the installed plugins of type
job.prepost. This even includes job executions where the pre plugin executions were interrupted.

Before and after tests

If you followed the previous section, you noticed that the job’s run method was said to run all the test phases. Here’s
a sequence of the job phases:

1) Creation of the test suite
2) Pre tests hook
3) Tests execution
4) Post tests hook

Plugin writers can have their own code called at Avocado during a job by writing a that will be called at
phase number 2 (pre_tests) by writing a method according to the avocado.core.plugin_interfaces.
JobPreTests () interface. Accordingly, plugin writers can have their own called at phase num-
ber 4 (post_tests) by writing a method according to the avocado.core.plugin_interfaces.
JobPostTests () interface.

Note that there’s no guarantee that all of the first 3 job phases will be executed, so a failure in phase 1
(create_test_suite), may prevent the phase 2 (pre_tests) and/or 3 (run_tests) from from being ex-
ecuted.

Now, no matter what happens in the atfempted execution of job phases 1 through 3, job phase 4 (post_tests) will
be attempted to be executed. To make it extra clear, as long as the Avocado test runner is still in execution (that is, has
not been terminated by a system condition that it can not control), it will execute plugin’s post_tests methods.

As a concrete example, a plugin’ post_tests method would not be executed after a SIGKILL is sent to the
Avocado test runner on phases 1 through 3, because the Avocado test runner would be promptly interrupted. But, a
SIGTERM and KeyboardInterrupt sent to the Avocado test runner under phases 1 though 3 would still cause the
test runner to run post_tests (phase 4). Now, if during phase 4 a KeyboardInterrupt or SystemExit is
received, the remaining plugins’ post_tests methods will NOT be executed.

9.2. Avocado User’s Guide 65

https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt

avocado Documentation, Release 90.0

Jobscripts plugin

Avocado ships with a plugin (installed by default) that allows running scripts before and after the actual execution of
Jobs. A user can be sure that, when a given “pre” script is run, no test in that job has been run, and when the “post”
scripts are run, all the tests in a given job have already finished running.

Configuration

By default, the script directory location is:

’/etc/avocado/scripts/job

Inside that directory, that is a directory for pre-job scripts:

’/etc/avocado/scripts/job/pre.d

And for post-job scripts:

’/etc/avocado/scripts/job/post.d

All the configuration about the Pre/Post Job Scripts are placed under the avocado.plugins. jobscripts config
section. To change the location for the pre-job scripts, your configuration should look something like this:

[plugins. jobscripts]
pre = /my/custom/directory/for/pre/job/scripts/

Accordingly, to change the location for the post-job scripts, your configuration should look something like this:

[plugins. jobscripts]
post = /my/custom/directory/for/post/scripts/

A couple of other configuration options are available under the same section:

* warn_non_existing_dir: gives warnings if the configured (or default) directory set for either pre or post
scripts do not exist

* warn_non_zero_status: gives warnings if a given script (either pre or post) exits with non-zero status

Script Execution Environment

All scripts are run in separate process with some environment variables set. These can be used in your scripts in any
way you wish:

* AVOCADO_JOB_UNIQUE_ ID: the unique job-id.
e AVOCADO_JOB_STATUS: the current status of the job.
e AVOCADO_JOB_LOGDIR: the filesystem location that holds the logs and various other files for a given job run.

Note: Even though these variables should all be set, it’s a good practice for scripts to check if they’re set before using
their values. This may prevent unintended actions such as writing to the current working directory instead of to the
AVOCADO_JOB_LOGDIR if this is not set.

Finally, any failures in the Pre/Post scripts will not alter the status of the corresponding jobs.

66 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Tests’ logs plugin

It’s natural that Avocado will be used in environments where access to the integral job results won’t be easily accessi-
ble.

For instance, on Continuous Integration (CI) services, one usually gets access to the output produced on the console,
while access to other files produced (generally called artifacts) may or may not be accessible.

For this reason, it may be helpful to simply output the logs for tests that have “interesting” outcomes, which usually
means that fail and need to be investigated.

To show the content for test that are canceled, skipped and fail, you can set on your configuration file:

[job.output.testlogs]
statuses = ["CANCEL", "SKIP", "FAIL"]

At the end of the job, a header will be printed for each test that ended with any of the statuses given, followed by the
raw content of its respective log file.

9.2.14 Understanding the test discovery (Avocado Loaders)

In this section you can learn how tests are being discovered and how to customize this process.

Note: Some definitions here may be out of date. The current runner can still be using some of these definitions in
its design, however, we are working on an improved version of the runner, the NextRunner that will use an alternative
strategy.

Test Loaders

A Test Loader is an Avocado component that is responsible for discovering tests that Avocado can run. In the process,
Avocado gathers enough information to allow the test to be run. Additionally, Avocado collects extra information
available within the test, such as tags that can be used to filter out tests from actual execution.

This whole process is, unless otherwise stated or manually configured, safe, in the sense that no test code will be
executed.

How Loaders discover tests
Avocado will apply ordering to the discovery process, so loaders that run earlier, will have higher precedence in
discovering tests.

A loader implementation is free to implement whatever logic it needs to discover tests. The important fact about how a
loader discover tests is that it should return one or more “test factory”, an internal data structure that, as stated before,
contains enough information to allow the test to be executed.

The order of test loaders
As described in previous sections, Avocado supports different types of test starting with SIMPLE tests, which are
simply executable files, the basic Python unittest and tests called INSTRUMENTED.

With additional plugins new test types can be supported, like the avocado—-vt ones, which uses complex matrix of
tests from config files that don’t directly map to existing files.

9.2. Avocado User’s Guide 67

avocado Documentation, Release 90.0

Given the number of loaders, the mapping from test names on the command line to executed tests might not always be
unique. Additionally some people might always (or for given run) want to execute only tests of a single type.

To adjust this behavior you can either tweak plugins.loaders in avocado settings (/etc/avocado/), or tem-
porarily using ——loaders (option of avocado run) option.

This option allows you to specify order and some params of the available test loaders. You can specify either
loader_name (file), loader_name + TEST_TYPE (file.SIMPLE) and for some loaders even additional params
passed after : (external:/bin/echo —e. You can also supply @DEFAULT, which injects into that position all
the remaining unused loaders.

Example of how ——1oaders affects the produced tests (manually gathered as some of them result in error):

$ avocado run passtest.py boot this_does_not_exist /bin/echo
> INSTRUMENTED passtest.py:PassTest.test

> VT io-github-autotest-gemu.boot
> MISSING this_does_not_exist
> SIMPLE /bin/echo

$ avocado run passtest.py boot this_does_not_exist /bin/echo —--loaders @DEFAULT
—"external:/bin/echo —e"
> INSTRUMENTED passtest.py:PassTest.test

> VT io—github-autotest—-gemu.boot
> EXTERNAL this_does_not_exist
> SIMPLE /bin/echo

$ avocado run passtest.py boot this_does_not_exist /bin/echo —--loaders file.SIMPLE
—file.INSTRUMENTED @DEFAULT external .EXTERNAL:/bin/echo
> INSTRUMENTED passtest.py:PassTest.test

> VT io—github-autotest—-gemu.boot
> EXTERNAL this_does_not_exist
> SIMPLE /bin/echo

Test References

A Test Reference is a string that can be resolved into (interpreted as) one or more tests by the Avocado Test Resolver.

Each resolver (a.k.a. loader) can handle the Test References differently. For example, External Loader will use the
Test Reference as an argument for the external command, while the File Loader will expect a file path.

If you don’t specify the loader that you want to use, all of the available loaders will be used to resolve the provided
Test References. One by one, the Test References will be resolved by the first loader able to create a test list out of
that reference.

Basic Avocado Loaders

Below you can find some extra details about the specific builtin Avocado loaders. For Loaders introduced to Avocado
via plugins (VT, Robot, ...), please refer to the corresponding loader/plugin documentation.

File Loader

For the File Loader, the loader responsible for discovering INSTRUMENTED, PyUNITTEST (classic python
unittests) and SIMPLE tests.

If the file corresponds to an INSTRUMENTED or PyUNITTEST test, you can filter the Test IDs by adding to the Test
Reference a : followed by a regular expression.

For instance, if you want to list all tests that are present in the gdbtest . py file, you can use the list command below:

68 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

$ avocado list examples/tests/gdbtest.py

INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED
INSTRUMENTED

examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest
examples/tests/gdbtest

.py:
.py:
.py:
.py:
-PY
.py:
-PYy
.py:
.py:
.py:
.py:
-PYy
.py:
-PY
.py:
.py:
.py:

GdbTest
GdbTest
GdbTest
GdbTest

:GdbTest

GdbTest

:GdbTest

GdbTest
GdbTest
GdbTest
GdbTest

:GdbTest

GdbTest

:GdbTest

GdbTest
GdbTest
GdbTest

.test_start_exit
.test_existing_commands_raw
.test_existing_commands
.test_load_set_breakpoint_run_exit_raw
.test_load_set_breakpoint_run_exit
.test_generate_core
.test_set_multiple_break
.test_disconnect_raw
.test_disconnect

.test_remote_exec
.test_stream_messages
.test_connect_multiple_clients
.test_server_exit
.test_multiple_servers
.test_server_stderr
.test_server_stdout

.test_remote

To filter the results, listing only the tests that have test_disconnect in their test method names, you can execute:

$ avocado list examples/tests/gdbtest.py:test_disconnect
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_disconnect_raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_disconnect

As the string after the : is a regular expression, two tests were filtered in. You can manipulate the regular expression
to have only the test with that exact name:

$ avocado list examples/tests/gdbtest.py:test_disconnect$
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_disconnect

The regular expression enables you to have more complex filters. Example:

$ avocado list examples/tests/gdbtest.py:GdbTest.test_[le].x*raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_existing_commands_raw
INSTRUMENTED examples/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_run_exit_raw

Once the test reference is providing you the expected outcome, you can replace the 1i st subcommand with the run
subcommand to execute your tests:

$ avocado run examples/tests/gdbtest.py:GdbTest.test_[le].*raw

JOB ID 333912fb02698ed5339a400b832795a80757b8arf

JOB LOG $HOME/avocado/job-results/job-2017-06-14T14.54-333912f/job.1log
(1/2) examples/tests/gdbtest.py:GdbTest.test_existing_commands_raw: PASS (0.59 s)
(2/2) examples/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_run_exit_raw: PASS
— (0.42 s)

RESULTS PASS 2 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT 0O | CANCEL O

JOB TIME 1.15 s

JOB HTML $HOME/avocado/job-results/job-2017-06-14T14.54-333912f/html/results.html

Warning: Specially when using regular expressions, it’s recommended to individually enclose your Test Refer-
ences in quotes to avoid bash of corrupting them. In that case, the command from the example above would be:
avocado run "examples/tests/gdbtest.py:GdbTest.test_[le].rraw"

9.2. Avocado User’s Guide

69

avocado Documentation, Release 90.0

External Loader

Using the External Loader, Avocado will consider that and External Runner will be in place and so Avocado doesn’t
really need to resolve the references. Instead, Avocado will pass the references as parameters to the External Runner.
Example:

$ avocado run 20
Unable to resolve reference(s) '20' with plugins(s) 'file', 'robot',
'vt', 'external', try running 'avocado -V list 20' to see the details.

In the command above, no loaders can resolve 20 as a test. But running the command above with the External Runner
/bin/sleep will make Avocado to actually execute /bin/sleep 20 and check for its return code:

$ avocado run 20 --loaders external:/bin/sleep
JOB ID : 42215ece2894134fb9379%9ee564aa00£f1d1ld6cbol
JOB LOG : SHOME/avocado/job-results/job-2017-06-19T11.17-42215ec/job.log
(1/1) 20: PASS (20.03 s)
RESULTS : PASS 1 | ERROR 0 | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 20.13 s
JOB HTML : S$HOME/avocado/Jjob-results/job-2017-06-19T11.17-42215ec/html/results.html

Warning: It’s safer to put your Test References at the end of the command line, after a —. That will avoid
argument vs. Test References clashes. In that case, everything after the — will be considered positional arguments,
therefore Test References. Considering that syntax, the command for the example above would be: avocado
run —--loaders external:/bin/sleep —— 20

TAP Loader

This loader enables Avocado to execute binaries or scripts and parse their Test Anything Protocol output.

The tests can be run as usual:

$ avocado run --loaders tap -- ./mytaptest

Notice that you have to be explicit about the test loader you're using, otherwise, since the test files are executable
binaries, the FileLoader will detect the file as a STMPLE test, making the whole test suite to be executed as one
test only from the Avocado perspective. Because TAP test programs should exit with a zero exit status, this will cause
the test to pass even if there are failures.

9.2.15 Advanced usage
Test Runner Selection

To effectively run a job with tests, Avocado makes use of a well described and pluggable interface. This means that
users can choose (and developers can write) their own runners.

Runner choices can be seen by running avocado plugins:

Plugins that run test suites on a job (runners):
nrunner nrunner based implementation of job compliant runner
runner The conventional test runner

70 Chapter 9. Build and Quality Status

https://testanything.org

avocado Documentation, Release 90.0

And to select a different test runner, say, nrunner:

avocado run —--test-runner=nrunner

Wrap executables run by tests
Avocado allows the instrumentation of executables being run by a test in a transparent way. The user specifies a script
(“the wrapper”) to be used to run the actual program called by the test.

If the instrumentation script is implemented correctly, it should not interfere with the test behavior. That is, the wrapper
should avoid changing the return status, standard output and standard error messages of the original executable.

The user can be specific about which program to wrap (with a shell-like glob), or if that is omitted, a global wrapper
that will apply to all programs called by the test.

Usage

This feature is implemented as a plugin, that adds the ——wrapper option to the avocado run command. For a
detailed explanation, please consult the Avocado man page.

Example of a transparent way of running strace as a wrapper:

#!/bin/sh
exec strace —-ff —-o $AVOCADO_TEST_LOGDIR/strace.log —- $@

This example file is available at examples/wrappers/strace. sh.

To have all programs started by test . py wrapped with ~/bin/my-wrapper. sh:

’$ avocado run —--wrapper ~/bin/my-wrapper.sh tests/test.py

To have only my—-binary wrapped with ~/bin/my-wrapper. sh:

’$ avocado run --wrapper ~/bin/my-wrapper.sh:+my-binary tests/test.py

The following is a working example:

’$ avocado run --wrapper examples/wrappers/strace.sh /bin/true

The strace file will be located at Avocado log directory, on test-results/1-_bin_true/ subdirectory.

Caveats

* You can only set one (global) wrapper. If you need functionality present in two wrappers, you have to combine
those into a single wrapper script.

* Only executables that are run with the avocado.utils.process APIs (and other API modules that make
use of it, like mod:avocado.utils.build) are affected by this feature.

9.2.16 What’s next?

Now that you are familiar with the basic concepts and Avocado usage, you can write your tests.

As said before, you can write test on your favorite language. But if you would like to use the Avocado libraries and
facilities, you can use Python or Bash.

9.2. Avocado User’s Guide 71

avocado Documentation, Release 90.0

If you would like to move forward on Avocado, we prepared the “Avocado Test Writer’s Guide” for you. Have fun!

9.3 Avocado Test Writer’s Guide

9.3.1 Writing a Simple Test

This very simple example of simple test written in shell script:

$ echo '#!/bin/bash' > /tmp/simple_test.sh
$ echo 'exit 0' >> /tmp/simple_test.sh
$ chmod +x /tmp/simple_test.sh

Notice that the file is given executable permissions, which is a requirement for Avocado to treat it as a simple test.
Also notice that the script exits with status code 0, which signals a successful result to Avocado.

9.3.2 Writing Avocado Tests with Python

We are going to write an Avocado test in Python and we are going to inherit from avocado. Test. This makes this
test a so-called instrumented test.

Basic example

Let’s re-create an old time favorite, sleeptest!. It is so simple, it does nothing besides sleeping for a while:

import time
from avocado import Test
class SleepTest (Test) :
def test (self):
sleep_length = self.params.get ('sleep_length', default=1)

self.log.debug("Sleeping for seconds", sleep_length)
time.sleep(sleep_length)

This is about the simplest test you can write for Avocado, while still leveraging its API power.

As can be seen in the example above, an Avocado test is a method that starts with test in a class that inherits from
avocado. Test.

Note: Avocado also supports coroutines as tests. Simply declare your test method using the async def syntax,
and Avocado will run it inside an asyncio loop.

Multiple tests and naming conventions

You can have multiple tests in a single class.

To do so, just give the methods names that start with test, say test_foo, test_bar and so on. We recommend
you follow this naming style, as defined in the PEP8 Function Names section.

9

! sleeptest is a functional test for Avocado. It’s “old” because we also have had such a test for Autotest for a long time.

72 Chapter 9. Build and Quality Status

https://www.python.org/dev/peps/pep-0008/#function-names
http://autotest.github.io

avocado Documentation, Release 90.0

For the class name, you can pick any name you like, but we also recommend that it follows the CamelCase convention,
also known as CapWords, defined in the PEP 8 document under Class Names.

Convenience Attributes

Note that the test class provides you with a number of convenience attributes:

* A ready to use log mechanism for your test, that can be accessed by means of self . log. Itlets you log debug,
info, error and warning messages.

* A parameter passing system (and fetching system) that can be accessed by means of self.params. This is
hooked to the Varianter, about which you can find that more information at Test parameters.

* And many more (see avocado.core.test. Test)

To minimize the accidental clashes we define the public ones as properties so if you see something like
AttributeError: can't set attribute double you are not overriding these.

Test statuses

Avocado supports the most common exit statuses:
* PASS - test passed, there were no untreated exceptions

e WARN - a variant of PASS that keeps track of noteworthy events that ultimately do not affect the test outcome.
An example could be soft lockup present in the dmesg output. It’s not related to the test results and unless
there are failures in the test it means the feature probably works as expected, but there were certain condition
which might be nice to review. (some result plugins does not support this and report PASS instead)

* SKIP - the test’s pre-requisites were not satisfied and the test’s body was not executed (nor its setUp () and
tearDown).

* CANCEL - the test was canceled somewhere during the setUp (), the test method or the tearDown (). The
setUp () and tearDown methods are executed.

* FATL - test did not result in the expected outcome. A failure points at a (possible) bug in the tested subject, and
not in the test itself. When the test (and its) execution breaks, an ERROR and not a FAIL is reported.”

* ERROR - this points (probably) at a bug in the test itself, and not in the subject being tested.It is usually caused
by uncaught exception and such failures needs to be thoroughly explored and should lead to test modification to
avoid this failure or to use self.fail along with description how the subject under testing failed to perform
it’s task.

e INTERRUPTED - this result can’t be set by the test writer, it is only possible when the timeout is reached or
when the user hits CTRL+C while executing this test.

* other - there are some other internal test statuses, but you should not ever face them.

As you can see the FATL is a neat status, if tests are developed correctly. When writing tests always think about what
its set Up should be, what the test body and is expected to go wrong in the test. To support you Avocado supports
several methods:

Test methods

The simplest way to set the status is touse self.fail, self.error or self.cancel directly from test.

To remember a warning, one simply writes to self.log.warning logger. This won’t interrupt the test execution,
but it will remember the condition and, if there are no failures, will report the test as WARN.

9.3. Avocado Test Writer’s Guide 73

https://www.python.org/dev/peps/pep-0008/

avocado Documentation, Release 90.0

Turning errors into failures

Errors on Python code are commonly signaled in the form of exceptions being thrown. When Avocado runs a test, any
unhandled exception will be seen as a test ERROR, and not as a FAIL.

Still, it’s common to rely on libraries, which usually raise custom (or builtin) exceptions. Those exceptions would
normally result in ERROR but if you are certain this is an odd behavior of the object under testing, you should catch
the exception and explain the failure in self.fail method:

try:
process.run("stress_my_feature")
except process.CmdError as details:
self.fail ("The stress comamnd failed: " % details)

If your test compounds of many executions and you can’t get this exception in other case then expected failure, you
can simplify the code by using fail_on decorator:

@avocado.fail_on (process.CmdError)
def test (self):
process.run("first cmd")
process.run ("second cmd")
process.run ("third cmd")

Once again, keeping your tests up-to-date and distinguishing between FATIL and ERROR will save you a lot of time
while reviewing the test results.

Turning errors into cancels

It is also possible to assume unhandled exception to be as a test CANCEL instead of a test ERROR simply by using
cancel_on decorator:

def test (self):
@avocado.cancel_on (TypeError)
def fool():
raise TypeError
foo ()

Saving test generated (custom) data

Each test instance provides a so called whiteboard. It can be accessed through self.whiteboard. This white-
board is simply a string that will be automatically saved to test results after the test finishes (it’s not synced during the
execution so when the machine or Python crashes badly it might not be present and one should use direct io to the
outputdir for critical data). If you choose to save binary data to the whiteboard, it’s your responsibility to encode
it first (base64 is the obvious choice).

Building on the previously demonstrated sleeptest, suppose that you want to save the sleep length to be used by
some other script or data analysis tool:

def test (self):
sleep_length = self.params.get ('sleep_length', default=1)

self.log.debug("Sleeping for seconds", sleep_length)
time.sleep(sleep_length)
self.whiteboard = " " % sleep_length

74 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

The whiteboard can and should be exposed by files generated by the available test result plugins. The results.
json file already includes the whiteboard for each test. Additionally, we’ll save a raw copy of the whiteboard contents
on a file SRESULTS/test-results/S$STEST_ID/whiteboard, for your convenience (maybe you want to use
the result of a benchmark directly with your custom made scripts to analyze that particular benchmark result).

If you need to attach several output files, you can also use self.outputdir, which points to the SRESULTS/
test-results/S$TEST_ID/data location and is reserved for arbitrary test result data.

Accessing test data files

Some tests can depend on data files, external to the test file itself. Avocado provides a test API that makes it really
easy to access such files: get_data ().

For Avocado tests (that is, INSTRUMENTED tests) get__data () allows test data files to be accessed from up to three
sources:

« file level data directory: a directory named after the test file, but ending with .data. For a test file /home/
user/test.py, the file level data directory is /home /user/test .py.data/.

* test level data directory: a directory named after the test file and the specific test name. These are useful
when different tests part of the same file need different data files (with the same name or not). Considering
the previous example of /home /user/test.py, and supposing it contains two tests, M\yTest .test_foo
and MyTest .test_bar, the test level data directories will be, /home /user/test.py.data/MyTest.
test_foo/ and home/user/test.py.data/MyTest.test_bar/ respectively.

* variant level data directory: if variants are being used during the test execution, a directory named after the
variant will also be considered when looking for test data files. For test file /home /user/test.py, and test
MyTest .test_foo, with variant debug-f £ £ £, the data directory path will be /home/user/test.py.
data/MyTest.test_foo/debug-ffff/.

Note: Unlike INSTRUMENTED tests, SIMPLE tests only define file and variant data_dirs, therefore the
most-specific data-dir might look like /bin/echo.data/debug-ff£ff/.

Avocado looks for data files in the order defined at DATA SOURCES, which are from most specific one, to most
generic one. That means that, if a variant is being used, the variant directory is used first. Then the test level
directory is attempted, and finally the file level directory. Additionally you can use get_data (filename,
must_exist=False) to get expected location of a possibly non-existing file, which is useful when you intend
to create it.

Tip: When running tests you can use the -—log-test-data-directories command line option log the test
data directories that will be used for that specific test and execution conditions (such as with or without variants). Look
for “Test data directories” in the test logs.

Note: The previously existing APl avocado.core.test.Test.datadir, used to allow access to the data
directory based on the test file location only. This API has been removed. If, for whatever reason you still
need to access the data directory based on the test file location only, you can use get_data (filename="",
source="'file', must_exist=False) instead.

9.3. Avocado Test Writer’s Guide 75

avocado Documentation, Release 90.0

Accessing test parameters
Each test has a set of parameters that can be accessed through self.params.get ($name, $path=None,
$default=None) where:

* name - name of the parameter (key)

* path - where to look for this parameter (when not specified uses mux-path)

e default - what to return when param not found

The path is a bit tricky. Avocado uses tree to represent parameters. In simple scenarios you don’t need to worry and
you’ll find all your values in default path, but eventually you might want to check-out Test parameters to understand
the details.

Let’s say your test receives following params (you’ll learn how to execute them in the following section):

$ avocado variants -m examples/tests/sleeptenmin.py.data/sleeptenmin.yaml —--variants 2

Variant 1: /run/sleeptenmin/builtin, /run/variants/one_cycle

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

In test you can access those params by:

self.params.get ("sleep_method") # returns "builtin"
self.params.get ("sleep_cycles", 'x', 10) # returns 1
self.params.get ("sleep_length", "/x/variants/«" # returns 600

Note: The path is important in complex scenarios where clashes might occur, because when there are multiple values
with the same key matching the query Avocado raises an exception. As mentioned you can avoid those by using
specific paths or by defining custom mux-path which allows specifying resolving hierarchy. More details can be found
in Test parameters.

Running multiple variants of tests
In the previous section we described how parameters are handled. Now, let’s have a look at how to produce them and
execute your tests with different parameters.

The variants subsystem is what allows the creation of multiple variations of parameters, and the execution of tests with
those parameter variations. This subsystem is pluggable, so you might use custom plugins to produce variants. To
keep things simple, let’s use Avocado’s primary implementation, called “yaml_to_mux”.

The “yaml_to_mux” plugin accepts YAML files. Those will create a tree-like structure, store the variables as parame-
ters and use custom tags to mark locations as “multiplex” domains.

Let’s use examples/tests/sleeptenmin.py.data/sleeptenmin.yaml file as an example:

sleeptenmin: !mux

builtin:
sleep_method: builtin
shell:
sleep_method: shell
variants: !mux

(continues on next page)

76 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

one_cycle:
sleep_cycles: 1
sleep_length: 600
six_cycles:
sleep_cycles: 6
sleep_length: 100
one_hundred_cycles:
sleep_cycles: 100
sleep_length: 6
six_hundred_cycles:
sleep_cycles: 600
sleep_length: 1

Which produces following structure and parameters:

$ avocado variants -m examples/tests/sleeptenmin.py.data/sleeptenmin.yaml —--summary 2
———-variants 2
Multiplex tree representation:

run
sleeptenmin
builtin
— sleep_method: builtin
shell
— sleep_method: shell
variants

one_cycle
— sleep_length: 600
— sleep_cycles: 1
six_cycles
— sleep_length: 100
— sleep_cycles: 6
one_hundred_cycles
— sleep_length: 6
— sleep_cycles: 100
six_hundred_cycles
— sleep_length: 1
— sleep_cycles: 600

Multiplex variants (8):

Variant builtin-one_cycle-f659: /run/sleeptenmin/builtin, /run/variants/one_cycle
/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_cycle:sleep_cycles => 1

/run/variants/one_cycle:sleep_length => 600

Variant builtin-six_cycles-723b: /run/sleeptenmin/builtin, /run/variants/six_cycles
/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/six_cycles:sleep_cycles => 6
/run/variants/six_cycles:sleep_length => 100

Variant builtin-one_hundred_cycles-633a: /run/sleeptenmin/builtin, /run/variants/
—one_hundred_cycles
/run/sleeptenmin/builtin:sleep_method => builtin

/run/variants/one_hundred_cycles:sleep_cycles => 100
/run/variants/one_hundred_cycles:sleep_length => 6

Variant builtin-six_hundred_cycles-a570: /run/sleeptenmin/builtin, /run/variants/

—six_hundred_cycles (continues on next page)

9.3. Avocado Test Writer’s Guide 77

avocado Documentation, Release 90.0

(continued from previous page)

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/six_hundred_cycles:sleep_cycles => 600
/run/variants/six_hundred_cycles:sleep_length => 1

Variant shell-one_cycle-55f5: /run/sleeptenmin/shell, /run/variants/one_cycle
/run/sleeptenmin/shell:sleep_method => shell
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

Variant shell-six_cycles—-9e23: /run/sleeptenmin/shell, /run/variants/six_cycles
/run/sleeptenmin/shell:sleep_method => shell
/run/variants/six_cycles:sleep_cycles => 6
/run/variants/six_cycles:sleep_length => 100

Variant shell-one_hundred_cycles-586f: /run/sleeptenmin/shell, /run/variants/one_
—hundred_cycles
/run/sleeptenmin/shell:sleep_method => shell

/run/variants/one_hundred_cycles:sleep_cycles => 100
/run/variants/one_hundred_cycles:sleep_length => 6

Variant shell-six_hundred_cycles-1e84: /run/sleeptenmin/shell, /run/variants/six_
—hundred_cycles
/run/sleeptenmin/shell:sleep_method => shell

/run/variants/six_hundred_cycles:sleep_cycles => 600
/run/variants/six_hundred_cycles:sleep_length => 1

You can see that it creates all possible variants of each multiplex domain, which are defined by ! mux tag in the
YAML file and displayed as single lines in tree view (compare to double lines which are individual nodes with values).
In total it’ll produce 8 variants of each test:

$ avocado run --mux-yaml examples/tests/sleeptenmin.py.data/sleeptenmin.yaml --— |
—passtest.py

JOB ID : cc7ef22654c683b73174af6£97bc385da5a0f02f

JOB LOG : SHOME/avocado/job-results/job-2017-01-22T11.26-cc7ef22/job.log

(1/8) passtest.py:PassTest.test;builtin-one_cycle-f659: PASS (0.01 s)
(2/8) passtest.py:PassTest.test;builtin-six_cycles-723b: PASS (0.01 s)
(3/8) passtest.py:PassTest.test;builtin-one_hundred_cycles-633a: PASS (0.01 s)

)

)
(4/8) passtest.py:PassTest.test;builtin-six_hundred_cycles-a570: PASS (0.01 s)
(5/8) passtest.py:PassTest.test;shell-one_cycle-55f5: PASS (0.01 s)
(6/8) passtest.py:PassTest.test;shell-six_cycles—-9e23: PASS (0.01 s)
(7/8) passtest.py:PassTest.test;shell-one_hundred_cycles-586f: PASS (0.01 s)
(8/8) passtest.py:PassTest.test;shell-six_hundred_cycles-1e84: PASS (0.01 s)

RESULTS : PASS 8 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O

JOB TIME : 0.16 s

There are other options to influence the params so please check out avocado run -h and for details use 7est
parameters.

unittest.TestCase heritage

Since an Avocado test inherits from unittest.TestCase, you can use all the assertion methods that its parent.

The code example bellow uses assertEqual, assertTrue and assertIsInstace:

from avocado import Test

(continues on next page)

78 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertTrue
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsInstance

avocado Documentation, Release 90.0

(continued from previous page)

class RandomExamples (Test) :
def test (self):
self.log.debug("Verifying some random math...")
four = 2 % 2
four_ = 2 + 2
self.assertEqual (four, four_, "something is very wrong here!")

self.log.debug("Verifying if a variable is set to True...")
variable = True
self.assertTrue (variable)

self.log.debug("Verifying if this test is an instance of test.Test")
self.assertIsInstance(self, test.Test)

Running tests under other unittest runners

nose is another Python testing framework that is also compatible with unittest.

Because of that, you can run Avocado tests with the nosetest s application:

$ nosetests examples/tests/sleeptest.py

Ran 1 test in 1.004s

OK

Conversely, you can also use the standard unittest .main () entry point to run an Avocado test. Check out the
following code, to be saved as dummy . py:

from avocado import Test
from unittest import main

class Dummy (Test) :
def test (self):
self.assertTrue (True)
if _ name_ == '_ main__
main ()

It can be run by:

$ python dummy.py

Ran 1 test in 0.000s

OK

But we’d still recommend using avocado .main instead which is our main entry point.

Setup and cleanup methods

To perform setup actions before/after your test, you may use setUp and tearDown methods. The tearDown
method is always executed even on setUp failure so don’t forget to initialize your variables early in the setUp.

9.3. Avocado Test Writer’s Guide 79

https://nose.readthedocs.org/
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.main

avocado Documentation, Release 90.0

Example of usage is in the next section Running third party test suites.

Running third party test suites

It is very common in test automation workloads to use test suites developed by third parties. By wrapping the execution
code inside an Avocado test module, you gain access to the facilities and API provided by the framework. Let’s say
you want to pick up a test suite written in C that it is in a tarball, uncompress it, compile the suite code, and then
executing the test. Here’s an example that does that:

#!/usr/bin/env python3
import os

from avocado import Test
from avocado.utils import archive, build, process

class SyncTest (Test) :

mmn

Execute the synctest test suite.

:param sync_tarball: path to the tarball relative to a data directory
:param default_symbols: whether to build with debug symbols (bool)
:param sync_length: how many data should by used in sync test

:param sync_loop: how many writes should be executed in sync test
mrmmn

def setUp(self):

mnn

Build the synctest suite.

self.cwd = os.getcwd()

sync_tarball = self.params.get ('sync_tarball', 'x', 'synctest.tar.bz2")
tarball_path = self.get_data(sync_tarball)

if tarball_path is None:

self.cancel ('Test is missing data file %s' % tarball_path)
archive.extract (tarball_path, self.workdir)
srcdir = os.path.join(self.workdir, 'synctest')

os.chdir (srcdir)
if self.params.get ('debug_symbols', default=True):
build.make (srcdir,
env={'CFLAGS': '-g -00'},
extra_args='synctest',
allow_output_check="none')
else:
build.make (srcdir,
allow_output_check="none')

def test (self):

mmn

Execute synctest with the appropriate params.
path = os.path.join(os.getcwd(), 'synctest')

cmd = ('%s %s %s' %

(path, self.params.get ('sync_length', default=100),
self.params.get ('sync_loop', default=10)))

<

(continues on next page)

80 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

process.system(cmd)
os.chdir(self.cwd)

Here we have an example of the setUp method in action: Here we get the location of the test suite code (tarball)
through avocado.Test.get_data (), then uncompress the tarball through avocado.utils.archive.
extract (), an API that will decompress the suite tarball, followed by avocado.utils.build.make (), that
will build the suite.

In this example, the test method just gets into the base directory of the compiled suite and executes the ./
synctest command, with appropriate parameters, using avocado.utils.process.system().

Fetching asset files

To run third party test suites as mentioned above, or for any other purpose, we offer an asset fetcher as a method
of Avocado Test class. The asset fetch method looks for a list of directories in the cache_dirs key, inside the
[datadir.paths] section from the configuration files. Read-only directories are also supported. When the asset
file is not present in any of the provided directories, Avocado will try to download the file from the provided locations,
copying it to the first writable cache directory. Example:

cache_dirs = ['/usr/local/src/', '~/avocado/data/cache']

In the example above, /usr/local/src/ is a read-only directory. In that case, when Avocado needs to fetch the
asset from the locations, the asset will be copied to the ~/avocado/data/cache directory.

If the tester does not provide a cache_dirs for the test execution, Avocado creates a cache directory inside the
Avocado data_dir location to put the fetched files in.

e Use case 1: no cache_dirs key in config files, only the asset name provided in the full URL format:

def setUp(self):
stress = 'https://fossies.org/linux/privat/stress-1.0.4.tar.gz"'
tarball = self.fetch_asset (stress)
archive.extract (tarball, self.workdir)

In this case, fetch_asset () will download the file from the URL provided, copying it to the $data_dir/
cache directory. The fetch_asset () method returns the target location of the fetched asset. In this exam-
ple, the tarball variable holds /home/user/avocado/data/cache/stress-1.0.4.tar.gz.

» Use case 2: Read-only cache directory provided. cache_dirs = ['/mnt/files']:

def setUp(self):
stress 'https://fossies.org/linux/privat/stress-1.0.4.tar.gz’'
tarball = self.fetch_asset (stress)
archive.extract (tarball, self.workdir)

In this case, Avocado tries to find stress-1.0.4.tar.gz filein /mnt /files directory. If it’s not found,
since /mnt/files cache is read-only, Avocado tries to download the asset file to the $data_dir/cache
directory.

» Use case 3: Writable cache directory provided, along with a list of locations. Use of the default cache directory,
cache_dirs = ['~/avocado/data/cache']:

9.3. Avocado Test Writer’s Guide 81

avocado Documentation, Release 90.0

def setUp(self):

st_name = 'stress-1.0.4.tar.gz'

st_hash = 'el533bc704928ba6e26a362452e6db8£fd58b1£f0b"

st_loc = ['https://fossies.org/linux/privat/stress-1.0.4.tar.gz"',
'ftp://foo.bar/stress-1.0.4.tar.gz"]

tarball = self.fetch_asset (st_name, asset_hash=st_hash,

locations=st_1loc)
archive.extract (tarball, self.workdir)

In this case, Avocado tries to download stress—-1.0.4.tar.gz from the provided locations list (if it’s not
already in the default cache, ~/avocado/data/cache). As the hash was also provided, Avocado verifies
the hash. To do so, Avocado first looks for a hash file named stress-1.0.4.tar.gz.CHECKSUM in the
same directory. If the hash file is not available, Avocado computes the hash and creates the hash file for later
use.

The resulting tarball variable content will be ~/avocado/cache/stress-1.0.4.tar.gz. Anex-
ception is raised if Avocado fails to download or to verify the file.

Use case 4: Low bandwidth available for download of a large file which takes a lot of time to download and
causes a CI, like Travis, for example, to timeout the test execution. Do not cancel the test if the file is not
available:

def setUp(self):

st_name = 'stress-1.0.4.tar.gz'

st_hash = 'el533bc704928ba6e26a362452e6db8fd58b1f0b"

st_loc = ['https://fossies.org/linux/privat/stress-1.0.4.tar.gz"',
'ftp://foo.bar/stress-1.0.4.tar.gz"]

tarball = self.fetch_asset (st_name, asset_hash=st_hash,

locations=st_loc, find_only=True)
archive.extract (tarball, self.workdir)

Setting the find_only parameter to True will make Avocado look for the asset in the cache, but will not
attempt to download it if the asset is not available. The asset download can be done prior to the test execution
using the command-line avocado assets fetch INSTRUMENTED.

In this example, if the asset is not available in the cache, the test will continue to run and when the test tries to
use the asset, it will fail. A solution for that is presented in the next use case.

Use case 5: Low bandwidth available for download or a large file which takes a lot of time to download and
causes a CI, like Travis, for example, to timeout the test execution. Cancel the test if the file is not available:

def setUp(self):

st_name = 'stress—-1.0.4.tar.gz'

st_hash = 'el533bc704928ba6e26a362452e6db8fd58b1£f0b"

st_loc = ['https://fossies.org/linux/privat/stress-1.0.4.tar.gz"',
'ftp://foo.bar/stress-1.0.4.tar.gz"]

tarball = self.fetch_asset (st_name, asset_hash=st_hash,

locations=st_loc, find_only=True,
cancel_on_missing=True)
archive.extract (tarball, self.workdir)

With cancel_on_missing set to True and find_only set to True, if the file is not available in the

82

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

cache, the test is canceled.
Detailing the fetch_asset () parameters:

e name: The destination name used to the fetched file. It can also contains a full URI. The URI will be used as
the location (after searching into the cache directories).

* asset_hash: (optional) The expected hash for the file. If missing, Avocado skips the hash check. If provided,
before computing the hash, Avocado looks for a hash file to verify the asset. If the hash file is not available,
Avocado computes the hash and creates the hash file in the same cache directory for later use.

* algorithm: (optional) Provided hash algorithm format. Defaults to shal.

e locations: (optional) List of locations used to try to fetch the file. The supported schemes are http://,
https://, ftp:// and £ile: //. The tester should inform the full url to the file, including the file name.
The first fetch success skips the next locations. Notice that for file:// Avocado creates a symbolic link in
the cache directory, pointing to the original location of the file.

* expire: (optional) period while a cached file is considered valid. After that period, the file will be downloaded
again. The value can be an integer or a string containing the time and the unit. Example: ‘10d’ (ten days). Valid
units are s (second), m (minute), h (hour) and d (day).

e find_only: (optional) tries to find the asset in the cache. If the asset file is not available in the cache,
Avocado will not attempt to download it.

e cancel_on_missing (optional) if set to True, cancel the current running test if there is a problem while
downloading the asset or if find_only=True and the asset is not available in the cache.

The expected return of the method is the asset file path or an exception.

Test Output Check and Output Record Mode

In a lot of occasions, you want to go simpler: just check if the output of a given test matches an expected output. In
order to help with this common use case, Avocado provides the ——output—-check—-record option:

—-—output-check-record {none,stdout,stderr,both,combined,all}
Record the output produced by each test (from stdout
and stderr) into both the current executing result and
into reference files. Reference files are used on
subsequent runs to determine if the test produced the
expected output or not, and the current executing
result is used to check against a previously recorded
reference file. Valid values: 'none' (to explicitly
disable all recording) 'stdout' (to record standard
output =*onlyx), 'stderr' (to record standard error
xonlyx), 'both' (to record standard output and error
in separate files), 'combined' (for standard output
and error in a single file). 'all' is also a valid but
deprecated option that is a synonym of 'both'.

If this option is used, Avocado will store the content generated by the test in the standard (POSIX) streams, that is,
STDOUT and STDERR. Depending on the option chosen, you may end up with different files recorded (into what we
call “reference files”):

* stdout will produce a file named stdout .expected with the contents from the test process standard
output stream (file descriptor 1)

e stderr will produce a file named stderr .expected with the contents from the test process standard error
stream (file descriptor 2)

* both will produce both a file named stdout . expected and a file named stderr.expected

9.3. Avocado Test Writer’s Guide 83

avocado Documentation, Release 90.0

e combined: will produce a single file named output . expected, with the content from both test process
standard output and error streams (file descriptors 1 and 2)

» none will explicitly disable all recording of test generated output and the generation reference files with that
content

The reference files will be recorded in the first (most specific) test’s data dir (Accessing test data files). Let’s take
as an example the test synctest .py. In a fresh checkout of the Avocado source code you can find the following
reference files:

examples/tests/synctest.py.data/stderr.expected
examples/tests/synctest.py.data/stdout.expected

From those 2 files, only stdout.expected has some content:

$ cat examples/tests/synctest.py.data/stdout.expected
PAR : waiting
PASS : sync interrupted

This means that during a previous test execution, output was recorded with option ——output-check-record
both and content was generated on the STDOUT stream only:

$ avocado run —--output-check-record both synctest.py

JOB ID : b6306504351b037£fa304885c0baa923710£34f4a
JOB LOG : $JOB_RESULTS_DIR/job-2017-11-26T16.42-b630650/job.log
(1/1) examples/tests/synctest.py:SyncTest.test: PASS (2.03 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME 1 2.26 s

After the reference files are added, the check process is transparent, in the sense that you do not need to provide special
flags to the test runner. From this point on, after such as test (one with a reference file recorded) has finished running,
Avocado will check if the output generated match the reference(s) file(s) content. If they don’t match, the test will
finish with a FATL status.

You can disable this automatic check when a reference file exists by passing ——disable—output—-check to the
test runner.

Tip: The avocado.utils.process APIs have a parameter called allow_output_check that let you indi-
vidually select the output that will be part of the test output and recorded reference files. Some other APIs built on top
of avocado.utils.process, such as the ones in avocado. utils.build also provide the same parameter.

This process works fine also with simple tests, which are programs or shell scripts that returns 0 (PASSed) or != 0
(FAILed). Let’s consider our bogus example:

$ cat output_check.sh
#!/bin/bash
echo "Hello, world!"

Let’s record the output for this one:

$ avocado run output_check.sh —--output-check-record all

JOB ID : 25c4244dda71d0570b7£849319cd71fel722be8b

JOB LOG : SHOME/avocado/job-results/job-2014-09-25T20.49-25c4244/j0b.1log
(1/1) output_check.sh: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL O | SKIP O | WARN O | INTERRUPT O

JOB TIME : 0.11 s

84 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

After this is done, you’ll notice that the test data directory appeared in the same level of our shell script, containing 2
files:

$ 1s output_check.sh.data/
stderr.expected stdout.expected

Let’s look what’s in each of them:

$ cat output_check.sh.data/stdout.expected
Hello, world!

$ cat output_check.sh.data/stderr.expected
$

Now, every time this test runs, it’ll take into account the expected files that were recorded, no need to do anything else
but run the test. Let’s see what happens if we change the stdout . expected file contents to Hello, Avocado!:

$ avocado run output_check.sh

JOB ID : £0521e524£face93019d7cb99c5765aedd933cb2e

JOB LOG : SHOME/avocado/job-results/job-2014-09-25T20.52-f0521e5/job.log
(1/1) output_check.sh: FAIL (0.02 s)

RESULTS : PASS O | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O

JOB TIME : 0.12 s

Verifying the failure reason:

$ cat S$SHOME/avocado/job-results/latest/job.log

2017-10-16 14:23:02,567 test L0381 INFO | START l-output_check.sh

2017-10-16 14:23:02,568 test L0402 DEBUG| Test metadata:

2017-10-16 14:23:02,568 test L0403 DEBUG]| filename: S$HOME/output_
—check.sh

2017-10-16 14:23:02,596 process L0389 INFO | Running '$HOME/output_check.
—sh'

2017-10-16 14:23:02,603 process L0499 INFO | Command 'S$HOME/output_check.
—sh' finished with 0 after 0.00131011009216s

2017-10-16 14:23:02,602 process L0479 DEBUG| [stdout] Hello, world!

2017-10-16 14:23:02,603 test L1084 INFO | Exit status: 0

2017-10-16 14:23:02,604 test L1085 INFO | Duration: 0.00131011009216

2017-10-16 14:23:02,604 test L0274 DEBUG| DATA (filename=stdout.
—expected) => SHOME/output_check.sh.data/stdout.expected (found at file source dir)

2017-10-16 14:23:02,605 test L0740 DEBUG| Stdout Diff:

2017-10-16 14:23:02,605 test L0742 DEBUG| —--- S$HOME/output_check.sh.
—data/stdout .expected

2017-10-16 14:23:02,605 test L0742 DEBUG| +++ S$SHOME/avocado/job—
—results/job-2017-10-16T14.23-8cba866/test-results/l-output_check.sh/stdout

2017-10-16 14:23:02,605 test L0742 DEBUG| @@ -1 +1 @@

2017-10-16 14:23:02,605 test L0742 DEBUG| —-Hello, Avocado!

2017-10-16 14:23:02,605 test L0742 DEBUG| +Hello, world!

2017-10-16 14:23:02,606 stacktrace L0041 ERROR|

2017-10-16 14:23:02,606 stacktrace L0044 ERROR| Reproduced traceback from:
—S$HOME/git/avocado/avocado/core/test.py:872

2017-10-16 14:23:02,606 stacktrace L0047 ERROR| Traceback (most recent call
—last) :

2017-10-16 14:23:02,606 stacktrace L0047 ERROR| File "SHOME/git/avocado/
—avocado/core/test.py", line 743, in _check_reference_stdout

2017-10-16 14:23:02,606 stacktrace L0047 ERROR]| self.fail ('Actual test
—sdtout differs from expected one')

2017-10-16 14:23:02,606 stacktrace 1.0047 ERROR | File "S$HOME//git/avocado/

—avocado/core/test.py", line 983, in fail

(continues on next page)

9.3. Avocado Test Writer’s Guide 85

avocado Documentation, Release 90.0

(continued from previous page)

2017-10-16 14:23:02,607 stacktrace L0047 ERROR]| raise exceptions.
—TestFail (message)

2017-10-16 14:23:02,607 stacktrace L0047 ERROR| TestFail: Actual test,
—sdtout differs from expected one

2017-10-16 14:23:02,607 stacktrace L0048 ERROR|

2017-10-16 14:23:02,607 test 1.0274 DEBUG| DATA (filename=stderr.
—expected) => SHOME//output_check.sh.data/stderr.expected (found at file source dir)

2017-10-16 14:23:02,608 test L0965 ERROR| FAIL l-output_check.sh ->

—TestFail: Actual test sdtout differs from expected one

As expected, the test failed because we changed its expectations, so an unified diff was logged. The unified diffs are
also present in the files stdout.diff and stderr.diff, present in the test results directory:

$ cat $HOME/avocado/job-results/latest/test-results/l-output_check.sh/stdout.diff
——— SHOME/output_check.sh.data/stdout.expected

+++ $SHOME/avocado/job-results/job-2017-10-16T14.23-8cba866/test-results/l-output_
—check.sh/stdout

@@ -1 +1 @@

-Hello, Avocado!

+Hello, world!

Note: Currently the stdout, stderr and output files are stored in text mode. Data that can not be decoded according
to current locale settings, will be replaced according to https://docs.python.org/3/library/codecs.html#codecs.replace_
errors.

Test log, stdout and stderr in native Avocado modules
If needed, you can write directly to the expected stdout and stderr files from the native test scope. It is important to
make the distinction between the following entities:

 The test logs

* The test expected stdout

* The test expected stderr

The first one is used for debugging and informational purposes. Additionally writing to self.log.warning causes test to
be marked as dirty and when everything else goes well the test ends with WARN. This means that the test passed but
there were non-related unexpected situations described in warning log.

You may log something into the test logs using the methods in avocado. Test . 1og class attributes. Consider the
example:

class output_test (Test):

def test (self):
self.log.info('This goes to the log and it is only informational')
self.log.warn('Oh, something unexpected, non-critical happened, '
'but we can continue.')

self.log.error ('Describe the error here and don't forget to raise '
'an exception yourself. Writing to self.log.error '
'won't do that for you.')

self.log.debug('Everybody look, I had a good lunch today...")

86 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/codecs.html#codecs.replace_errors
https://docs.python.org/3/library/codecs.html#codecs.replace_errors

avocado Documentation, Release 90.0

If you need to write directly to the test stdout and stderr streams, Avocado makes two preconfigured loggers available
for that purpose, named avocado.test.stdout and avocado.test.stderr. You can use Python’s standard
logging API to write to them. Example:

import logging
class output_test (Test):
def test (self):
stdout = logging.getLogger ('avocado.test.stdout')

stdout.info('Informational line that will go to stdout')

stderr = logging.getLogger ('avocado.test.stderr')
stderr.info('Informational line that will go to stderr')

Avocado will automatically save anything a test generates on STDOUT into a stdout file, to be found at the test
results directory. The same applies to anything a test generates on STDERR, that is, it will be saved into a stderr
file at the same location.

Additionally, when using the runner’s output recording features, namely the ——output-check-record argu-
ment with values stdout, stderr or all, everything given to those loggers will be saved to the files stdout.
expected and stderr.expected at the test’s data directory (which is different from the job/test results direc-

tory).

Setting a Test Timeout

Sometimes your test suite/test might get stuck forever, and this might impact your test grid. You can account for that
possibility and set up a t imeout parameter for your test. The test timeout can be set through the test parameters, as
shown below.

sleep_length: 5
timeout: 3

$ avocado run sleeptest.py —-mux-yaml /tmp/sleeptest—-example.yaml

JOB ID : c78464bde9072a0b560115798%9a99f0ba32a288e
JOB LOG : SHOME/avocado/job-results/job-2016-11-02T11.13-c78464b/job.log
(1/1) sleeptest.py:SleepTest.test: INTERRUPTED (3.04 s)
RESULTS : PASS O | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT 1
JOB TIME : 3.14 s
JOB HTML : SHOME/avocado/job-results/job-2016-11-02T11.13-c78464b/html/results.html

$ cat S$HOME/avocado/job-results/job-2016-11-02T11.13-c78464b/job.log

2016-11-02 11:13:01,133 Jjob L0384 INFO | Multiplex tree representation:
2016-11-02 11:13:01,133 Jjob L0386 INFO | \-- run

2016-11-02 11:13:01,133 job L0386 INFO | -> sleep_length: 5
2016-11-02 11:13:01,133 Jjob L0386 INFO | -> timeout: 3

2016-11-02 11:13:01,133 Jjob L0387 INFO |

2016-11-02 11:13:01,134 job L0391 INFO | Temporary dir: /var/tmp/avocado_
—PgDEyC

2016-11-02 11:13:01,134 Jjob L0392 INFO |

2016-11-02 11:13:01,134 Jjob L0399 INFO | Variant 1: /run

2016-11-02 11:13:01,134 Jjob L0402 INFO |

2016-11-02 11:13:01,134 Jjob L0311 INFO | Job ID: |
—C78464bde9072a0b5601157989a99f0ba32a288e

2016-11-02 11:13:01,134 Jjob L0314 INFO |

2016-11-02 11:13:01,345 sysinfo L0107 DEBUG| Not logging /proc/pci (file
—does not exist) (continues on next page)

9.3. Avocado Test Writer’s Guide 87

avocado Documentation, Release 90.0

(continued from previous page)

2016-11-02 11:13:01,351 sysinfo L0105 DEBUG| Not logging /proc/slabinfo,,

— (lack of permissions)

2016-11-02 11:13:01,355 sysinfo L0107 DEBUG| Not logging /sys/kernel/debug/
—~sched_features (file does not exist)

2016-11-02 11:13:01,388 sysinfo L0388 INFO | Commands configured by file: /
—etc/avocado/sysinfo/commands

2016-11-02 11:13:01,388 sysinfo L0399 INFO | Files configured by file: /etc/
—avocado/sysinfo/files

2016-11-02 11:13:01,388 sysinfo L0419 INFO | Profilers configured by file: /
—etc/avocado/sysinfo/profilers

2016-11-02 11:13:01,388 sysinfo L0427 INFO | Profiler disabled

2016-11-02 11:13:01,394 multiplexer L0166 DEBUG| PARAMS (key=timeout, path=x,
—~default=None) => 3

2016-11-02 11:13:01,395 test L0216 INFO | START l-sleeptest.py:SleepTest.
—test

2016-11-02 11:13:01,396 multiplexer L0166 DEBUG| PARAMS (key=sleep_length,
—path=x, default=1l) => 5

2016-11-02 11:13:01,396 sleeptest L0022 DEBUG| Sleeping for 5.00 seconds
2016-11-02 11:13:04,411 stacktrace L0038 ERROR]

2016-11-02 11:13:04,412 stacktrace L0041 ERROR| Reproduced traceback from:
—$HOME/src/avocado/avocado/core/test .py:454

2016-11-02 11:13:04,412 stacktrace L0044 ERROR| Traceback (most recent call
—last) :

2016-11-02 11:13:04,413 stacktrace 1.0044 ERROR| File "/usr/share/doc/avocado/
—tests/sleeptest.py", line 23, in test

2016-11-02 11:13:04,413 stacktrace L0044 ERROR| time.sleep(sleep_length)
2016-11-02 11:13:04,413 stacktrace 1.0044 ERROR| File "$HOME/src/avocado/
—avocado/core/runner.py", line 293, in sigterm_handler

2016-11-02 11:13:04,413 stacktrace L0044 ERROR| raise SystemExit ("Test,,
—interrupted by SIGTERM")

2016-11-02 11:13:04,414 stacktrace L0044 ERROR| SystemExit: Test interrupted by,
—SIGTERM

2016-11-02 11:13:04,414 stacktrace L0045 ERROR|

2016-11-02 11:13:04,414 test L0459 DEBUG| Local variables:

2016-11-02 11:13:04,440 test L0462 DEBUG]| —-> self <class 'sleeptest.
—SleepTest'>: l-sleeptest.py:SleepTest.test

2016-11-02 11:13:04,440 test L0462 DEBUG| -> sleep_length <type 'int'>: 5
2016-11-02 11:13:04,440 test L0592 ERROR| ERROR l-sleeptest.py:SleepTest.

—test -> TestError: SystemExit ('Test interrupted by SIGTERM',): Test interrupted by,
—~SIGTERM

The YAML file defines a test parameter t imeout which overrides the default test timeout before the runner ends the
test forcefully by sending a class:signal. SIGTERM to the test, making it raise a avocado.core.exceptions.
TestTimeoutError

Skipping Tests

To skip tests is in Avocado, you must use one of the Avocado skip decorators:
* avocado.skip (): Skips a test.
* avocado.skipIf (): Skips a testif the condition is True.
* avocado.skipUnless (): Skips a test if the condition is False

Those decorators can be used with classes and both setUp () method and/or and in the test « () methods. The test
below:

88 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

import avocado

class MyTest (avocado.Test) :

@avocado.skipIf(l == 1, 'Skipping on True condition.')
def testl (self):
pass

@avocado.skip ("Don't want this test now.")
def test2(self):
pass

@avocado.skipUnless (1l == 1, 'Skipping on False condition.')
def test3(self):
pass

Will produce the following result:

$ avocado run test_skip_decorators.py

JOB ID : 59c815f6a42269daeaflebb93e52269fb8a78119

JOB LOG : SHOME/avocado/job-results/job-2017-02-03T17.41-59¢c815f/job.log
(1/3) test_skip_decorators.py:MyTest.testl: SKIP
(2/3) test_skip_decorators.py:MyTest.test2: SKIP
(3/3) test_skip_decorators.py:MyTest.test3: PASS (0.02 s)

RESULTS : PASS 1 | ERROR 0 | FAIL O | SKIP 2 | WARN O | INTERRUPT O
JOB TIME : 0.13 s
JOB HTML : SHOME/avocado/job-results/job-2017-02-03T17.41-59¢c815f/html/results.html

Notice the test 3 was not skipped because the provided condition was not False.

Using the skip decorators, nothing is actually executed. We will skip the setUp () method, the test method and the
tearDown () method.

Note: It’s an erroneous condition, reported with test status ERROR, to use any of the skip decorators on the
tearDown () method.

Advanced Conditionals

More advanced use cases may require to evaluate the condition for skipping tests later, and may also need to introspect
into the class that contains the test method in question.

It’s possible to achieve both by supplying a callable to the condition parameters instead. The following example does
just that:

from avocado import Test, skipIf, skipUnless
class BaseTest (Test) :
"""Base class for tests

ravocado: disable
mmn

SUPPORTED_ENVS = []

(continues on next page)

9.3. Avocado Test Writer’s Guide 89

avocado Documentation, Release 90.0

(continued from previous page)

@skipUnless (lambda x: 'BARE_METAL' in x.SUPPORTED_ENVS,
'Bare metal environment is required')
def test_bare_metal (self):
pass

@skipIf (lambda x: getattr(x, 'MEMORY', 0) < 4096,
'Not enough memory for test')
def test_large_memory (self) :
pass

@skipUnless (lambda x: 'VIRTUAL_MACHINE' in x.SUPPORTED_ENVS,
'Virtual Machine environment is required')
def test_nested_virtualization(self):
pass

@skipUnless (lambda x: 'CONTAINER' in x.SUPPORTED_ENVS,
'Container environment is required')

def test_container(self):
pass

class BareMetal (BaseTest) :

SUPPORTED_ENVS = ['BARE_METAL']
MEMORY = 2048

def test_specific(self):
pass
class NonBareMetal (BaseTest) :
SUPPORTED_ENVS = ['VIRTUAL_MACHINE', 'CONTAINER']

def test_specific(self):
pass

Even though the conditions for skipping tests are defined in the BaseTest class, the conditions will be evaluated
when the tests are actually checked for execution, in the BareMetal and NonBareMetal classes. The result of
running that test is:

JOB ID : 77d636c93ed3b5e6fef9c7b6c8d9fe0c84af1518
JOB LOG : SHOME/avocado/job-results/job-2021-03-17T20.10-77d636c/job.log

(01/10) skip_conditional.py:BareMetal.test_specific: PASS (0.00 s)

(02/10) skip_conditional.py:BareMetal.test_bare_metal: PASS (0.00 s)

(03/10) skip_conditional.py:BareMetal.test_large_memory: SKIP: Not enough memory for,
—test

(04/10) skip_conditional.py:BareMetal.test_nested_virtualization: SKIP: Virtual,
—Machine environment is required

(05/10) skip_conditional.py:BareMetal.test_container: SKIP: Container environment is
—required

(06/10) skip_conditional.py:NonBareMetal.test_specific: PASS (0.00 s)

(07/10) skip_conditional.py:NonBareMetal.test_bare_metal: SKIP: Bare metal,
—environment is required

(08/10) skip_conditional.py:NonBareMetal.test_large_memory: SKIP: Not enough memory,
—for test

(continues on next page)

90 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

(09/10) skip_conditional.py:NonBareMetal.test_nested_virtualization: PASS (0.00 s)
(10/10) skip_conditional.py:NonBareMetal.test_container: PASS (0.00 s)

RESULTS : PASS 5 | ERROR 0 | FAIL O | SKIP 5 | WARN O | INTERRUPT O | CANCEL O
JOB HTML : SHOME/avocado/job-results/job-2021-03-17T20.10-77d636c/results.html
JOB TIME : 0.82 s

Canceling Tests

You can cancel a test calling self.cancel() at any phase of the test (setUp(), test method or tearDown()). Test will finish
with CANCEL status and will not make the Job to exit with a non-0 status. Example:

from avocado import Test

from avocado.utils.process import run
from avocado.utils.software_manager import SoftwareManager

class CancelTest (Test) :

mmn

Example tests that cancel the current test from inside the test.

mmn

def setUp(self):
sm = SoftwareManager ()
self.pkgs = sm.list_all (software_components=False)

def test_iperf (self):
if 'iperf-2.0.8-6.fc25.x86_64" not in self.pkgs:
self.cancel ('iperf is not installed or wrong version')
self.assertIn('pthreads',
run('iperf -v', ignore_status=True) .stderr)

def test_gcc(self):
if 'gcc-6.3.1-1.fc25.x86_64"' not in self.pkgs:
self.cancel ('gcc is not installed or wrong version')
self.assertIn('enable-gnu-indirect-function’',
run('gcc -v', ignore_status=True) .stderr)

In a system missing the iperf package but with gcc installed in the correct version, the result will be:

$ avocado run cancel_test.py

JOB ID : 39¢1£120830b9769042£5£70b6b7bad0blblf09f

JOB LOG : SHOME/avocado/job-results/job-2017-03-10T16.22-39c1fl12/job.log
(1/2) /home/user/avocado/tests/test_cancel.py:CancelTest.test_iperf: CANCEL (1.15 s)
(2/2) /home/user/avocado/tests/test_cancel.py:CancelTest.test_gcc: PASS (1.13 s)

RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL 1
JOB TIME : 2.38 s
JOB HTML : SHOME/avocado/job-results/job-2017-03-10T16.22-39c1fl12/html/results.html

Notice that using the self.cancel () will cancel the rest of the test from that point on, but the tearDown () will
still be executed.

Depending on the result format you’re referring to, the CANCEL status is mapped to a corresponding valid status in
that format. See the table below:

9.3. Avocado Test Writer’s Guide 91

avocado Documentation, Release 90.0

Format | Corresponding Status

json cancel
Xunit skipped
tap ok

html CANCEL (warning)

Docstring Directives

Some Avocado features, usually only available to instrumented tests, depend on setting directives on the test’s class
docstring. A docstring directive is composed of a marker (a literal : avocado: string), followed by the custom
content itself, such as :avocado: directive.

This is similar to docstring directives such as :param my_param: description and shouldn’t be a surprise
to most Python developers.

The reason Avocado uses those docstring directives (instead of real Python code) is that the inspection done while
looking for tests does not involve any execution of code.

For a detailed explanation about what makes a docstring format valid or not, please refer to our section on Docstring
Directives Rules.

Now let’s follow with some docstring directives examples.

Declaring test as NOT-INSTRUMENTED

In order to say this class is not an Avocado instrumented test, one can use :avocado: disable directive. The
result is that this class itself is not discovered as an instrumented test, but children classes might inherit it’s test «
methods (useful for base-classes):

from avocado import Test

class BaseClass (Test) :

mmn

ravocado: disable

mmn

def test_shared(self):
pass

class SpecificTests (BaseClass):
def test_specific(self):
pass

Results in:

$ avocado list test.py
INSTRUMENTED test.py:SpecificTests.test_specific
INSTRUMENTED test.py:SpecificTests.test_shared

The test.py:BaseBase.test is not discovered due the tag while the test.py:SpecificTests.
test_shared is inherited from the base-class.

Declaring test as INSTRUMENTED

The :avocado: enable tag might be useful when you want to override that this is an INSTRUMENTED test,
even though it is not inherited from avocado. Test class and/or when you want to only limit the test « methods

92 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

discovery to the current class:

from avocado import Test

class NotInheritedFromTest:

mmn

ravocado: enable

mon

def test (self):
pass

class BaseClass (Test) :

mmn

ravocado: disable
def test_shared(self):
pass

class SpecificTests (BaseClass):

mmn

ravocado: enable

mmn

def test_specific(self):
pass

Results in:

$ avocado list test.py
INSTRUMENTED test.py:NotInheritedFromTest.test
INSTRUMENTED test.py:SpecificTests.test_specific

The test.py:NotInheritedFromTest .test will not really work as it lacks several required methods, but
still is discovered as an INSTRUMENTED test due to enable tag and the SpecificTests only looks at it’s
test* methods, ignoring the inheritance, therefor the test .py:SpecificTests.test_shared will not be
discovered.

(Deprecated) enabling recursive discovery

The :avocado: recursive tag was used to enable recursive discovery, but nowadays this is the default. By
using this tag one explicitly sets the class as INSTRUMENTED, therefor inheritance from avocado. Test is not required.

Categorizing tests
Avocado allows tests to be given tags, which can be used to create test categories. With tags set, users can select a
subset of the tests found by the test resolver (also known as test loader).

To make this feature easier to grasp, let’s work with an example: a single Python source code file, named perf.py,
that contains both disk and network performance tests:

from avocado import Test

class Disk (Test):

mmn

Disk performance tests

(continues on next page)

9.3. Avocado Test Writer’s Guide 93

avocado Documentation, Release 90.0

(continued from previous page)

ravocado: tags=disk,slow, superuser,unsafe
mmwn

def test_device(self):
device = self.params.get ('device', default='/dev/vdb")
self.whiteboard = measure_write_to_disk (device)

class Network (Test) :

mmn

Network performance tests

ravocado: tags=net, fast,safe

mmon

def test_latency(self):
self.whiteboard = measure_latency ()

def test_throughput (self):
self.whiteboard = measure_throughput ()

class Idle (Test):

mmn

Idle tests

mmn

def test_idle(self):
self.whiteboard = "test achieved nothing"

Warning: All docstring directives in Avocado require a strict format, that is, :avocado: followed by one
or more spaces, and then followed by a single value with no white spaces in between. This means that an
attempt to write a docstring directive like : avocado: tags=foo, bar will be interpreted as : avocado:
tags=foo,.

Test tags can be applied to test classes and to test methods. Tags are evaluated per method, meaning that the class tags
will be inherited by all methods, being merged with method local tags. Example:

from avocado import Test

class MyClass (Test):

mmn

ravocado: tags=furious

mmn

def testl (self):

mnn

ravocado: tags=fast

mmn

pass

(continues on next page)

94 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

def test2(self):

mnn

ravocado: tags=slow

mmwn

pass

If you use the tag furious, all tests will be included:

$ avocado list furious_tests.py —--filter-by-tags=furious
INSTRUMENTED test_tags.py:MyClass.testl
INSTRUMENTED test_tags.py:MyClass.test2

But using fast and furious will include only test1:

$ avocado list furious_tests.py —--filter-by-tags=fast, furious
INSTRUMENTED test_tags.py:MyClass.testl

Python unittest Compatibility Limitations And Caveats

When executing tests, Avocado uses different techniques than most other Python unittest runners. This brings some
compatibility limitations that Avocado users should be aware.

Execution Model

One of the main differences is a consequence of the Avocado design decision that tests should be self contained and
isolated from other tests. Additionally, the Avocado test runner runs each test in a separate process.

If you have a unittest class with many test methods and run them using most test runners, you’ll find that all test
methods run under the same process. To check that behavior you could add to your set Up method:

def setUp(self):
print ("PID: ", os.getpid())

If you run the same test under Avocado, you’ll find that each test is run on a separate process.

Class Level setUp and tearDown

Because of Avocado’s test execution model (each test is run on a separate process), it doesn’t make sense to support
unittest’s unittest.TestCase.setUpClass () and unittest.TestCase.tearDownClass (). Test
classes are freshly instantiated for each test, so it’s pointless to run code in those methods, since they’re supposed
to keep class state between tests.

The setUp method is the only place in Avocado where you are allowed to call the skip method, given that, if a test
started to be executed, by definition it can’t be skipped anymore. Avocado will do its best to enforce this boundary,
so that if you use skip outside setUp, the test upon execution will be marked with the ERROR status, and the error
message will instruct you to fix your test’s code.

If you require a common setup to a number of tests, the current recommended approach is to to write regular setUp
and tearDown code that checks if a given state was already set. One example for such a test that requires a binary
installed by a package:

9.3. Avocado Test Writer’s Guide 95

https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUpClass
https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDownClass
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown

avocado Documentation, Release 90.0

from avocado import Test

from avocado.utils import software_manager
from avocado.utils import path as utils_path
from avocado.utils import process

class BinSleep (Test) :

mmn

Sleeps using the /bin/sleep binary
def setUp(self):
self.sleep = None
try:
self.sleep = utils_path.find_command('sleep')
except utils_path.CmdNotFoundError:
software_manager.install_distro_packages ({'fedora': ['coreutils']})
self.sleep = utils_path.find_command('sleep')

def test (self):
process.run (" 1" % self.sleep)

If your test setup is some kind of action that will last across processes, like the installation of a software package given
in the previous example, you're pretty much covered here.

If you need to keep other type of data a class across test executions, you’ll have to resort to saving and restoring the
data from an outside source (say a “pickle” file). Finding and using a reliable and safe location for saving such data is
currently not in the Avocado supported use cases.

Environment Variables for Tests

Avocado exports some information, including test parameters, as environment variables to the running test.

While these variables are available to all tests, they are usually more interesting to SIMPLE tests. The reason is that
SIMPLE tests can not make direct use of Avocado API. INSTRUMENTED tests will usually have more powerful
ways, to access the same information.

Here is a list of the variables that Avocado currently exports to tests:

96 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Environment Meaning Example

Variable

AVO- Version of Avocado test runner 0.12.0

CADO_VERSION

AVO- Base directory of Avocado tests $HOME/Downloads/avocado-
CADO_TEST_BASEDIR source/avocado

AVO- Work directory for the test /var/tmp/avocado_Bjr_rd/my_test.sh
CADO_TEST_WORKDIR

AVO- Temporary directory created by the feststmpdir | /var/tmp/avocado_XhEdo/

CADO_TESTS_COMMEMN_TMPDiRctory is persistent throughout
the tests in the same Job

AVO- Log directory for the test $HOME/logs/job-results/job-
CADO_TEST_LOGDIR 2014-09-16T14.38-ac332e6/test-
results/SHOME/my_test.sh. 1
AVO- Log file for the test $HOME/logs/job-results/job-
CADO_TEST_LOGFILE 2014-09-16T14.38-ac332e6/test-
results/SHOME/my_test.sh.1/debug.log
AVO- Output directory for the test $HOME/logs/job-results/job-
CADO_TEST_OUTPUTDIR 2014-09-16T14.38-ac332e6/test-
results/SHOME/my_test.sh.1/data
AVO- The system information directory $HOME/logs/job-results/job-
CADO_TEST_SYSINFODIR 2014-09-16T14.38-ac332e6/test-
results/SHOME/my_test.sh.1/sysinfo
Hok All variables from —mux-yaml TIMEOUT=60; I0_WORKERS=10;

VM_BYTES=512M; ...

SIMPLE Tests BASH extensions

SIMPLE tests written in shell can use a few Avocado utilities. In your shell code, check if the libraries are available
with something like:

AVOCADO_SHELL_EXTENSIONS_DIR=$ (avocado exec-path 2>/dev/null)

And if available, injects that directory containing those utilities into the PATH used by the shell, making those utilities
readily accessible:

if [$? == 1; then
PATH=SAVOCADO_SHELL_EXTENSIONS_DIR:S$PATH
fi

For a full list of utilities, take a look into at the directory return by avocado exec—-path (if any). Also, the example
test examples/tests/simplewarning. sh can serve as further inspiration.

Tip: These extensions may be available as a separate package. For RPM packages, look for the bash sub-package.

SIMPLE Tests Status

With SIMPLE tests, Avocado checks the exit code of the test to determine whether the test PASSed or FAILed.

If your test exits with exit code 0 but you still want to set a different test status in some conditions, Avocado can search
a given regular expression in the test outputs and, based on that, set the status to WARN or SKIP.

9.3. Avocado Test Writer’s Guide 97

avocado Documentation, Release 90.0

To use that feature, you have to set the proper keys in the configuration file. For instance, to set the test status to SKIP
when the test outputs a line like this: ‘11:08:24 Test Skipped’:

[simpletests.output]
skip_regex = "\d\d:\d\d:\d\d Test Skipped$

That configuration will make Avocado to search the Python Regular Expression on both stdout and stderr. If you want
to limit the search for only one of them, there’s another key for that configuration, resulting in:

[simpletests.output]
skip_regex = "\d\d:\d\d:\d\d Test Skipped$
skip_location = stderr

The equivalent settings can be present for the WARN status. For instance, if you want to set the test status to WARN
when the test outputs a line starting with string WARNING :, the configuration file will look like this:

[simpletests.output]

skip_regex = "\d\d:\d\d:\d\d Test Skipped$
skip_location = stderr

warn_regex = "“WARNING:

warn_location = all

Job Cleanup
It’s possible to register a callback function that will be called when all the tests have finished running. This effectively
allows for a test job to clean some state it may have left behind.

At the moment, this feature is not intended to be used by test writers, but it’s seen as a feature for Avocado extensions
to make use.

To register a callback function, your code should put a message in a very specific format in the “runner queue”. The
Avocado test runner code will understand that this message contains a (serialized) function that will be called once all
tests finish running.

Example:

from avocado import Test
def my_cleanup (path_to_file):
if os.path.exists (path_to_file):
os.unlink (path_to_file)

class MyCustomTest (Test) :

cleanup_file = '/tmp/my-custom-state'
self.runner_queue.put ({"func_at_exit": self.my_cleanup,
"args": (cleanup_file),

"once": True})

This results in the my_ cleanup function being called with positional argument cleanup_file.

Because once was set to True, only one unique combination of function, positional arguments and keyword argu-
ments will be registered, not matter how many times they’re attempted to be registered. For more information check
avocado.utils.data_ structures.CallbackRegister.register ().

98 Chapter 9. Build and Quality Status

http://docs.python.org/2.7/howto/regex.html

avocado Documentation, Release 90.0

Docstring Directives Rules
Avocado INSTRUMENTED tests, those written in Python and using the avocado. Test API, can make use of
special directives specified as docstrings.

To be considered valid, the docstring must match this pattern: avocado.core.safeloader.docstring.
DOCSTRING_DIRECTIVE_RE_RAW.

An Avocado docstring directive has two parts:
1) The marker, which is the literal string : avocado:.
2) The content, a string that follows the marker, separated by at least one white space or tab.
The following is a list of rules that makes a docstring directive be a valid one:
e It should start with : avocado:, which is the docstring directive “marker”
* At least one whitespace or tab must follow the marker and precede the docstring directive “content”

* The “content”, which follows the marker and the space, must begin with an alphanumeric character, that is,
characters within “a-z”, “A-Z" or “0-9”.

» After at least one alphanumeric character, the content may contain the following special symbols too: _, ,, =
and :.

* An end of string (or end of line) must immediately follow the content.

Signal Handlers

Avocado normal operation is related to run code written by users/test-writers. It means the test code can carry its own
handlers for different signals or even ignore then. Still, as the code is being executed by Avocado, we have to make
sure we will finish all the subprocesses we create before ending our execution.

Signals sent to the Avocado main process will be handled as follows:

* SIGSTP/Ctrl+Z: On SIGSTP, Avocado will pause the execution of the subprocesses, while the main process
will still be running, respecting the timeout timer and waiting for the subprocesses to finish. A new SIGSTP
will make the subprocesses to resume the execution.

o SIGINT/Ctrl+C: This signal will be forwarded to the test process and Avocado will wait until it’s finished. If
the test process does not finish after receiving a SIGINT, user can send a second SIGINT (after the 2 seconds
ignore period). The second SIGINT will make Avocado to send a SIGKILL to the whole subprocess tree and
then complete the main process execution.

* SIGTERM: This signal will make Avocado to terminate immediately. A SIGKILL will be sent to the whole
subprocess tree and the main process will exit without completing the execution. Notice that it’s a best-effort
attempt, meaning that in case of fork-bomb, newly created processes might still be left behind.

Wrap Up

We recommend you take a look at the example tests present in the examples/tests directory, that contains a
few samples to take some inspiration from. That directory, besides containing examples, is also used by the Av-
ocado self test suite to do functional testing of Avocado itself. Although one can inspire in https://github.com/
avocado-framework-tests where people are allowed to share their basic system tests.

It is also recommended that you take a look at the 7est APIs. for more possibilities.

9.3. Avocado Test Writer’s Guide 99

https://github.com/avocado-framework-tests
https://github.com/avocado-framework-tests

avocado Documentation, Release 90.0

9.3.3 Advanced logging capabilities
Avocado provides advanced logging capabilities at test run time. These can be combined with the standard Python
library APIs on tests.

One common example is the need to follow specific progress on longer or more complex tests. Let’s look at a very
simple test example, but one multiple clear stages on a single test:

import logging
import time

from avocado import Test
progress_log = logging.getLogger ("progress")
class Plant (Test) :

def test_plant_organic(self):
rows = int (self.params.get ("rows", default=3))

Preparing soil
for row in range (rows) :
progress_log.info (" %s: preparing soil on row ",
self.name, row)

Letting soil rest

progress_log.info("%s: letting soil rest before throwing seeds",
self.name)

time.sleep(2)

Throwing seeds
for row in range (rows):
progress_log.info("%s: throwing seeds on row ",
self.name, row)

Let them grow

progress_log.info("%s: waiting for Avocados to grow",
self.name)

time.sleep (5)

Harvest them
for row in range (rows) :
progress_log.info (" %s: harvesting organic avocados on row ",
self.name, row)

From this point on, you can ask Avocado to show your logging stream, either exclusively or in addition to other builtin
streams:

$ avocado --show app,progress run plant.py

The outcome should be similar to:

JOB ID : af786£86db530bff26cd6a92c36e99%edcdcadbb

JOB LOG : /home/user/avocado/job-results/job-2016-03-18T10.29-af786£8/job.log
(1/1) plant.py:Plant.test_plant_organic: progress: l-plant.py:Plant.test_plant_
—organic: preparing soil on row 0

progress: l-plant.py:Plant.test_plant_organic: preparing soil on row 1

progress: l-plant.py:Plant.test_plant_organic: preparing soil on row 2

(continues on next page)

100 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

progress: l-plant.py:Plant.test_plant_organic: letting soil rest before throwing seeds
—-progress: l-plant.py:Plant.test_plant_organic: throwing seeds on row 0O

progress: l-plant.py:Plant.test_plant_organic: throwing seeds on row 1

progress: l-plant.py:Plant.test_plant_organic: throwing seeds on row 2

progress: l-plant.py:Plant.test_plant_organic: waiting for Avocados to grow

\progress: l-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 0
progress: l-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 1
progress: l-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 2
PASS (7.01 s)

RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O
JOB TIME : 7.11 s
JOB HTML : /home/user/avocado/job-results/Jjob-2016-03-18T10.29-af786£8/html/results.

The custom progress stream is combined with the application output, which may or may not suit your needs or
preferences. If you want the progress stream to be sent to a separate file, both for clarity and for persistence, you
can run Avocado like this:

$ avocado run plant.py —--store-logging-stream progress

The result is that, besides all the other log files commonly generated, there will be another log file named progress.
INFO at the job results dir. During the test run, one could watch the progress with:

$ tail -f ~/avocado/job-results/latest/progress.INFO

10:36:59 INFO | l-plant.py:Plant.test_plant_organic: preparing soil on row O
10:36:59 INFO | l-plant.py:Plant.test_plant_organic: preparing soil on row 1
10:36:59 INFO | l-plant.py:Plant.test_plant_organic: preparing soil on row 2
10:36:59 INFO | l-plant.py:Plant.test_plant_organic: letting soil rest before
—throwing seeds

10:37:01 INFO | l-plant.py:Plant.test_plant_organic: throwing seeds on row O
10:37:01 INFO l-plant.py:Plant.test_plant_organic: throwing seeds on row 1
10:37:01 INFO l-plant.py:Plant.test_plant_organic: throwing seeds on row 2
10:37:01 INFO l-plant.py:Plant.test_plant_organic: waiting for Avocados to grow
10:37:06 INFO l-plant.py:Plant.test_plant_organic: harvesting organic avocados on_,
—row 0

10:37:06 INFO | l-plant.py:Plant.test_plant_organic: harvesting organic avocados on_,
—row 1

10:37:06 INFO | l-plant.py:Plant.test_plant_organic: harvesting organic avocados on
—row 2

The very same progress logger, could be used across multiple test methods and across multiple test modules. In
the example given, the test name is used to give extra context.

9.3.4 Test parameters

Note: This section describes in detail what test parameters are and how the whole variants mechanism works in Avo-
cado. If you're interested in the basics, see Accessing test parameters or practical view by examples in Yaml_to_mux
plugin.

Avocado allows passing parameters to tests, which effectively results in several different variants of each test. These
parameters are available in (test’s) self.params and are of avocado.core.varianter.AvocadoParams
type. You can also access these parameters via the configuration dict at run.test_parameters namespace.

9.3. Avocado Test Writer’s Guide 101

avocado Documentation, Release 90.0

The data for self.params are supplied by avocado.core.varianter.Varianter which asks all regis-
tered plugins for variants or uses default when no variants are defined.

Overall picture of how the params handling works is:

Fom— +
| | // Test uses AvocadoParams, with content either from
Test // a variant or from the test parameters given by
| | // "--test-parameter"
+——— e +
\
\
Fo———— +
| Runner | // iterates through tests and variants to run all
- N + // desired combinations specified by "—--execution-order".
| // 1f no variants are produced by varianter plugins,
\ // use the test parameters given by "--test-parameter"
e + provide variants +-——------mm +
\ |[<m=——mmmmmm \ \
| Varianter API | | Varianter plugins API |
\ \ \ \
o + o +
\
| // All plugins are invoked
| // in turns
\
o e +
| \
| \
v v
o + o +
| yvaml_to_mux plugin | | Other variant plugin(s) |
F————= A + B +
\
| // yvaml is parsed to MuxTree,
// multiplexed and yields variants
f——_———————————— +
| 4= + +
| | ——mux-yaml | | —-mux-inject | |
| +—————————— + - +
o +

Let’s introduce the basic keywords.

TreeNode

avocado.core.tree.TreeNode

Is a node object allowing to create tree-like structures with parent->multiple_children relations and storing params. It
can also report it’s environment, which is set of params gathered from root to this node. This is used in tests where
instead of passing the full tree only the leaf nodes are passed and their environment represents all the values of the
tree.

102 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

AvocadoParams

avocado.core.varianter.AvocadoParams

Is a “database” of params present in every (instrumented) Avocado test. It’s produced during avocado. core.
test.Test’s__init__ fromavariant. It accepts a list of TreeNode objects; test name avocado.core.test.
TestID (for logging purposes) and a list of default paths (Parameter Paths).

In test it allows querying for data by using:

self.params.get ($name, S$path=None, $default=None)

Where:
* name - name of the parameter (key)
* path - where to look for this parameter (when not specified uses mux-path)
e default - what to return when param not found

Each variant defines a hierarchy, which is preserved so AvocadoParams follows it to return the most appropriate value
or raise Exception on error.

Parameter Paths

As test params are organized in trees, it’s possible to have the same variant in several locations. When they are
produced from the same TreeNode, it’s not a problem, but when they are a different values there is no way to distinguish
which should be reported. One way is to use specific paths, when asking for params, but sometimes, usually when
combining upstream and downstream variants, we want to get our values first and fall-back to the upstream ones when
they are not found.

For example let’s say we have upstream values in /upstream/sleeptest and our values in /downstream/
sleeptest. If we asked for a value using path "« ", it’d raise an exception being unable to distinguish whether we
want the value from /downstream or /upstream. We can set the parameter paths to ["/downstream/*",
"/upstream/*"] to make all relative calls (path starting with) to first look in nodes in /downstream and if
not found look into /upstream.

More practical overview of parameter paths is in Yaml_to_mux plugin in Resolution order section.

Variant

Variant is a set of params produced by Varianter‘_s and passed to the test by the test runner as ‘‘params‘ argu-
ment. The simplest variant is None, which still produces an empty AvocadoParams. Also, the Variant can also be a
tuple (list, paths) orjustthe 1ist of avocado.core.tree. TreeNode with the params.

Dumping/Loading Variants

Depending on the number of parameters, generating the Variants can be very compute intensive. As the Variants are
generated as part of the Job execution, that compute intensive task will be executed by the systems under test, causing
a possibly unwanted cpu load on those systems.

To avoid such situation, you can acquire the resulting JSON serialized variants file, generated out of the variants
computation, and load that file on the system where the Job will be executed.

There are two ways to acquire the JSON serialized variants file:

¢ Using the -—json-variants—dump option of the avocado variants command:

9.3. Avocado Test Writer’s Guide 103

avocado Documentation, Release 90.0

$ avocado variants —--mux-yaml examples/yaml_to_mux/hw/hw.yaml --json-variants-
—dump variants.json

$ file variants. json
variants.json: ASCII text, with very long lines, with no line terminators

Getting the auto-generated JSON serialized variants file after a Avocado Job execution:

$ avocado run passtest.py —--mux-yaml examples/yaml_to_mux/hw/hw.yaml

$ file SHOME/avocado/job-results/latest/jobdata/variants. json
SHOME/avocado/job-results/latest/jobdata/variants.json: ASCII text, with very,
—~long lines, with no line terminators

Once you have the variants. json file, you can load it on the system where the Job will take place:

$ avocado run passtest.py —--json-variants—-load variants.json
JOB ID : £2022736b5b89d7£4c£62353d3fb4d7e3a06£075
JOB LOG : SHOME/avocado/job-results/job-2018-02-09T14.39-£202273/job.log

(1/6) passtest.py:PassTest.test;intel-scsi-56d0: PASS (0.04 s)

(2/6) passtest.py:PassTest.test;intel-virtio-3d4e: PASS (0.02 s)

(3/6) passtest.py:PassTest.test;amd-scsi-fa43: PASS (0.02 s)

(4/6) passtest.py:PassTest.test;amd-virtio-a59a: PASS (0.02 s)

(5/6) passtest.py:PassTest.test;arm-scsi-1cl4: PASS (0.03 s)

(6/6) passtest.py:PassTest.test;arm-virtio-5cel: PASS (0.04 s)
RESULTS : PASS 6 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.51 s
JOB HTML : SHOME/avocado/job-results/job-2018-02-09T14.39-£f202273/results.html
Varianter

avocado.core.varianter.Varianter

Is an internal object which is used to interact with the variants mechanism in Avocado. It’s lifecycle is compound
of two stages. First it allows the core/plugins to inject default values, then it is parsed and only allows querying for
values, number of variants and such.

Example workflow of avocado run passtest.py -m example.yaml is:

avocado run passtest.py —m example.yaml

\

+ parser.finish -> Varianter.__init__ // dispatcher initializes all plugins

\

+ job.run_tests —> Varianter.is_parsed

\

+ Jjob.run_tests —-> Varianter.parse

\ // processes default params

\ // initializes the plugins

\ // updates the default values

\

+ job._log_variants -> Varianter.to_str // prints the human readable_,
—representation to log

\

+ runner.run_suite -> Varianter.get_number_of_tests

(continues on next page)

104 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

+ runner._iter_variants —-> Varianter.itertests // Yields variants

In order to allow force-updating the Varianter it supports ignore_new_data, which can be used to ignore new
data. This is used by Replay to replace the current run Varianter with the one loaded from the replayed job. The
workflow with ignore_new_data could look like this:

avocado run —-replay latest —m example.yaml
\
replay.run -> Varianter.is_parsed

replay.run // Varianter object is replaced with the replay job's one
// Varianter.ignore_new_data is set

job.run_tests —> Varianter.is_parsed
job._log_variants —> Varianter.to_str

runner.run_suite —-> Varianter.get_number_of_tests

+ -+ — + — + — — + — +

runner._iter_variants -> Varianter.itertests

The Varianter itself can only produce an empty variant, but it invokes all Varianter plugins and if any of them reports
variants it yields them instead of the default variant.

Test parameters
This is an Avocado core feature, that is, it’s not dependent on any varianter plugin. In fact, it’s only active when no
Varianter plugin is used and produces a valid variant.

Avocado will use those simple parameters, and will pass them to all tests in a job execution. This is done on the
command line via ——test-parameter, or simply, —p. It can be given multiple times for multiple parameters.

Because Avocado parameters do not have a mechanism to define their types, test code should always consider that a
parameter value is a string, and convert it to the appropriate type.

Note: Some varianter plugins would implicitly set parameters with different data types, but given that the same test
can be used with different, or none, varianter plugins, it’s safer if the test does an explicit check or type conversion.

Because the avocado.core.varianter.AvocadoParams mandates the concept of a parameter path (a legacy
of the tree based Multiplexer) and these test parameters are flat, those test parameters are placed in the / path. This is
to ensure maximum compatibility with tests that do not choose an specific parameter location.

Varianter plugins

avocado.core.plugin_interfaces.Varianter

A plugin interface that can be used to build custom plugins which are used by Varianter to get test variants. For in-
spiration see avocado_varianter yaml_to_mux.YamlToMux which is an optional varianter plugin. Details
about this plugin can be found here Yam!l_to_mux plugin.

9.3. Avocado Test Writer’s Guide 105

avocado Documentation, Release 90.0

9.3.5 Utility Libraries

Avocado gives to you more than 40 Python utility libraries (so far), that can be found under the avocado.utils.
You can use these libraries to avoid having to write necessary routines for your tests. These are very general in nature
and can help you speed up your test development.

The utility libraries may receive incompatible changes across minor versions, but these will be done in a staged fashion.
If a given change to an utility library can cause test breakage, it will first be documented and/or deprecated, and only
on the next subsequent minor version it will actually be changed.

What this means is that upon updating to later minor versions of Avocado, you should look at the Avocado Release
Notes for changes that may impact your tests.

See also:
If you would like a detailed API reference of this libraries, please visit the “Reference API” section on the left menu.

The following pages are the documentation for some of the Avocado utilities:

Warning: TODO: Looks like the utils libraries documentation will be mainly on docstrings, right? If so, maybe
makes sense to have only documented on API reference? And any general instruction would be on module doc-
string. What you guys think?

avocado.utils.gdb

The avocado.utils.gdb APIs that allows a test to interact with GDB, including setting a executable to be run,
setting breakpoints or any other types of commands. This requires a test written with that approach and API in mind.

Tip: Even though this section describes the use of the Avocado GDB features, it’s also possible to debug some appli-
cation offline by using tools such as rr. Avocado ships with an example wrapper script (to be used with ——wrapper)
for that purpose.

APlIs
Avocado’s GDB module, provides three main classes that lets a test writer interact with a gdb process, a gdbserver

process and also use the GDB remote protocol for interaction with a remote target.

Please refer to avocado. utils. gdb for more information.

Example

Take a look at examples/tests/modify_variable.py test:

def test (self):

mmn

Execute 'print_variable'.

path = os.path.join(self.workdir, 'print_variable')
app = gdb.GDB()

app.set_file (path)

app.set_break (6)

(continues on next page)

106 Chapter 9. Build and Quality Status

http://rr-project.org

avocado Documentation, Release 90.0

(continued from previous page)

app.run()
self.log.info ("\n".join (app.read_until_break()))

app.cmd ("set variable a = 0Oxff")
app.cmd("c")

out = "\n".Jjoin (app.read_until_break())
self.log.info (out)

app.exit ()

self.assertIn("MY VARIABLE 'A' IS: ff'", out)

This allows us to automate the interaction with the GDB in means of setting breakpoints, executing commands and
querying for output.

When you check the output (——show=test) you can see that despite declaring the variable as 0, ff is injected and
printed instead.

avocado.utils.vmimage

This utility provides a API to download/cache VM images (QCOW) from the official distributions repositories.

Basic Usage

Import vmimage module:

>>> from avocado.utils import vmimage

Get an image, which consists in an object with the path of the dowloaded/cached base image and the path of the
external snapshot created out of that base image:

>>> image = vmimage.get ()

>>> image

<Image name=Fedora version=26 arch=x86_64>

>>> image.name

'Fedora'

>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-d369c285.qcow2’
>>> image.get ()
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-e887c743.qcow2’
>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-e887c743.qcow2’
>>> image.version

26

>>> image.base_image
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64.qgcow2"’

If you provide more details about the image, the object is expected to reflect those details:

>>> image = vmimage.get (arch='aarche6d")

>>> image

<Image name=FedoraSecondary version=26 arch=aarch64>
>>> image.name

'FedoraSecondary'

>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.aarch64-07b8fbda.gcow2"'

(continues on next page)

9.3. Avocado Test Writer’s Guide 107

avocado Documentation, Release 90.0

(continued from previous page)

>>> image = vmimage.get (version=7)

>>> image

<Image name=CentOS version=7 arch=x86_64>

>>> image.path
'/tmp/Cent0S-7-x86_64-GenericCloud-1708-dd8139c5.qgcow2"’

Notice that, unlike the base_image attribute, the path attribute will be always different in each instance, as it
actually points to an external snapshot created out of the base image:

>>> il = vmimage.get ()
>>> 12 = vmimage.get ()
>>> il.path == i2.path
False

Custom Image Provider

If you need your own Image Provider, you can extend the vmimage . IMAGE_PROVIDERS list, including your
provider class. For instance, using the vmimage utility in an Avocado test, we could add our own provider with:

from avocado import Test

from avocado.utils import vmimage

class MyProvider (vmimage.ImageProviderBase) :
name = 'MyDistro'

def _ init_ (self, version='[0-9]+', build='[0-9]+.[0-9]+",
arch=os.uname () [4]) :
mmn
:params version: The regular expression that represents
your distro version numbering.
:params build: The regular expression that represents
your build version numbering.
:params arch: The default architecture to look images for.

mon

super (MyProvider, self).__init__ (version, build, arch)

The URL which contains a list of the distro versions
self.url_versions = 'https://dl.fedoraproject.org/pub/fedora/linux/releases/"'

The URL which contains a list of distro images

self.url_images = self.url_versions + '{version}/CloudImages/{arch}/images/"

The images naming pattern
self.image_pattern = 'Fedora-Cloud-Base-{v

nj—{build}.{arch}.qcow2s$"
class MyTest (Test) :
def setUp(self):

vmimage . IMAGE_PROVIDERS.add (MyProvider)
image = vmimage.get ('MyDistro')

(continues on next page)

108 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

def test (self):

Supported images

The vmimage library has no hardcoded limitations of versions or architectures that can be supported. You can use it
as you wish. This is the list of images that we tested and they work with vmimage:

Provider | Version Architecture
centos 8 aarch64
centos 8 ppcbdle
centos 8 x86_64
centos 7 x86_64
cirros 0.5.1 arm
cirros 0.5.1 aarch64
cirros 0.5.1 1386
cirros 0.5.1 ppc64
cirros 0.5.1 ppcbdle
cirros 0.5.1 powerpc
cirros 0.5.1 x86_64
cirros 0.5.0 arm
cirros 0.5.0 aarch64
cirros 0.5.0 1386
cirros 0.5.0 ppc64
cirros 0.5.0 ppcbdle
cirros 0.5.0 powerpc
cirros 0.5.0 x86_64
cirros 0.4.0 arm
cirros 0.4.0 aarch64
cirros 0.4.0 1386
cirros 0.4.0 ppc64
cirros 0.4.0 ppcb4dle
cirros 0.4.0 powerpc
cirros 0.4.0 x86_64
debian 9.13.26-20210722 | arm64
debian 9.13.26-20210722 | amd64
debian 10.10.2-20210723 | arm64
debian 10.10.2-20210723 | amd64
fedora 32 aarch64
fedora 32 ppcbéle
fedora 32 s390x
fedora 32 x86_64
fedora 33 aarch64
fedora 33 ppcbdle
fedora 33 s390x
fedora 33 x86_64
ubuntu 18.04 aarch64
ubuntu 18.04 1386
ubuntu 18.04 ppcb4el

Continued on next page

9.3. Avocado Test Writer’s Guide 109

avocado Documentation, Release 90.0

Table 1 — continued from previous page

Provider | Version Architecture
ubuntu 18.04 s390x
ubuntu 18.04 x86_64
ubuntu 19.10 aarch64
ubuntu 19.10 1386
ubuntu 19.10 ppcbdel
ubuntu 19.10 s390x
ubuntu 19.10 x86_64
opensuse | 15.2 x86_64
opensuse | 15.1 aarch64
opensuse | 15.1 x86_64
opensuse | 42.3 x86_64

9.3.6 Subclassing Avocado
Subclassing Avocado Test class to extend its features is quite straight forward and it might constitute a very useful
resource to have some shared/recurrent code hosted in your project repository.

In this section we propose an project organization that will allow you to create and install your so called sub-
framework.

Let’s use, as an example, a project called Apricot Framework. Here’s the proposed filesystem structure:

~/git/apricot (master)$ tree

— apricot
|: __init___.py
test.py
— README.rst
— setup.py
— tests

L test_example.py
-—— VERSION

e setup.py: Inthe setup.py itis important to specify the avocado-framework package as a dependency:

from setuptools import setup, find_packages

setup (name="'apricot',
description='Apricot - Avocado SubFramework',
version=open ("VERSION", "r").read().strip(),
author="Apricot Developers',
author_email='apricot-devell@example.com',
packages=['apricot'],
include_package_data=True,
install_requires=['avocado-framework']

)

e VERSION: Version your project as you wish:

1.0

e apricot/__init__ .py: Make your new test class available in your module root:

110 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

_all = ['ApricotTest']

from apricot.test import ApricotTest

* apricot/test.py: Here you will be basically extending the Avocado Test class with your own methods
and routines:

from avocado import Test

class ApricotTest (Test):
def setUp(self):
self.log.info("setUp () executed from Apricot")

def some_useful _method(self) :
return True

* tests/test_example.py: And this is how your test will look like:

from apricot import ApricotTest

class MyTest (ApricotTest) :
def test (self):
self.assertTrue(self.some_useful_method())

To (non-intrusively) install your module, use:

~/git/apricot (master)$ python setup.py develop —--user

running develop

running egg_info

writing requirements to apricot.egg-info/requires.txt

writing apricot.egg-info/PKG-INFO

writing top-level names to apricot.egg-info/top_level.txt

writing dependency_links to apricot.egg-info/dependency_links.txt
reading manifest file 'apricot.egg-info/SOURCES.txt'

writing manifest file 'apricot.egg-info/SOURCES.txt'

running build_ext

Creating /home/user/.local/lib/python2.7/site-packages/apricot.egg-link (link to .)
apricot 1.0 is already the active version in easy-install.pth

Installed /home/user/git/apricot

Processing dependencies for apricot==1.0

Searching for avocado-framework==55.0

Best match: avocado-framework 55.0

avocado-framework 55.0 is already the active version in easy-install.pth

Using /home/user/git/avocado

Using /usr/lib/python2.7/site-packages
Searching for six==1.10.0

Best match: six 1.10.0

Adding six 1.10.0 to easy-install.pth file

Using /usr/lib/python2.7/site-packages
Searching for pbr==3.1.1

Best match: pbr 3.1.1

Adding pbr 3.1.1 to easy-install.pth file
Installing pbr script to /home/user/.local/bin

(continues on next page)

9.3. Avocado Test Writer’s Guide 111

avocado Documentation, Release 90.0

(continued from previous page)

Using /usr/lib/python2.7/site-packages
Finished processing dependencies for apricot==1.0

And to run your test:

~/git/apricot$ avocado run tests/test_example.py

JOB ID : 02c663eb77e0aebce67462a398da6972791793bf
JOB LOG : SHOME/avocado/job-results/job-2017-11-16T12.44-02c663e/job.log
(1/1) tests/test_example.py:MyTest.test: PASS (0.03 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.95 s
JOB HTML : SHOME/avocado/Jjob-results/job-2017-11-16T12.44-02c663e/results.html

9.3.7 Integrating Avocado

Coverage.py
Testing software is important, but knowing the effectiveness of the tests, like which parts are being exercised by the
tests, may help develop new tests.

Coverage.py is a tool designed for measuring code coverage of Python programs. It runs monitoring the program’s
source, taking notes of which parts of the code have been executed.

It is possible to use Coverage.py while running Avocado Instrumented tests. As Avocado spawn sub-processes to run
the tests, the concurrency parameter should be set to multiprocessing.

To make the Coverage.py parameters visible to other processes spawned by Avocado, create the . coveragerc file
in the project’s root folder. Following is an example:

[run]
concurrency = multiprocessing
source = foo/bar

parallel = true

According to the documentation of Coverage.py, when measuring coverage in a multi-process program, setting the
parallel parameter will keep the data separate during the measurement.

With the . coveragerc file set, one possible workflow to use Coverage.py to measure Avocado tests is:

coverage run -m avocado run tests/foo
coverage combine
coverage report

The first command uses Coverage.py to measure the code coverage of the Avocado tests. Then, coverage combine
combines all measurement files to a single .coverage data file. The coverage report shows the report of the
coverage measurement.

For other options related to Coverage.py, visit the software documentation.

9.4 Avocado Contributor’s Guide

Useful pointers on how to participate of the Avocado community and contribute.

112 Chapter 9. Build and Quality Status

https://coverage.readthedocs.io/
https://coverage.readthedocs.io/

avocado Documentation, Release 90.0

9.4.1 Brief introduction
First of all, we would like to thank you for taking the time to contribute! We collected here useful pointers on how to
participate in the Avocado community and how to contribute.

And keep in mind that our procedures and guides are far from perfection, and need constant improvements. Feel free
to propose changes to this, or any other, guide in a pull request.

Happy Hacking!

9.4.2 How can | contribute?

Note: Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed
under the GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree with: a) our code of conduct; b) that these contributions are your own (or approved by your
employer), and ¢) you grant a full, complete, irrevocable copyright license to all users and developers of the Avocado
project, present and future, pursuant to the license of the project.

Report a bug

If a test fails, congratulations, you have just found a bug. And If you have precise steps to reproduce, awesome! You're
on your way to reporting a useful bug report.

Warning: TODO: Describe how to report a bug!

Suggest enhancements

Warning: TOOD: Describe how to suggest features

Contribute with code

Avocado uses Github and the Github pull request development model. You can find a primer on how to use github pull
requests here.

Every Pull Request you send will be automatically tested by Travis CI and review will take place in the Pull Request
as well.

For people who don’t like the Github development model, there is the option of sending the patches to the Mailing
List, following a workflow more traditional in Open Source development communities. The patches will be reviewed
in the Mailing List, should you opt for that. Then a maintainer will collect the patches, integrate them on a branch,
and then those patches will be submitted as a github Pull Request. This process tries to ensure that every contributed
patch goes through the CI jobs before it is considered good for inclusion.

Git workflow

* Fork the repository in github.

9.4. Avocado Contributor’s Guide 113

https://www.gnu.org/licenses/gpl-2.0.html
https://help.github.com/articles/using-pull-requests
https://travis-ci.org/avocado-framework/avocado

avocado Documentation, Release 90.0

* Clone from your fork:

’$ git clone git@github.com:<username>/avocado.git

* Enter the directory:

’$ cd avocado

* Create a remote, pointing to the upstream:

’s git remote add upstream git@github.com:avocado-framework/avocado.git

* Configure your name and e-mail in git:

$ git config --global user.name "Your Name"
$ git config --global user.email email@foo.bar

* Golden tip: never work on local branch master. Instead, create a new local branch and checkout to it:

$ git checkout -b my_new_local_branch

* Code and then commit your changes:

$ git add new-file.py
$ git commit -s
or "git commit -as" to commit all changes

See also:
Please, read our Commit Style Guide on Style Guides section manual.

* Make sure your code is working (install your version of avocado, test your change, run make check to make
sure you didn’t introduce any regressions).

* Paste the job . 1og file content from the previous step in a pastebin service, like fpaste.org. If you have fpaste
installed, you can simply run:

$ fpaste ~/avocado/job-results/latest/job.log

* Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

* Push your commit(s) to your fork:

$ git push origin my_new_local_branch

¢ Create the Pull Request on github. Add the relevant information to the Pull Request description.
* In the Pull Request discussion page, comment with the link to the job.log output/file.
¢ Check if your Pull Request passes the CI (travis). Your Pull Request will probably be ignored until it’s all green.

Now you’re waiting for feedback on github Pull Request page. Once you get some, join the discussion, answer the
questions, make clear if you’re going to change the code based on some review and, if not, why. Feel free to disagree
with the reviewer, they probably have different use cases and opinions, which is expected. Try describing yours and
suggest other solutions, if necessary.

114 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

New versions of your code should not be force-updated (unless explicitly requested by the code reviewer). Instead,
you should:

* Create a new branch out of your previous branch:

$ git checkout my_new_local_branch
$ git checkout -b my_new_local_branch_v2

¢ Code, and amend the commit(s) and/or create new commits. If you have more than one commit in the PR, you
will probably need to rebase interactively to amend the right commits. git cola or git citool can be
handy here.

* Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

* Push your changes:

$ git push origin my_new_local_branch_v2

* Create a new Pull Request for this new branch. In the Pull Request description, point the previous Pull Request
and the changes the current Pull Request introduced when compared to the previous Pull Request(s).

¢ Close the previous Pull Request on github.

After your PR gets merged, you can sync the master branch on your local repository propagate the sync to the master
branch in your fork repository on github:

$ git checkout master
$ git pull upstream master
$ git push

From time to time, you can remove old branches to avoid pollution:

To list branches along with time reference:

$ git for-each-ref —--sort='-authordate:1s08601' —--format=' % (authordate:1s08601)%09
% (refname) ' refs/heads

To remove branches from your fork repository:

$ git push origin :my_old_branch

Code Review

Every single Pull Request in Avocado has to be reviewed by at least one other developer. All members of the core
team have permission to merge a Pull Request, but there are some conditions that have to be fulfilled before merging
the code:

 Pull Request has to pass the CI tests.
* One ‘Approved’ code review should be given.
* No explicit disapproval should be present.

Pull Requests failing in CI will not be merged, and reviews won’t be given to them until all the problems are sorted out.
In case of a weird failure, or false-negative (eg. due to too many commits in a single PR), please reach the developers
by @name/email/irc or other means.

While reviewing the code, one should:

9.4. Avocado Contributor’s Guide 115

avocado Documentation, Release 90.0

* Verify that the code is sound and clean.

* Run the highest level of selftests per each new commit in the merge. The contrib/scripts/
avocado-check-pr. sh contrib script should simplify this step.

* Verify that code works to its purpose.

* Make sure the commits organization is proper (i.e. code is well organized in atomic commits, there’s no ex-
tra/unwanted commits, ...).

 Provide an in-line feedback with explicit questions and/or requests of improvements.

 Provide a general feedback in the review message, being explicit about what’s expected for the next Pull Request
version, if that’s the case.

When the Pull Request is approved, the reviewer will merge the code or wait for someone with merge permission to
merge it.

Using avocado—-check-pr.sh

The contrib/scripts/avocado-check-pr.sh script is here to simplify the per-commit-check.
You can simply prepare the merge and initiate AVOCADO_CHECK_LEVEL=99 contrib/scripts/
avocado—-check-pr.sh to run all checks per each commit between your branch and the same branch on the
origin/master (you can specify different remote origin).

Use . /contrib/scripts/avocado—check-pr.sh -h tolearn more about the options. We can recommend
the following command:

$ AVOCADO_PARALLEL_CHECK=yes AVOCADO_CHECK_LEVEL=99
$./contrib/scripts/avocado-check-pr.sh -i -v

And due to PARALLEL false-negatives running in a second terminal to re-check potential failures:

$$ while :; do read AAA; python -m unittest S$AAA; done

Note: Before first use you might need to create ~/ .config/github_checker.ini and fill github user/token
entries (while on it you can also specify some defaults)

Share your tests

We encourage you or your company to create public Avocado tests repositories so the community can also benefit of
your tests. We will be pleased to advertise your repository here in our documentation.

List of known community and third party maintained repositories:

e https://github.com/avocado-framework-tests/avocado-misc-tests: Community maintained Avocado miscella-
neous tests repository. There you will find, among others, performance tests like 1mbench, stress, cpu
tests like ebizzy and generic tests like 1tp. Some of them were ported from Autotest Client Tests repository.

* https://github.com/scylladb/scylla-cluster-tests: Avocado tests for Scylla Clusters. Those tests can automatically
create a scylla cluster, some loader machines and then run operations defined by the test writers, such as database
workloads.

116 Chapter 9. Build and Quality Status

https://github.com/avocado-framework-tests/avocado-misc-tests
https://github.com/scylladb/scylla-cluster-tests

avocado Documentation, Release 90.0

Documentation

Warning: TODO: Create how to contribute with documentation.

9.4.3 Development environment

Attention: TODO: This section needs attention! Please, help us contributing to this document.

Warning: TODO: Needs improvement here. i.e: virtualenvs, GPG, etc.

Installing dependencies

You need to install few dependencies before start coding:

’$ sudo dnf install gcc python-devel enchant

Then install all the python dependencies:

’$ make requirements-selftests

Or if you already have pip installed, you can run directly:

’$ pip install -r requirements-selftests.txt

Installing in develop mode

Since version 0.31.0, our plugin system requires Setuptools entry points to be registered. If you’re hacking on Avocado
and want to use the same, possibly modified, source for running your tests and experiments, you may do so with one
additional step:

$ make develop

On POSIX systems this will create an “egg link” to your original source tree under $SHOME/.local/lib/
pythonX.Y/site-packages. Then, on your original source tree, an “egg info” directory will be created, con-
taining, among other things, the Setuptools entry points mentioned before. This works like a symlink, so you only
need to run this once (unless you add a new entry-point, then you need to re-run it to make it available).

Avocado supports various plugins, which are distributed as separate projects, for example “avocado-vt”. These also
need to be deployed and “linked” in order to work properly with the Avocado from sources (installed version works
out of the box).

You can install external plugins as you wish, and/or according to the specific plugin’s maintainer recommendations.

Plugins that are developed by the Avocado team, will try to follow the same Setuptools standard for distribut-
ing the packages. Because of that, as a facility, you can use make requirements-plugins from the main
Avocado project to install requirements of the plugins and make develop-external to install plugins in
develop mode to. You just need to set where your plugins are installed, by using the environment variable
SAVOCADO_EXTERNAL_PLUGINS_PATH. The workflow could be:

9.4. Avocado Contributor’s Guide 117

avocado Documentation, Release 90.0

cd $AVOCADO_PROJECTS_DIR

git clone $AVOCADO_GIT

git clone $AVOCADO_PROJECT2

Add more projects

cd avocado # go into the main Avocado project dir

make requirements-plugins

export AVOCADO_EXTERNAL_PLUGINS_PATH=$AVOCADO_PROJECTS_DIR
make develop-external

wr Ay A

You should see the process and status of each directory.

9.4.4 Style guides
Commit style guide

Write a good commit message, pointing motivation, issues that you’re addressing. Usually you should try to explain 3
points in the commit message: motivation, approach and effects:

header <- Limited to 72 characters. No period.
<- Blank line
message <- Any number of lines, limited to 72 characters per line.
<- Blank line
Reference: <- External references, one per line (issue, trello, ...)
Signed-off-by: <- Signature and acknowledgment of licensing terms when

contributing to the project (created by git commit -s)

Sighing commits

Optionally you can sign the commits using GPG signatures. Doing it is simple and it helps from unauthorized code
being merged without notice.

All you need is a valid GPG signature, git configuration, slightly modified workflow to use the signature and eventually
even setup in github so one benefits from the “nice” UL

Get a GPG signature:

Google for howto, but generally it works like this
$ gpg —--gen-key # defaults are usually fine (using expiration is recommended)
$ gpg —--send-keys $YOUR_KEY # to propagate the key to outer world

Enable it in git:

$ git config --global user.signingkey S$SYOUR_KEY

(optional) Link the key with your GH account:

1. Login to github

2. Go to settings—->SSH and GPG keys

3. Add New GPG key

4. run $(gpg —a —-export $YOUR_EMAIL) in shell to see your key
5. paste the key there

Use it:

118 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

You can sign commits by using '-S'
$ git commit -S

You can sign merges by using '-S'
$ git merge -S

Warning: You can not use the merge button on github to do signed merges as github does not have your private
key.

Code style guide

9.4.5 Writing an Avocado plugin

What better way to understand how an Avocado plugin works than creating one? Let’s use another old time favorite
for that, the “Print hello world” theme.

Code example

Let’s say you want to write a plugin that adds a new subcommand to the test runner, he11lo. This is how you’d do it:

from avocado.core.output import LOG_UI
from avocado.core.plugin_interfaces import CLICmd
class HelloWorld (CLICmd) :

name = 'hello'
description = 'The classical Hello World! plugin example.'

def run(self, config):
LOG_UI.info(self.description)

This plugins inherits from avocado. core.plugin_interfaces.CLICmd. This specific base class allows for
the creation of new commands for the Avocado CLI tool. The only mandatory method to be implemented is run and
it’s the plugin main entry point.

This plugin uses avocado. core. output.LOG_UT to produce the hello world output in the console.

Note: Different loggers can be used in other contexts and for different purposes. One such example is avocado.
core.output.LOG_JOB, which can be used to output to job log files when running a job.

Registering configuration options (settings)
It is usual for a plugin to allow users to do some degree of configuration based on command-line options and/or
configuration options. A plugin might change its behavior depending on a specific configuration option.

Frequently, those settings come from configuration files and, sometimes, from the command-line arguments. Like in
most UNIX-like tools, command-line options will override values defined inside the configuration files.

You, as a plugin writer, don’t need to handle this configuration by yourself. Avocado provides a common API that can
be used by plugins in order to register options and get values.

9.4. Avocado Contributor’s Guide 119

avocado Documentation, Release 90.0

If your plugin has options available to the users, it can register it using the Settings.register_option ()
method during your plugin configuration stage. The options are parsed and provided to the plugin as a config dictio-
nary.

Let’s take our Hello World example and change the message based on a “message” option:

from avocado.core.output import LOG_UI
from avocado.core.plugin_interfaces import CLICmd
from avocado.core.settings import settings

class HelloWorld (CLICmd) :

name = 'hello'
description = "The classical Hello World plugin example!"

def configure(self, parser):
settings.register_option(section="hello',
key="'message',
key_type=str,
default=self.description,
help_msg="Configure the message to display")

def run(self, config):
msg = config.get ('hello.message')
LOG_UI.info (msqg)

This registration will register a “configuration namespace” (“hello.message”) inside the configuration file only. A
namespace is a “section” (“hello”) followed by a “key” (“message”). In other words, the following entry in your
configuration file is valid and will be parsed:

[hello]
message = My custom message

As you can see in the example above, you need to set a “default” value and this value will be used if the option is not
present in the configuration file. This means that you can have a very small configuration file or even an empty one.

This is a very basic example of how to configure options inside your plugin.

Adding command-line options

Now, let’s say you would like to also allow this change via the command-line option of your plugin (if your plugin is a
command-line plugin). You need to register in any case and use the same method to connect your “option namespace”
with your command-line option.

from avocado.core.output import LOG_UI
from avocado.core.plugin_interfaces import CLICmd
from avocado.core.settings import settings

class HelloWorld (CLICmd) :

name = 'hello_parser'
description = "The classical Hello World plugin example!"

def configure(self, parser):
parser = super (HelloWorld, self).configure (parser)

(continues on next page)

120 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

settings.register_option(section="hello',
key="'message',
key_type=str,
default=self.description,
help_msg="Configure the message to display",
parser=parser,
long_arg="'—-—-hello-message')

def run(self, config):
msg = config.get ('hello.message')
LOG_UI.info (msqg)

Note: Keep in mind that not all options should have a “command-line” option. Try to keep the command-line as clean
as possible. We use command-line only for options that constantly need to change and when editing the configuration
file is not handy.

For more information about how this registration process works, visit the Settings.register_option()
method documentation.

Registering plugins

Avocado makes use of the sefuptools and its entry points to register and find Python objects. So, to make your new
plugin visible to Avocado, you need to add to your setuptools based setup.py file something like:

from setuptools import setup

if name_ == '_ _main_ ':
setup (name='avocado-hello-world-option',

version='1.0",

description='Avocado Hello World CLI command with config option',

py_modules=['hello_option'],

entry_points={
'avocado.plugins.cli.cmd': ['hello_option = hello_option:HelloWorld'],
}

Then, by running either $ python setup.py install or $ python setup.py develop your plugin
should be visible to Avocado.

Namespace

The plugin registry mentioned earlier, (setuptools and its entry points) is global to a given Python installation. Avocado
uses the namespace prefix avocado.plugins. to avoid name clashes with other software. Now, inside Avocado
itself, there’s no need keep using the avocado.plugins. prefix.

Take for instance, the Job Pre/Post plugins are defined on setup.py:

'avocado.plugins. job.prepost': [
'jobscripts = avocado.plugins. jobscripts:JobScripts'

9.4. Avocado Contributor’s Guide 121

avocado Documentation, Release 90.0

The setuptools entry point namespace is composed of the mentioned prefix avocado.plugins., which is is then
followed by the Avocado plugin type, in this case, job.prepost.

Inside Avocado itself, the fully qualified name for a plugin is the plugin type, such as job.prepost concatenated
to the name used in the entry point definition itself, in this case, jobscripts.

To summarize, still using the same example, the fully qualified Avocado plugin name is going to be job.prepost.
jobscripts.

Plugin config files

Plugins can extend the list of config files parsed by Settings objects by dropping the individual config files into /
etc/avocado/conft . d (linux/posix-way) or they can take advantages of the Python entry point using avocado.
plugins.settings.

1. /etc/avocado/conf.d:

In order to not disturb the main Avocado config file, those plugins, if they wish so, may install additional config files
to /etc/avocado/conf.d/ [pluginname] .conf, that will be parsed after the system wide config file. Users
can override those values as well at the local config file level. Considering the config for the hypothethical plugin
salad:

[salad.core]
base = ceasar
dressing = ceasar

If you want, you may change dressing in your config file by simply adding a [salad.core] new section in your
local config file, and set a different value for dressing there.

2. avocado.plugins.settings:

This entry-point uses avocado.core.plugin_interfaces.Settings-like object to extend the list of parsed
files. It only accepts individual files, but you can use something like glob.glob (" .conf") to add all config files
inside a directory.

You need to create the plugin (eg. my_plugin/settings.py):

from avocado.core.plugin_interfaces import Settings

class MyPluginSettings (Settings):
def adjust_settings_paths(self, paths):
paths.extend(glob.glob ("/etc/my_plugin/conf.d/*.conf"))

And register it in your setup . py entry-points:

from setuptools import setup

setup (name="my-plugin",
entry_points={
'avocado.plugins.settings': [
"my-plugin-settings = my_plugin.settings.MyPluginSettings",
]I

Which extends the list of files to be parsed by settings object. Note this has to be executed early in the code so try to
keep the required deps minimal (for example the avocado.core.settings.settings is not yet available).

122 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

New test type plugin example
For a new test type to be recognized and executed by Avocado’s “nrunner” architecture, there needs to be two types of
plugins and one optional:

* resolvers: they resolve references into proper test descriptions that Avocado can run

* discoverers (optional): They are doing the same job as resolvers but without a reference. They are used when
the tests can be created from different data e.g. config files.

* runners: these make use of the resolutions made by resolvers and actually execute the tests, reporting the results
back to Avocado

The following example shows real code for a resolver and a runner for a “magic” test type. This “magic” test simply
passes or fails depending on the test reference.

Resolver and Discoverer example

The resolver implementation will simply set the test type (“magic”) and transform the reference given into its “url”:

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY,; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See LICENSE for more details.

Copyright: Red Hat Inc. 2020
Authors: Cleber Rosa <crosa@redhat.com>

HHoH H H HE W W H H W W H

mmwn

Test resolver for magic test words

mmwn

from avocado.core.nrunner import Runnable

from avocado.core.plugin_interfaces import Discoverer, Resolver

from avocado.core.resolver import (ReferenceResolution,
ReferenceResolutionResult)

VALID_MAGIC_WORDS = ['pass', 'fail']

class MagicResolver (Resolver) :

name = 'magic'
description = 'Test resolver for magic words'

@staticmethod
def resolve (reference):
if reference not in VALID_MAGIC_WORDS:
return ReferenceResolution (
reference,
ReferenceResolutionResult .NOTFOUND,

(continues on next page)

9.4. Avocado Contributor’s Guide 123

avocado Documentation, Release 90.0

(continued from previous page)

info="Word "%s" is not a valid magic word' % (reference))

return ReferenceResolution (reference,
ReferenceResolutionResult.SUCCESS,
[Runnable ('magic', reference)])

class MagicDiscoverer (Discoverer) :

name = 'magic-discoverer'
description = 'Test discoverer for magic words'

@staticmethod
def discover () :
resolutions = []
for reference in VALID MAGIC_WORDS:
resolutions.append(MagicResolver.resolve (reference))
return resolutions

Runner example

The runner will receive the Runnable information created by the resolver plugin. Runners can be written in any
language, but this implementation reuses some base Python classes.

First, avocado. core.nrunner.BaseRunner is used to write the runner class. And second, the avocado.
core.nrunner.BaseRunner is used to create the command line application, which uses the previously imple-
mented runner class for magic test types.

from avocado.core import nrunner
from avocado.core.runners.utils.messages import FinishedMessage, StartedMessage

class MagicRunner (nrunner.BaseRunner) :

"""Runner for magic words

When creating the Runnable, use the following attributes:
* kind: should be 'magic';
* uri: the magic word, either "pass" or "fail";
* args: not used;
* kwargs: not used;

Example:

runnable = Runnable (kind='magic',
uri='pass')

mmn

def run(self):
yield StartedMessage.get ()
if self.runnable.uri in ['pass', 'fail']:
result = self.runnable.uri

(continues on next page)

124 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

else:
result = 'error'
yield FinishedMessage.get (result)

class RunnerApp (nrunner.BaseRunnerApp) :
PROG_NAME = 'avocado-runner-magic'
PROG_DESCRIPTION = 'nrunner application for magic tests'
RUNNABLE_KINDS_CAPABLE = {'magic': MagicRunner}

def main() :
nrunner.main (RunnerApp)

if _ name_ == main_
main ()

Activating the new test type plugins

The plugins need to be registered so that Avocado knows about it. See Registering plugins for more information. This
is the code that can be used to register these plugins:

from setuptools import setup

name = 'magic'

module = 'avocado_magic'

resolver_ep = ' = .resolver: ' % (name, module, 'MagicResolver')
discoverer_ep = ' = .resolver: ' % (name, module, 'MagicDiscoverer')
runner_ep = ' = .runner: ' % (name, module, 'MagicRunner")
runner_script = 'avocado-runner- = .runner:main' % (name, module)

if name == '_ main__ ':

setup (name=name,

version='1.0",

description='Avocado "magic" test type',

py_modules=[module],

entry_points={
'avocado.plugins.resolver': [resolver_ep],
'avocado.plugins.discoverer': [discoverer_ep],
'avocado.plugins.runnable.runner': [runner_ep],
'console_scripts': [runner_script],

}

With that, you need to either run python setup.py install orpython setup.py develop.

Note: The last entry, registering a console_script, is recommended because it allows one to experiment with
the runner as a command line application (avocado-runner-magic in this case). Also, depending on the spawner
implementation used to run the tests, having a runner that can be executed as an application (and not a Python class)
is a requirement.

9.4. Avocado Contributor’s Guide 125

avocado Documentation, Release 90.0

Listing the new test type plugins

With the plugins activated, you should be able to run avocado plugins and find (among other output):

Plugins that resolve test references (resolver):

magic Test resolver for magic words

Resolving magic tests

Resolving the “pass” and “fail” references that the magic plugin knows about can be seen by running avocado
list —--resolver pass fail:

magic pass
magic fail

And you may get more insight into the resolution results, by adding a verbose parameter and another reference. Try
running avocado -V list —--resolver pass fail something-else:

Type Test Tag(s)
magic pass
magic fail

Resolver Reference Info

avocado—-instrumented pass File "pass" does not end with ".py"

exec-test pass File "pass" does not exist or is not a executable
—file

golang pass

avocado—instrumented fail File "fail" does not end with ".py"

exec-test fail File "fail" does not exist or is not a executable
—file

golang fail

avocado-instrumented something-else File "something-else" does not end with ".py"
exec—test something-else File "something-else" does not exist or is not a_
—executable file

golang something-else

magic something-else Word "something-else" is not a valid magic word
python-unittest something-else File "something-else" does not end with ".py"
robot something-else File "something-else" does not end with ".robot"
tap something-else File "something-else" does not exist or is not a_

—executable file

TEST TYPES SUMMARY

It’s worth realizing that magic (and other plugins) were asked to resolve the something-else reference, but
couldn’t:

Resolver Reference Info

magic something-else Word "something-else" is not a valid magic word

126 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Running magic tests

The common way of running Avocado tests is to run them through avocado run. In this case, we’re discussing
tests for the “nrunner” architecture, so the common way of running these “magic” tests is through a command starting
with avocado run —--test-runner=nrunner.

To run both the pass and fail magic tests, you’d run avocado run --test-runner=nrunner -- pass
fail:

$ avocado run --test-runner=nrunner -- pass fail

JOB ID : 86£d45£f8clf2fe766c252eefbcac2704c2106db9

JOB LOG : SHOME/avocado/job-results/job-2021-02-05T12.43-86fd45f/job.log

(1/2) pass: STARTED
(1/2) pass: PASS (0.00 s)
(2/2) fail: STARTED
(2/2) fail: FAIL (0.00 s)

RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB HTML : SHOME/avocado/job-results/job-2021-02-05T12.43-86fd45f/results.html
JOB TIME : 1.83 s

9.4.6 The “nrunner” and “runner” test runner
This section details a test runner called “nrunner”, also known as N(ext) Runner, and the architecture around. It
compares it with the older (and default) test runner, simply called “runner”.

At its essence, this new architecture is about making Avocado more capable and flexible, and even though it starts with
a major internal paradigm change within the test runner, it will also affect users and test writers.

The avocado. core.nrunner module was initially responsible for most of the N(ext)Runner code, but as devel-
opment continues, it’s spreading around to other places in the Avocado source tree. Other components with different
and seemingly unrelated names, say the “resolvers” or the “spawners”, are also pretty much about the N(ext)Runner
and are not used in the current (default) architecture.

Motivation

There are a number of reasons for introducing a different architecture and implementation. Some of them are related
to limitations found in the current implementation, that were found to be too hard to remove without major breakage.
Also, missing features that are deemed important would be a better fit wihin a different architecture.

For instance, these are the current limitations of the Avocado test runner:

* Test execution limited to the same machine, given that the communication between runner and test is a Python
queue

» Test execution is limited to a single test at a time (serial execution)
* Test processes are not properly isolated and can affect the test runner (including the “UI”)

And these are some features which it’s believed to be more easily implemented under a different architecture and
implementation:

¢ Remote test execution
* Different test execution isolation models provided by the test runner (process, container, virtual machine)
* Distributed execution of tests across a pool of any combination of processes, containers, virtual machines, etc.

¢ Parallel execution of tests

9.4. Avocado Contributor’s Guide 127

avocado Documentation, Release 90.0

* Optimized runners for a given environment and or test type (for instance, a runner written in RUST to run tests
written in RUST in an environment that already has RUST installed but not much else)

* Notification of execution results to many simultaneous “status servers”
* Disconnected test execution, so that results can be saved to a device and collected by the runner

 Simplified and automated deployment of the runner component into execution environments such as containers
and virtual machines

Current and N(ext) Runner components of Avocado

Whenever we mention the current architecture or implementation, we are talking about:
e avocado list command
e avocado run command
* avocado.core. loader module to find tests
Whenever we talk about the N(ext)Runner, we are talking about:
e avocado list —--resolver command
e avocado run —--test-runner=nrunner command
e avocado.core.resolver module to resolve tests

* avocado.core. spawners modules to spawn tasks

Basic Avocado usage and workflow

Avocado is described as “a set of tools and libraries to help with automated testing”. The most visible aspect of
Avocado is its ability to run tests, and display the results. We’re talking about someone doing:

$ avocado run mytests.py othertests.sh

To be able to complete such a command, Avocado needs to find the tests, and then to execute them. Those two major
steps are described next.

Finding tests

The first thing Avocado needs to do, before actually running any tests, is translating the “names” given as arguments
to avocado run into actual tests. Even though those names will usually be file names, this is not a requirement.
Avocado calls those “names” given as arguments to avocado run “test references”, because they are references
that hopefully “point to” tests.

Here we need to make a distincion between the current architecture, and the architecture which the N(ext)Runner
introduces. In the current Avocado test runner, this process happens by means of the avocado. core. loader
module. The very same mechanism, is used when listing tests. This produces an internal representation of the tests,
which we simply call a “factory”:

(continues on next page)

128 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

v
e +
| Test Factory 1

e +
| Class: TestFoo

| Parameters: |
| - modulePath: /path/to/module.py \
| - methodName: test_foo |
\ \
e +
B +
| Test Factory 2

o ———— +
| Class: TestBar

| Parameters: |
| - modulePath: /path/to/module.py \
| - methodName: test_bar |
\ \
—————————————— +

Because the N(ext)Runner is living side by side with the current architecture, command line options
have been introduced to distinguish between them: avocado list --resolver and avocado run
—-—test-runner=nrunner

On the N(ext)Runner architecture, a different terminology and foundation is used. Each one of the test ref-
erences given to list —-resolver or run --test-runner=runner will be “resolved” into zero or
more tests. Being more precise and verbose, resolver plugins will produce avocado.core.resolver.
ReferenceResolution, which contain zero or more avocado.core.nrunner.Runnable, which are de-
scribed in the following section. Overall, the process looks like:

e + e +
| avocado list —-resolver | —-> | avocado.core.resolver | ———+
e + o +
\
et +
|
v
R +
| ReferenceResolution #1 /
B +

Reference: /bin/true |
Result: SUCCESS \
\

| — kind: exec-test

\

\

\

| | Resolution #1 (Runnable) : |
\ \

| | - uri: /bin/true |

\

o +
e +
o +
| ReferenceResolution #2 /
e +

| Reference: test.py \

(continues on next page)

9.4. Avocado Contributor’s Guide 129

avocado Documentation, Release 90.0

(continued from previous page)

Result: SUCCESS

| Resolution #1 (Runnable): [
| - kind: python-unittest |
| - uri: test.py:Test.test_1 |
\
\

| Resolution #2 (Runnable): |
| - kind: python-unittest |
| — uri: test.py:Test.test_2 |

\

Running Tests

The idea of testing has to do with checking the expected output of a given action. This action, within the realm of
software development with automated testing, has to do with the output or outcome of a “code payload” when executed
under a given controlled environment.

The current Avocado architecture uses the “Test Factories” described earlier to load and execute such a “code payload”.
Each of those test factories contain the name of a Python class to be instantiated, and a number of arguments that will
be given to that class initialization.

So the primary “code payload” for every Avocado test in the current architecture will always be Python code that inher-
its from avocado. core. test. Test. Even when the user wants to run a standalone executable (a SIMPLE test
in the current architecture terminology), that still means loading and instantiating (effectively executing) the Python
class’ avocado.core.test.SimpleTest code.

Once all the test factories are found by avocado. core. loader, as described in the previous section, the current
architecture runs tests roughly following these steps:

1. Create one (and only one) queue to communicate with the test processes
2. For each test factory found by the loader:

a. Unpack the test factory into a test class and its parameters, that is, test_class, parameters =
test_factory

b. Instantiate a new process for the test

c. Within the new process, instantiate the Python class, that is, test = test_class (x*parameters)
d. Give the test access to queue, that is test . set_runner_queue (queue)

e. Monitor the queue and the test process until it finishes or needs to be terminated.

Having to describe the “Test factory” as Python classes and its parameters, besides increasing the complexity for new
types of tests, severely limits or prevents some of goals for the N(ext)Runner architecture listed earlier. It should be
clear that:

1. one unique queue makes communicating with multiple tests at the same time hard
2. test factories contain a Python class (code) that will be instantiated in the new process

3. toinstantiate Python classes in other systems would require serializing them, which is error prone (AKA pickling
nightmares)

130 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

4. the execution of tests depends on the previous point, so running tests in a local process is tightly coupled and
hard coded into the test execution code

Now let’s shift our attention to the N(ext)Runner architecture. In the N(ext)Runner architecture, a avocado. core.
nrunner.Runnable describe a “code payload” that will be executed, but they are not executable code themselves.
Because they are data and not code, they are easily serialized and transported to different environments. Running the
payload described by a Runnable is delegated to another component.

Most often, this component is a standalone executable (see avocado.core.spawners.common.
SpawnMethod.STANDALONE_EXECUTABLE) compatible with a specific command line interface. The most im-
portant interfaces such scripts must implement are the runnable-run and task-run interfaces.

Once all the Runnable (s) (within the ReferenceResolution (s)) are created by avocado.core.
resolver, the avocado run --test-runner=nrunner implementation follows roughly the following
steps:

1. Creates a status server that binds to a TCP port and waits for status messages from any number of clients
2. Creates the chosen Spawner, with ProcessSpawner being the default

3. For each avocado.core.nrunner.Runnable found by the resolver, turns it into a avocado. core.
nrunner. Task, which means giving it the following extra information:

®

The status server(s) that it should report to

An unique identification, so that its messages to the status server can be uniquely identified

> &

For each resulting avocado. core.nrunner. Task in the previous step:
a. Asks the spawner to spawn it

b. Asks the spawner to check if the task seems to be alive right after spawning it, to give the user early indication
of possible crashes

5. Waits until all tasks have provided a result to the status server

If any of the concepts mentioned here were not clear, please check their full descriptions in the next section.

Concepts

Runnable

A runnable is a description of an entity that can be executed and produce some kind of result. It’s a passive entity that
can not execute itself and can not produce results itself.

This description of a runnable is abstract on purpose. While the most common use case for a Runnable is to describe
how to execute a test, there seems to be no reason to bind that concept to a test. Other Avocado subsystems, such as
sysinfo, could very well leverage the same concept to describe say, commands to be executed.

A Runnable’s kind

The most important information about a runnable is the declaration of its kind. A kind should be a globally unique
name across the entire Avocado community and users.

When choosing a Runnable kind name, it’s advisable that it should be:
¢ Informative
¢ Succinct

e Unique

9.4. Avocado Contributor’s Guide 131

avocado Documentation, Release 90.0

If a kind is thought to be generally useful to more than one user (where a user may mean a project using Avocado), it’s
a good idea to also have a generic name. For instance, if a Runnable is going to describe how to run native tests for
the Go programming language, its k ind should probably be go.

On the other hand, if a Runnable is going to be used to describe tests that behave in a very peculiar way for a specific
project, it’s probably a good idea to map its kind name to the project name. For instance, if one is describing how to
run an iotest thatis part of the QEMU project, it may be a good idea to name this kind gemu—-iotest.

A Runnable’s uri

Besides a kind, each runnable kind may require a different amount of information to be provided so that it can be
instantiated.

Based on the accumulated experience so far, it’s expected that a Runnable’s uri is always going to be required. Think
of the URI as the one piece of information that can uniquely distinguish the entity (of a given kind) that will be
executed.

If, for instance, a given runnable describes the execution of a executable file already present in the system, it may use
its path, say /bin/true, as its uri value. If a runnable describes a web service endpoint, its uri value may just as
well be its network URI, such as https://example.org:8080.

Runnable examples

Possibly the simplest example for the use of a Runnable is to describe how to run a standalone executable, such as the
ones available on your /bin directory.

As stated earlier, a runnable must declare its kind. For standalone executables, a name such as exec fulfills the naming
suggestions given earlier.

A Runnable can be created in a number of ways. The first one is through avocado. core.nrunner.Runnable,
a very low level (and internal) API. Still, it serves as an example:

>>> from avocado.core import nrunner

>>> runnable = nrunner.Runnable ('exec', '/bin/true')

>>> runnable

<Runnable kind="exec" uri="/bin/true" args=" ()" kwargs="{}" tags="None" requirements=
AL n

—"None">

The second way is through a JSON based file, which, for the lack of a better term, we’re calling a (Runnable) “recipe”.
The recipe file itself will look like:

{"kind": "exec", "uri": "/bin/true"}

And example the code to create it:

>>> from avocado.core import nrunner

>>> runnable = nrunner.Runnable.from_recipe ("/path/to/recipe. json")

>>> runnable

<Runnable kind="exec" uri="/bin/true" args="()" kwargs="{}" tags="None" requirements=
—"None">>

The third way to create a Runnable, is even more internal. Its usage is discouraged, unless you are creating a tool that
needs to create Runnables based on the user’s input from the command line:

132 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

>>> from avocado.core import nrunner

>>> runnable = nrunner.Runnable.from_args ({'kind': 'exec', 'uri': '/bin/true'})
>>> runnable
<Runnable kind="exec" uri="/bin/true" args=" ()" kwargs="{}" tags="None" requirements=

—"None">>

Runner

A Runner, within the context of the N(ext)Runner architecture, is an active entity. It acts on the information that a
runnable contains, and quite simply, should be able to run what the Runnable describes.

A Runner will usually be tied to a specific kind of Runnable. That type of relationship (Runner is capable of running
kind “foo” and Runnable is of the same kind “fo0”) is the expected mechanism that will be employed when selecting
a Runner.

A Runner can take different forms, depending on which layer one is interacting with. At the lowest layer, a Runner
may be a Python class that inherits from avocado. core.nrunner.BaseRunner, and implements at least a
matching constructor method, and a run () method that should yield dictionary(ies) as result(s).

At a different level, a runner can take the form of an executable that follows the avocado—runner-$KIND naming
pattern and conforms to a given interface/behavior, including accepting standardized command line arguments and
producing standardized output.

Tip: for a very basic example of the interface expected, refer to selftests/functional/
test_nrunner_interface.py on the Avocado source code tree.

Runner output

A Runner should, if possible, produce status information on the progress of the execution of a Runnable. While the
Runner is executing what a Runnable describes, should it produce interesting information, the Runner should attempt
to forward that along its generated status.

For instance, using the exec Runner example, it’s helpful to start producing status that the process has been created
and it’s running as soon as possible, even if no other output has been produced by the executable itself. These can be
as simple as a sequence of:

{"status": "started"}
{"status": "running"}
{"status": "running"}

When the process is finished, the Runner may return:

{"status": "finished", "returncode": 0, 'stdout': b'', 'stderr': b''}

Tip: Besides the status of finished, and a return code which can be used to determine a success or failure
status, a Runner may not be obliged to determine the overall PASS/FAIL outcome. Whoever called the runner may be
responsible to determine its overall result, including a PASS/FAIL judgement.

Even though this level of information is expected to be generated by the Runner, whoever is calling a Runner, should
be prepared to receive as little information as possible, and act accordingly. That includes receiving no information at
all.

9.4. Avocado Contributor’s Guide 133

avocado Documentation, Release 90.0

For instance, if a Runner fails to produce any information within a given amount of time, it may be considered faulty
and be completely discarded. This would probably end up being represented as a TIMED_OUT kind of status on a
higher layer (say at the “Job” layer).

Task

A task is one specific instance/occurrence of the execution of a runnable with its respective runner. They should have
a unique identifier, although a task by itself wont’t enforce its uniqueness in a process or any other type of collection.

A task is responsible for producing and reporting status updates. This status updates are in a format similar to those
received from a runner, but will add more information to them, such as its unique identifier.

A different agreggate structure should be used to keep track of the execution of tasks.

Recipe

A recipe is the serialization of the runnable information in a file. The format chosen is JSON, and that should allow
both quick and easy machine handling and also manual creation of recipes when necessary.

Runners

A runner can be capable of running one or many different kinds of runnables. A runner should implement a
capabilities command that returns, among other info, a list of runnable kinds that it can (to the best of its
knowledge) run. Example:

python3 -m avocado.core.nrunner capabilities

{"runnables": ["noop", "exec", "exec-test", "python-unittest"],
"commands": ["capabilities", "runnable-run", "runnable-run-recipe",
"task-run", "task-run-recipe"]}

Runner scripts

The primary runner implementation is a Python module that can be run, as shown before, with the avocado.core.
nrunner module name. Additionally it’s also available as the avocado—runner script.

Runner Execution

While the exec runner given as example before will need to create an extra process to actually run the standalone
executable given, that is an implementation detail of that specific runner. Other types of runners may be able to run
the code the users expects it to run, while still providing feedback about it in the same process.

The runner’s main method (run ()) operates like a generator, and yields results which are dictionaries with relevant
information about it.

Trying it out - standalone

It’s possible to interact with the runner features by using the command line. This interface is not stable at all, and may
be changed or removed in the future.

134 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Runnables from parameters

You can run a “noop” runner with:

’avocadofrunner runnable-run -k noop

You can run an “exec” runner with:

’avocadofrunner runnable-run -k exec -u /bin/sleep -a 3.0

You can run an “exec-test” runner with:

avocado-runner runnable-run -k exec-test -u /bin/true

You can run a “python-unittest” runner with:

’avocado—runner runnable-run -k python-unittest -u unittest.TestCase

Runnables from recipes

You can run a “noop” recipe with:

avocado-runner runnable-run-recipe examples/nrunner/recipes/runnables/noop. json

You can run an “exec” runner with:

avocado-runner runnable-run-recipe examples/nrunner/recipes/runnables/exec_sleep_3.
—Jjson

You can run a “python-unittest” runner with:

avocado-runner runnable-run-recipe examples/nrunner/recipes/runnables/python_unittest.
—Jjson

Writing new runner scripts

Even though you can write runner scripts in any language, if you’re writing a new runner script in Python, you can
benefit from the avocado. core. nrunner.BaseRunnerApp class and from the avocado. core.nrunner.
BaseRunner class.

The following is a complete example of a script that could be named avocado-runner—-foo that could act as a
nrunner compatible runner for runnables with kind foo.

#!/usr/bin/env python3

from avocado.core import nrunner
from avocado.core.runners.utils.messages import FinishedMessage, StartedMessage

class FooRunner (nrunner.BaseRunner) :
def run(self):
yield StartedMessage.get ()
yield FinishedMessage.get ('pass')

(continues on next page)

9.4. Avocado Contributor’s Guide 135

avocado Documentation, Release 90.0

(continued from previous page)

class RunnerApp (nrunner.BaseRunnerApp) :
PROG_NAME = 'avocado-runner—foo'
PROG_DESCRIPTION = '"#«EXPERIMENTAL+* N (ext) Runner for tests foo'
RUNNABLE_KINDS_CAPABLE = {'foo': FooRunner}

def main() :
nrunner.main (RunnerApp)

Runners messages
When run as part of a job, every runner has to send information about its execution status to the Avocado job. That
information is sent by messages which have different types based on the information which they are transmitting.
Avocado understands three main types of messages:

* started (required)

* running

* finished (required)

The started and finished messages are obligatory and every runner has to send those. The running messages can contain
different information during runner run-time like logs, warnings, errors .etc and that information will be processed by
the avocado core.

The messages are standard Python dictionaries with a specific structure. You can create it by yourself based on the
table Supported message types, or you can use helper methods in avocado. core. runners.utils.messages
which will generate them for you.

Supported message types

class avocado.core.messages.StartMessageHandler
Handler for started message.

It will create the test base directories and triggers the ‘start_test” event.
This have to be triggered when the runner starts the test.
Parameters
* status — ‘started’
e time (float) — start time of the test
example: {‘status’: ‘started’, ‘time’: 16444.819830573}

class avocado.core.messages.FinishMessageHandler
Handler for finished message.

It will report the test status and triggers the ‘end_test’ event.
This is triggered when the runner ends the test.

Parameters

136 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/functions.html#float

avocado Documentation, Release 90.0

* status - ‘finished’

e result (avocado.core.teststatus. STATUSES) — test result

* time (float)—end time of the test

* fail_ reason (string)— Optional parameter for brief specification, of the failed result.

example: {‘status’: ‘finished’, ‘result’: ‘pass’, ‘time’: 16444.819830573}

Running messages

This message can be used during the run-time and has different properties based on the information which is being
transmitted.

class avocado.core.messages.LogMessageHandler
Handler for log message.

It will save the log to the debug.log file in the task directory.
Parameters
* status - ‘running’
* type — ‘log’
* log (string) —log message
* time (float)— Time stamp of the message
example: {‘status’: ‘running’, ‘type’: ‘log’, ‘log’: ‘log message’, ‘time’: 18405.55351474}
class avocado.core.messages.StdoutMessageHandler
Handler for stdout message.
It will save the stdout to the stdout file in the task directory.
Parameters
* status - ‘running’
* type — ‘stdout’
* log (bytes) — stdout message
* encoding (st r) — optional value for decoding messages
* time (float)— Time stamp of the message
example: {‘status’: ‘running’, ‘type’: ‘stdout’, ‘log’: ‘stdout message’, ‘time’: 18405.55351474}
class avocado.core.messages.StderrMessageHandler
Handler for stderr message.
It will save the stderr to the stderr file in the task directory.
Parameters
* status - ‘running’
* type - ‘stderr’
* log (bytes) — stderr message

* encoding (st r) — optional value for decoding messages

9.4. Avocado Contributor’s Guide 137

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

avocado Documentation, Release 90.0

* time (float)— Time stamp of the message

example: {‘status’: ‘running’, ‘type’: ‘stderr’, ‘log’: ‘stderr message’, ‘time’: 18405.55351474}

class avocado.core.messages.WhiteboardMessageHandler
Handler for whiteboard message.
It will save the stderr to the whiteboard file in the task directory.
Parameters

* status - ‘running’
* type — ‘whiteboard’
* log (bytes) — whiteboard message
* encoding (str) — optional value for decoding messages

* time (float)— Time stamp of the message
example: {‘status’: ‘running’, ‘type’: ‘whiteboard’, ‘log’: ‘whiteboard message’, ‘time’: 18405.55351474}
class avocado.core.messages.FileMessageHandler

Handler for file message.

In task directory will save log into the runner specific file. When the file doesn’t exist, the file will be created. If
the file exist, the message data will be appended at the end.

Parameters
* status - ‘running’
* type — ‘file’
* path (string)—relative path to the file. The file will be created under the Task directory
and the absolute path will be created as absolute_task_directory_path/relative_file_path.
* log (bytes) — data to be saved inside file

* time (float)— Time stamp of the message

example: {‘status’: ‘running’, ‘type’: ‘file’, ‘path’:’foo/runner.log’, ‘log’: ‘this will be saved inside file’,
‘time’: 18405.55351474}

9.4.7 Implementing other result formats

If you are looking to implement a new machine or human readable output format, you can refer to avocado.
plugins.xunit and use it as a starting point.

If your result is something that is produced at once, based on the complete job outcome, you should create a
new class that inherits from avocado.core.plugin_interfaces.Result and implements the avocado.
core.plugin_interfaces.Result.render () method.

But, if your result implementation is something that outputs information live before/during/after tests, then the
avocado.core.plugin_interfaces.ResultEvents interface is the one to look at. It will require you
to implement the methods that will perform actions (write to a file/stream) for each of the defined events on a Job and
test execution.

You can take a look at Plugins for more information on how to write a plugin that will activate and execute the new
result format.

138 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#float

avocado Documentation, Release 90.0

9.4.8 Request for Comments (RFCs)

What is a RFC?

Warning: TODO: Better describe our RFC model here.

Submiting a RFC

Warning: TODO: Better describe our RFC model here.

Previous RFCs

The following list contains archivals of accepted, Request For Comments posted and discussed on the Avocado Devel
Mailing List.

RFC: Long Term Stability

This RFC contains proposals and clarifications regarding the maintenance and release processes of Avocado.

We understand there are multiple teams currently depending on the stability of Avocado and we don’t want their work
to be disrupted by incompatibilities nor instabilities in new releases.

This version is a minor update to previous versions of the same RFC (see Changelog) which drove the release of
Avocado 36.0 LTS. The Avocado team has plans for a new LTS release in the near future, so please consider reading
and providing feedback on the proposals here.

TL;DR

We plan to keep the current approach of sprint releases every 3-4 weeks, but we’re introducing “Long Term Stability”
releases which should be adopted in production environments where users can’t keep up with frequent upgrades.

Introduction

We make new releases of Avocado every 3-4 weeks on average. In theory at least, we’re very careful with backwards
compatibility. We test Avocado for regressions and we try to document any issues, so upgrading to a new version
should be (again, in theory) safe.

But in practice both intended and unintended changes are introduced during development, and both can be frustrat-
ing for conservative users. We also understand it’s not feasible for users to upgrade Avocado very frequently in a
production environment.

The objective of this RFC is to clarify our maintenance practices and introduce Long Term Stability (LTS) releases,
which are intended to solve, or at least mitigate, these problems.

Our definition of maintained, or stable

First of all, Avocado and its sub-projects are provided ‘AS IS’ and WITHOUT ANY WARRANTY, as described in
the LICENSE file.

9.4. Avocado Contributor’s Guide 139

https://www.redhat.com/mailman/listinfo/avocado-devel
https://www.redhat.com/mailman/listinfo/avocado-devel

avocado Documentation, Release 90.0

The process described here doesn’t imply any commitments or promises. It’s just a set of best practices and recom-
mendations.

When something is identified as “stable” or “maintained”, it means the development community makes a conscious
effort to keep it working and consider reports of bugs and issues as high priorities. Fixes submitted for these issues
will also be considered high priorities, although they will be accepted only if they pass the general acceptance criteria
for new contributions (design, quality, documentation, testing, etc), at the development team discretion.

Maintained projects and platforms

The only maintained project as of today is the Avocado Test Runner, including its APIs and core plugins (the contents
of the main avocado git repository).

Other projects kept under the “Avocado Umbrella” in github may be maintained by different teams (e.g.: Avocado-VT)
or be considered experimental (e.g.: avocado-server and avocado-virt).

More about Avocado-VT in its own section further down.
As a general rule, fixes and bug reports for Avocado when running in any modern Linux distribution are welcome.

But given the limited capacity of the development team, packaged versions of Avocado will be tested and maintained
only for the following Linux distributions:

¢ RHEL 7.x (latest)
* Fedora (stable releases from the Fedora projects)

Currently all packages produced by the Avocado projects are “noarch”. That means that they could be installable on
any hardware platform. Still, the development team will currently attempt to provide versions that are stable for the
following platforms:

* x86
* ppcbdle
Contributions from the community to maintain other platforms and operating systems are very welcome.

The lists above may change without prior notice.

Avocado Releases

The proposal is to have two different types of Avocado releases:

Sprint Releases

(This is the model we currently adopt in Avocado)

They happen every 3-4 weeks (the schedule is not fixed) and their versions are numbered serially, with decimal digits
in the format <major>.<minor>. Examples: 47.0, 48.0, 49.0. Minor releases are rare, but necessary to correct some
major issue with the original release (47.1, 47.2, etc).

Only the latest Sprint Release is maintained.

In Sprint Releases we make a conscious effort to keep backwards compatibility with the previous version (APIs and
behavior) and as a general rule and best practice, incompatible changes in Sprint Releases should be documented in
the release notes and if possible deprecated slowly, to give users time to adapt their environments.

But we understand changes are inevitable as the software evolves and therefore there’s no absolute promise for API
and behavioral stability.

140 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Long Term Stability (LTS) Releases

LTS releases should happen whenever the team feels the code is stable enough to be maintained for a longer period of
time, ideally once or twice per year (no fixed schedule).

They should be maintained for 18 months, receiving fixes for major bugs in the form of minor (sub-)releases. With the
exception of these fixes, no API or behavior should change in a minor LTS release.

They will be versioned just like Sprint Releases, so looking at the version number alone will not reveal the differentiate
release process and stability characteristics.

In practice each major LTS release will imply in the creation of a git branch where only important issues affecting
users will be fixed, usually as a backport of a fix initially applied upstream. The code in a LTS branch is stable, frozen
for new features.

Notice that although within a LTS release there’s a expectation of stability because the code is frozen, different (major)
LTS releases may include changes in behavior, API incompatibilities and new features. The development team will
make a considerable effort to minimize and properly document these changes (changes when comparing it to the last
major LTS release).

Sprint Releases are replaced by LTS releases. lLe., in the cycle when 52.0 (LTS) is released, that’s also the version
used as a Sprint Release (there’s no 52.0 — non LTS — in this case).

New LTS releases should be done carefully, with ample time for announcements, testing and documentation. It’s
recommended that one or two sprints are dedicated as preparations for a LTS release, with a Sprint Release serving as
a “LTS beta” release.

Similarly, there should be announcements about the end-of-life (EOL) of a LTS release once it approaches its 18
months of life.

Deployment details

Sprint and LTS releases, when packaged, whenever possible, will be preferably distributed through different package
channels (repositories).

This is possible for repository types such as YUM/DNF repos. In such cases, users can disable the regular channel,
and enable the LTS version. A request for the installation of Avocado packages will fetch the latest version available
in the enabled repository. If the LTS repository channel is enabled, the packages will receive minor updates (bugfixes
only), until a new LTS version is released (roughly every 12 months).

If the non-LTS channel is enabled, users will receive updates every 3-4 weeks.

On other types of repos such as PyPI which have no concept of “sub-repos” or “channels”, users can request a version
smaller than the version that succeeds the current LTS to get the latest LTS (including minor releases). Suppose the
current LTS major version is 52, but there have been minor releases 52.1 and 52.2. By running:

pip install 'avocado-framework<53.0'

pip provide LTS version 52.2. If 52.3 gets released, they will be automatically deployed instead. When a new LTS is
released, users would still get the latest minor release from the 52.0 series, unless they update the version specification.

The existence of LTS releases should never be used as an excuse to break a Sprint Release or to introduce gratuitous
incompatibilities there. In other words, Sprint Releases should still be taken seriously, just as they are today.

Timeline example

Consider the release numbers as date markers. The bullet points beneath them are information about the release itself
or events that can happen anytime between one release and the other. Assume each sprint is taking 3 weeks.

9.4. Avocado Contributor’s Guide 141

https://pypi.python.org/pypi

avocado Documentation, Release 90.0

36.0

¢ LTS release (the only LTS release available at the time of writing)
37.0... 49.0

* sprint releases

* 36.1 LTS release

* 36.2 LTS release

* 36.3 LTS release
36.4 LTS release

50.0
* sprint release
* start preparing a LTS release, so 51.0 will be a beta LTS
51.0
* sprint release
e beta LTS release
52.0
e LTS release
* 52lts branch is created
* packages go into LTS repo
* both 36.x LTS and 52.x LTS maintained from this point on
53.0
* sprint release
* minor bug that affects 52.0 is found, fix gets added to master and 52lts branches
* bug does not affect 36.x LTS, so a backport is not added to the 36lts branch
54.0
* sprint release 54.0
* LTS release 52.1

* minor bug that also affects 52.x LTS and 36.x LTS is found, fix gets added to master, 52Its and
36lts branches

55.0
* sprint release
* LTS release 36.5
e LTS release 52.2

e critical bug that affects 52.2 only is found, fix gets added to 52lts and 52.3 LTS is immediately
released

56.0
* sprint release

57.0

142 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

* sprint release
58.0
* sprint release
59.0
* sprint release
¢ EOL for 36.x LTS (18 months since the release of 36.0), 36lts branch is frozen permanently.
A few points are worth taking notice here:
* Multiple LTS releases can co-exist before EOL
* Bug discovery can happen at any time
» The bugfix occurs ASAP after its discovery
* The severity of the defect determines the timing of the release
— moderate and minor bugfixes to Its branches are held until the next sprint release

— critical bugs are released asynchronously, without waiting for the next sprint release

Avocado-VT

Avocado-VT is an Avocado plugin that allows “VT tests” to be run inside Avocado. It’s a third-party project maintained
mostly by Engineers from Red Hat QE with assistance from the Avocado team and other community members.

It’s a general consensus that QE teams use Avocado-VT directly from git, usually following the master branch, which
they control.

There’s no official maintenance or stability statement for Avocado-VT. Even though the upstream community is quite
friendly and open to both contributions and bug reports, Avocado-VT is made available without any promises for
compatibility or supportability.

When packaged and versioned, Avocado-VT rpms should be considered just snapshots, available in packaged form as
a convenience to users outside of the Avocado-VT development community. Again, they are made available without
any promises of compatibility or stability.

* Which Avocado version should be used by Avocado-VT?

This is up to the Avocado-VT community to decide, but the current consensus is that to guarantee some stability
in production environments, Avocado-VT should stick to a specific LTS release of Avocado. In other words, the
Avocado team recommends production users of Avocado-VT not to install Avocado from its master branch or
upgrade it from Sprint Releases.

Given each LTS release will be maintained for 18 months, it should be reasonable to expect Avocado-VT to
upgrade to a new LTS release once a year or so. This process will be done with support from the Avocado team
to avoid disruptions, with proper coordination via the avocado mailing lists.

In practice the Avocado development team will keep watching Avocado-VT to detect and document incompati-
bilities, so when the time comes to do an upgrade in production, it’s expected that it should happen smoothly.

» Will it be possible to use the latest Avocado and Avocado-VT together?

Users are welcome to try this combination. The Avocado development team itself will do it internally as a way
to monitor incompatibilities and regressions.

Whenever Avocado is released, a matching versioned snapshot of Avocado-VT will be made. Packages con-
taining those Avocado-VT snapshots, for convenience only, will be made available in the regular Avocado
repository.

9.4. Avocado Contributor’s Guide 143

avocado Documentation, Release 90.0

Changelog

Changes from Version 4:

Moved changelog to the bottom of the document
Changed wording on bug handling for LTS releases (“important issues”)
Removed ppc64 (big endian) from list of platforms

If bugs also affect older LTS release during the transition period, a backport will also be added to the corre-
sponding branch

Further work on the Timeline example, adding summary of important points and more release examples, such as
the whole list of 36.x releases and the (fictional) 36.5 and 52.3

Changes from Version 3:

Converted formatting to REStructuredText

Replaced “me” mentions on version 1 changelog with proper name (Ademar Reis)
Renamed section “Misc Details” to Deployment Details

Renamed “avocado-vt” to “Avocado-VT”

Start the timeline example with version 36.0

Be explicit on timeline example that a minor bug did not generate an immediate release

Changes from Version 2:

Wording changes on second paragraph (... nor instabilities. .. ")

Clarified on “Introduction” that change of behavior is introduced between regular releases

Updated distro versions for which official packages are built

Add more clear explanation on official packages on the various hardware platforms

Used more recent version numbers as examples, and the planned new LTS version too

Explain how users can get the LTS version when using tools such as pip

Simplified the timeline example, with examples that will possibly match the future versions and releases

Documented current status of Avocado-VT releases and packages

Changes from Version 1:

Changed “Support” to “Stability” and “supported” to “maintained” [Jeff Nelson]
Misc improvements and clarifications in the supportability/stability statements [Jeff Nelson, Ademar Reis]

Fixed a few typos [Jeff Nelson, Ademar Reis]

9.4.9 Releasing Avocado

So you have all PRs approved, the Sprint meeting is done and now Avocado is ready to be released. Great, let’s go
over (most of) the details you need to pay attention to.

144

Chapter 9. Build and Quality Status

https://www.redhat.com/archives/avocado-devel/2017-April/msg00041.html
https://www.redhat.com/archives/avocado-devel/2017-April/msg00032.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00006.html

avocado Documentation, Release 90.0

Which repositories you should pay attention to

In general, a release of Avocado includes taking a look and eventually release content in the following repositories:

* avocado

e avocado-vt

How to release?

All the necessary steps are in JSON “testplans” to be executed with the following commands:

$ scripts/avocado-run-testplan -t examples/testplans/release/pre. json
$ scripts/avocado-run-testplan -t examples/testplans/release/release. json

Just follow the steps and have a nice release!

How to refresh Fedora/EPEL modules

This is an outline of the steps to update the Fedora/EPEL avocado:latest module stream when there is a new
upstream release of avocado. This example is based on updating from 82.0 to 83.0.

Update downstream python-avocado package

. Use pagure to create a personal fork of the downstream Fedora dist-git python—-avocado package source

repository https://src.fedoraproject.org/rpms/python-avocado if you don’t already have one.

. Clone your personal fork repository to your local workspace.

. Checkout the 1atest branch—which is the stream branch used by the avocado: latest module definition.

Make sure your latest branch is in sync with the most recent commits from the official dist-git repo you
forked from.

. Locate the official upstream commit hash and date corresponding to the upstream GitHub release tag. (eg.,

https://github.com/avocado-framework/avocado/releases/tag/75.1) Use those values to update the $global
commit and $global commit_date lines in the downstream python—-avocado. spec file.

. Update the Version: line with the new release tag.
. Resetthe Release: lineto 1%{?gitrel}%{?dist}.

. Add a new entry at the beginning of the $changelog section with a message similar to Sync with

upstream release 83.0..

. See what changed in the upstream SPEC file since the last release. You can do this by comparing

branches on GitHub (eg., https://github.com/avocado-framework/avocado/compare/82.0..83.0) and searching
for python-avocado.spec. If there are changes beyond just the $global commit, $global
commit_date, and Version: lines, and the $changelog section, make any necessary corresponding
changes to the downstream SPEC file. Note: the commit hash in the upstream SPEC file will be different
that what gets put in the downstream SPEC file since the upstream hash was added to the file before the re-
leased commit was made. Add an additional note to your $changelog message if there were any noteworthy
changes.

. Download the new upstream source tarball based on the updated SPEC by running:

spectool —g python—-avocado.spec

9.4.

Avocado Contributor’s Guide 145

https://src.fedoraproject.org/rpms/python-avocado
https://github.com/avocado-framework/avocado/releases/tag/75.1
https://github.com/avocado-framework/avocado/compare/82.0..83.0

avocado Documentation, Release 90.0

10.

11.

12.

13.

14.

15.

Add the new source tarball to the dist-git lookaside cache and update your local repo by running:

’fedpkg new-sources avocado-83.0.tar.gz

Create a Fedora source RPM from the updated SPEC file and tarball by running:

’fedpkg ——release f33 srpm

It should write an SRPM file (eg., python-avocado-83.0-1.fc33.src.rpm) to the current directory.

Test build the revised package locally using mock. Run the build using the same Fedora release for which the
SRPM was created:

mock —-r fedora-33-x86_64 python-avocado-83.0-1.fc33.src.rpm

If the package build fails, go back and fix the SPEC file, re-create the SRPM, and retry the mock build. It is
occasionally necessary to create a patch to disable specific tests or pull in some patches from upstream to get
the package to build correctly. See https://src.fedoraproject.org/rpms/python-avocado/tree/691ts as an example.

Repeat the SRPM generation and mock build for all other supported Fedora releases, Fedora Rawhide, and the
applicable EPEL (currently EPELS).

When you have successful builds for all releases, git add, git commit, and git push your updates.

Update downstream avocado module

. Use pagure to create a personal fork of the downstream Fedora dist-git avocado module source repository

https://src.fedoraproject.org/modules/avocado if you don’t already have one.
Clone your personal fork repository to your local workspace.

Checkout the 1atest branch—which the stream branch used for the avocado:latest module definition.
Make sure your latest branch is in sync with the latest commits to the official dist-git repo you forked from.

If there are any new or removed python—avocado sub-packages, adjust the avocado . yaml modulemd file
accordingly.

. Test with a scratch module build for the latest supported Fedora release (f33), including the SRPM created

earlier:

fedpkg module-scratch-build —--requires platform:£f33 —--buildrequires platform:£f33 -
——-file avocado.yaml —--srpm .../python-avocado/python-avocado-83.0-1.fc33.src.rpm

You can use https://release-engineering.github.io/mbs-ui/ to monitor the build progress.

If the module build fails, go back and fix the modulemd file and try again. Depending on the error, it may
necessary to go back and revise the package SPEC file.

. Repeat the scratch module build for all other supported Fedora releases, Fedora Rawhide, and EPELS

(platform:el8). If you're feeling confident, you can skip this step.

When you have successful scratch module builds for all releases, git add, git commit, git push
your update. Note: if avocado.yaml didn’t need modifying, it is still necessary to make a new commit
since official module builds are tracked internally by their git commit hash. Recall that git commit has an
-—allow—empty option.

146

Chapter 9. Build and Quality Status

https://src.fedoraproject.org/rpms/python-avocado/tree/69lts
https://src.fedoraproject.org/modules/avocado
https://release-engineering.github.io/mbs-ui/

avocado Documentation, Release 90.0

Release revised module

. Create PRs to merge the python—-avocado rpm and avocado module changes into the 1atest branches
of the master dist-git repositories. If you have commit privileges to the master repositories, you could also opt
to push directly.

. After the python—-avocado rpm and avocado module changes have been merged. ..

. From the 1atest branch of your module repository in your local workspace, submit the module build using
fedpkg module-build. The MBS (Module Build Service) will use stream expansion to automatically
build the module for all current Fedora/EPEL releases. Again, you can use https://release-engineering.github.
i0/mbs-ui/ to monitor the progress of the builds.

. If you want to test the built modules at this point, use odcs (On Demand Compose Service) to create a tempo-
rary compose for your Fedora release:

odcs create module avocado:latest:3120200121201503:£636be4db

You can then use wget to download the repofile from the URL referenced in the outputto /et c/yum. repos.
d/ and then you’ll be able to install your newly built avocado: latest module. Don’t forget to remove the
odcs repofile when you are done testing.

. Use https://bodhi.fedoraproject.org/ to create new updates for avocado:latest (using options
type=enhancement, severity=low, default for everything else) for each Fedora release and EPELS — except
Rawhide which happens automatically.

. Bodhi will push the updates to the testing repositories in a day or two. Following the push and after the Fe-
dora mirrors have had a chance to sync, you’ll be able to install the new module by including the dnf option
—-—enablerepo=updates-testing-modular (epel-testing-modular for EPEL).

. After receiving enough bodhi karma votes (three by default) or after enough days have elapsed (seven for Fedora,
twelve for EPEL), bodhi will push the updated modules to the stable repositories. At that point, the updated
modules will be available by default without any extra arguments to dnf.

9.4.10 Avocado development tips

In tree utils

You can find handy utils in avocado.utils.debug:

measure_duration

Decorator can be used to print current duration of the executed function and accumulated duration of this decorated

function. It’s very handy when optimizing.

Usage:

from avocado.utils import debug

@debug.measure_duration
def your_function(...):

During the execution look for:

PERF: <function your_function at 0x29p17d0>: (0.1s,
PERF: <function your_function at 0x29b17d0>: (0.2s,

11.3s)
11.5s)

9.4. Avocado Contributor’s Guide

147

https://release-engineering.github.io/mbs-ui/
https://release-engineering.github.io/mbs-ui/
https://bodhi.fedoraproject.org/

avocado Documentation, Release 90.0

Note: If you are running a test with Avocado, and want to measure the duration of a method/function, make sure to
enable the debug logging stream. Example:

avocado --show avocado.app.debug run examples/tests/assets.py

Line-profiler

You can measure line-by-line performance by using line_profiler. You can install it using pip:

’pip install line_profiler

and then simply mark the desired function with @profile (no need to import it from anywhere). Then you execute:

’kernprof -1 -v avocado run ...

and when the process finishes you’ll see the profiling information. (sometimes the binary is called kernprof.py)

Remote debug with Eclipse

Eclipse is a nice debugging frontend which allows remote debugging. It’s very simple. The only thing you need is
Eclipse with pydev plugin. The simplest way is to use pip install pydevd and then you set the breakpoint by:

import pydevd

pydevd.settrace (host="SIP_ADDR_OF_ECLIPSE_MACHINE", stdoutToServer=False,
—stderrToServer=False, port=5678, suspend=True, trace_only_current_thread=False,
—overwrite_prev_trace=False, patch_multiprocessing=False)

Before you run the code, you need to start the Eclipse’s debug server. Switch to Debug perspective (you might need
to open it first Window->Perspective->Open Perspective). Then start the server from Pydev->Start Debug Server.

Now whenever the pydev.settrace() code is executed, it contacts Eclipse debug server (port 8000 by default, don’t
forget to open it) and you can easily continue in execution. This works on every remote machine which has access to
your Eclipse’s port 8000 (you can override it).

9.4.11 Contact information

* Avocado-devel mailing list: https://www.redhat.com/mailman/listinfo/avocado-devel
¢ Avocado IRC channel: irc.oftc.net #avocado

* Avocado GitHub repository: https://github.com/avocado-framework/avocado/

9.5 Optional plugins

9.5.1 Avocado-ec2 Plugin

This plugin allows you to run tests on Amazon EC2 instances. Details available here

148 Chapter 9. Build and Quality Status

https://www.redhat.com/mailman/listinfo/avocado-devel
irc://irc.oftc.net/#avocado
https://github.com/avocado-framework/avocado/
https://github.com/avocado-framework/avocado-ec2

avocado Documentation, Release 90.0

9.5.2 Golang Plugin

This optional plugin enables Avocado to list and run tests written using the Go testing package.

To install the Golang plugin from pip, use:

$ sudo pip install avocado-framework-plugin-golang

After installed, you can list/run Golang tests providing the package name:

~$ avocado list golang.org/x/text/unicode/norm

GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG
GOLANG

golang

golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.
golang.

.org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:
org/x/text/unicode/norm:

TestFlush

TestInsert
TestDecomposition
TestComposition
TestProperties
TestIterNext
TestIterSegmentation
TestPlaceHolder
TestDecomposeSegment
TestFirstBoundary
TestNextBoundary
TestDecomposeToLastBoundary
TestLastBoundary
TestSpan
TestIsNormal
TestIsNormalString
TestAppend
TestAppendString
TestBytes

TestString
TestLinking
TestReader
TestWriter
TestTransform
TestTransformNorm
TestCharacterByCharacter
TestStandardTests
TestPerformance

And the Avocado test reference syntax to filter the tests you want to execute is also available in this plugin:

~$ avocado list golang.org/x/text/unicode/norm:TestTransform
GOLANG golang.org/x/text/unicode/norm:TestTransform
GOLANG golang.org/x/text/unicode/norm:TestTransformNorm

To run the tests, just switch from /ist to run:

~$ avocado run golang.org/x/text/unicode/norm:TestTransform

JOB ID

JOB LOG

(1/2)
(2/2)

RESULTS

JOB TIME
JOB HTML

ERROR 0 |

FAIL O

aa6e365470a304£d724779ef£f741b6180ee78a54

SHOME /avocado/ job-results/job-2017-10-06T16.06-aa6e365/job.log
golang.org/x/text/unicode/norm:TestTransform:
golang.org/x/text/unicode/norm:TestTransformNorm: PASS
PASS 2 |
4.61 s
SHOME /avocado/job-results/job-2017-10-06T16.06-aa6e365/results.html

PASS (1.89 s)

(1.87 s)
INTERRUPT 0O |

| SKIP O | WARN 0 |

The content of the individual tests output is recorded in the default location:

9.5. Optional plugins

CANCEL 0

https://golang.org/pkg/testing/

avocado Documentation, Release 90.0

~$ head ~/avocado/job-results/latest/test-results/l-golang.org_x_text_unicode_norm_
—TestTransform/debug. log

16:06:53 INFO | Running '/usr/bin/go test -v golang.org/x/text/unicode/norm -run_
—TestTransform'

16:06:55 DEBUG| [stdout] === RUN TestTransform

16:06:55 DEBUG| [stdout] —-—-— PASS: TestTransform (0.00s)

16:06:55 DEBUG| [stdout] === RUN TestTransformNorm

16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0

16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/fn

16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFD

16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFKC

16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFKD

16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/1

9.5.3 Result plugins

Optional plugins providing various types of job results.

HTML results Plugin

This optional plugin creates beautiful human readable results.

To install the HTML plugin from pip, use:

pip install avocado-framework-plugin-result-html

Once installed it produces the results in job results dir:

$ avocado run sleeptest.py failtest.py synctest.py

JOB HTML : S$HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/html/results.html

This can be disabled via —disable-html-job-result. One can also specify a custom location via —html . Last but not least
—open-browser can be used to start browser automatically once the job finishes.

Results Upload Plugin

This optional plugin is intended to upload the Avocado Job results to a dedicated sever.

To install the Result Upload plugin from pip, use:

’pip install avocado-framework-plugin-result-upload

Usage:

’avocado run passtest.py —-result-upload-url www@avocadologs.example.com:/var/www/html ‘

Avocado logs will be available at following URL:

e ssh

’www@avocadologs.example.com:/var/www/html/jobf2017704721T12.5471cefe11 ‘

¢ html (If web server is enabled)

150 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

http://avocadologs.example.com/job-2017-04-21T12.54-1cefell/

Such links may be refered by other plugins, such as the ResultsDB plugin
By default upload will be handled by following command

rsync —-arz -e 'ssh -o LogLevel=error -o stricthostkeychecking=no -o_
—userknownhostsfile=/dev/null -o batchmode=yes -o passwordauthentication=no'

Optionally, you can customize uploader command, for example following command upload logs to Google storage:

avocado run passtest.py —-result-upload-url='gs://avocadolog' --result-upload-cmd=
—'gsutil —m cp -r'

You can also set the ResultUpload URL and command using a config file:

[plugins.result_upload]
url = www@Ravocadologs.example.com:/var/www/htmlavocado/job-results
command="'rsync —-arzqg'

And then run the Avocado command without the explicit cmd options. Notice that the command line options will have
precedence over the configuration file.

ResultsDB Plugin

This optional plugin is intended to propagate the Avocado Job results to a given ResultsDB API URL.

To install the ResultsDB plugin from pip, use:

’pip install avocado-framework-plugin-resultsdb

Usage:

’avocado run passtest.py —--resultsdb-api http://resultsdb.example.com/api/v2.0/

Optionally, you can provide the URL where the Avocado logs are published:

avocado run passtest.py —-resultsdb-api http://resultsdb.example.com/api/v2.0/ ——
—resultsdb-logs http://avocadologs.example.com/

The —resultsdb-logs is a convenience option that will create links to the logs in the ResultsDB records. The links will
then have the following formats:

* ResultDB group (Avocado Job):

http://avocadologs.example.com/job-2017-04-21T12.54-1cefell/

¢ ResultDB result (Avocado Test):

http://avocadologs.example.com/job-2017-04-21T12.54-1cefell/test-results/1-
—passtest.py:PassTest.test/

You can also set the ResultsDB API URL and logs URL using a config file:

[plugins.resultsdb]
api_url = http://resultsdb.example.com/api/v2.0/
logs_url = http://avocadologs.example.com/

9.5. Optional plugins 151

avocado Documentation, Release 90.0

And then run the Avocado command without the —resultsdb-api and —resultsdb-logs options. Notice that the command
line options will have precedence over the configuration file.

9.5.4 Robot Plugin

This optional plugin enables Avocado to work with tests originally written using the Robot Framework APIL.

To install the Robot plugin from pip, use:

’$ sudo pip install avocado-framework-plugin-robot

After installed, you can list/run Robot tests the same way you do with other types of tests.

To list the tests, execute:

’$ avocado list ~/path/to/robot/tests/test.robot

Directories are also accepted. To run the tests, execute:

’$ avocado run ~/path/to/robot/tests/test.robot

9.5.5 CIT Varianter Plugin

This plugin is an implementation of a “Combinatorial Interaction Testing with Constraints” algorithm for the Avocado
varianter functionality. It generates an optimal number of variants, which in turn become different test scenarios.

Publications
The publication by Ahmed, Bestoun S., Kamal Z. Zamli, and Chee Peng Lim, entitled “Application of particle swarm

optimization to uniform and variable strength covering array construction”, Applied Soft Computing, 12(4), 2012, pp.
1330-1347, contains the basis for the algorithm and implementation of this feature.

Additionally, the publication by Bestoun S. Ahmed, Amador Pahim, Cleber R. Rosa Junior, D. Richard Kuhn and
Miroslav Bures, entitled “Towards an Automated Unified Framework to Run Applications for Combinatorial Interac-
tion Testing”, contain a practical use case of this software.

Examples

Please refer to examples/varianter_cit/params.cit for an example of a input file.

Input file format

The following is the general structure of a input file:

PARAMETERS

Parameter_1 [Value_1l, Value_2, Value_3, Value_4]
Parameter_2 [Value_1, Value_2, Value_3, Value_4]
Parameter_3 [Value_1, Value_2, Value_3, Value_4]

CONSTRAINTS
Parameter_1 != Value_1 || Parameter_2 != Value_3
Parameter_3 != Value_2 || Parameter_2 != Value_4 || Parameter_1 != Value_4

152 Chapter 9. Build and Quality Status

http://robotframework.org/
https://www.sciencedirect.com/science/article/pii/S1568494611004716
https://www.sciencedirect.com/science/article/pii/S1568494611004716
https://arxiv.org/pdf/1903.05387.pdf
https://arxiv.org/pdf/1903.05387.pdf

avocado Documentation, Release 90.0

The input file has two parts, parameters and constraints.

Parameters

* Each line represent one parameter.

» Each parameter has a name, and a list of values inside brackets.

Constraints:

 Constraints have to be in Conjunctive normal form.
* Constraints use these tree operands: !=, OR, AND
* | | represents operand OR and new line represents operand AND.

* In the example is this logic formula:: (P_1!= VI ORP_2!=V_3) AND (P_.3!=V_2O0ORP_2!=V_40R
P_1 != Value_4))

Usage

Note: the algorithm employed here can be CPU intensive. If you want more information on the progress
of the combinatorial calculation, add ——debug to a command line, such as avocado variants —--debug
——cit-parameter-file $PATH

Cit varianter plugin runs with two parameters:
* —cit-parameter-file with path to the input file
* —cit-order-of-combinations with strength of combination (default is 2)

To see the variants generated by this demo implementation, execute:

$ avocado variants —-cit-parameter—-file examples/varianter_cit/params.cit
CIT Variants (28):

Variant red-square-solid-plastic-anodic-6-4-4-2: /
Variant green-circle-gas—leather-cathodic-7-5-4-1: /
Variant green-triangle-liquid-leather-anodic-5-4-1-3: /
Variant green-square-liquid-plastic-anodic-3-1-4-5: /
Variant red-triangle-solid-leather-anodic-5-2-4-1: /
Variant black-triangle-gas-leather—-anodic-7-1-1-2: /
Variant green-circle-solid-aluminum-cathodic-7-1-5-4: /
Variant red-square-gas-plastic-cathodic-6-3-5-3: /
Variant gold-triangle-solid-leather—-anodic-6-5-1-4: /
Variant gold-triangle-gas-leather—-anodic-3-2-5-2: /
Variant gold-square-gas-plastic-cathodic-5-1-1-1: /
Variant red-circle-gas-plastic-anodic-1-1-3-3: /
Variant red-circle-gas-aluminum-cathodic-3-3-1-5: /
Variant black-triangle-solid-plastic-cathodic-5-5-5-5: /
Variant gold-triangle-gas—-leather-anodic-7-4-2-5: /
Variant black-triangle-gas—-aluminum-cathodic-6-1-2-1: /
Variant gold-square-liquid-leather-cathodic-3-5-2-3: /
Variant black-square-solid-aluminum-cathodic-7-2-4-3: /
Variant black-circle-liquid-aluminum-anodic-1-4-5-1: /

(continues on next page)

9.5. Optional plugins 153

avocado Documentation, Release 90.0

(continued from previous page)

Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant

black-triangle-gas-leather-cathodic-7-3-3-1: /
green-square-solid-aluminum-cathodic-1-3-2-2: /
gold-triangle-gas—aluminum-anodic-1-3-4-4: /
red-square-liquid-plastic—-anodic-7-2-2-4: /
gold-circle-liquid-aluminum-anodic-5-5-3-2: /
red-triangle-gas-leather-anodic-1-5-1-5: /
gold-circle-liquid-aluminum-cathodic-5-3-2-4: /
black-square-solid-plastic-cathodic-3-4-3-4: /
green-circle-liquid-plastic-cathodic-6-2-3-5: /

Note: The exact variants generated are not guaranteed to be the same across executions.

You can enable more verbosity, making each variant to show its content:

$ avocado variants —--cit-parameter-file examples/varianter_cit/params.cit -c
CIT Variants (28):
Variant red-circle-solid-plastic-cathodic-6-3-3-1: /
/:coating => cathodic
/:color => red
/:material => plastic
/:pl0 => 1
/:p7 = 6
/:p8 => 3
/:p9 => 3
/ :shape => circle
/:state => solid
Variant black-circle-liquid-aluminum-anodic-6-5-1-2: /
/:coating => anodic
/:color => black
/:material => aluminum
/:pl0 => 2
/p7 => 6
/:p8 => 5
/:p9 => 1
/ :shape => circle
/:state => liquid
Variant black-triangle-liquid-plastic-anodic-3-1-4-2: /
/:coating => anodic
/:color => black
/:material => plastic
/:pl0 = 2
/:p7 => 3
/:p8 => 1
/:p9 => 4
/ :shape => triangle
/:state => liquid
Variant black-triangle-solid-plastic-cathodic-6-4-3-5: /
/:coating => cathodic
/:color => black
/:material => plastic
/:p10 => 5

(continues on next page)

154

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

/:p7 => 6

/:p8 => 4

/:p9 => 3

/ :shape => triangle

/:state => solid
Variant green-circle-solid-leather-cathodic-3-5-3-3: /

/:coating => cathodic

/:color => green

/:material => leather

/:pl0 = 3

/:p7 => 3

/:p8 => 5

/:p9 => 3

/ :shape => circle

/:state => solid
Variant black-triangle-liquid-aluminum-cathodic-1-3-2-3: /

/:coating => cathodic

/:color => black

/:material => aluminum

/:pl0 => 3

/:p7 => 1

/:p8 => 3

/:p9 => 2

/ :shape => triangle

/:state => liquid
Variant gold-square-gas-plastic—anodic-6-4-5-3: /

/:coating => anodic

/:color => gold

/:material => plastic

/:pl0 => 3

/7 => 6

/:p8 => 4

/:p9 => 5

/ :shape => square

/:state => gas
Variant gold-triangle-solid-leather-cathodic-5-3-5-5: /

/:coating => cathodic

/:color => gold

/:material => leather

/:pl0 = 5

/:p7 => 5

/:p8 => 3

/:p9 => 5

/ :shape => triangle

/:state => solid
Variant green-square-gas—aluminum-cathodic-5-2-3-2: /

/:coating => cathodic

/:color => green

/:material => aluminum

/:pl0 => 2

/:p7 => 5

/:p8 => 2

(continues on next page)

9.5. Optional plugins

155

avocado Documentation, Release 90.0

(continued from previous page)

/:p9
/ :shape
/:state

=> 3
=> square
=> gas

Variant green-triangle-liquid-aluminum-cathodic-7-3-1-4:

/:coating => cathodic
/:color => green
/:material => aluminum
/:pl0 => 4
/:p7 => 7
/:p8 => 3
/:p9 => 1
/ :shape => triangle
/:state => liquid
Variant gold-square-solid-leather—-anodic-5-5-2-4: /
/:coating => anodic
/:color => gold
/:material => leather
/:pl0 => 4
/:p7 => 5
/:p8 => 5
/:p9 => 2
/ :shape => square
/:state => solid
Variant red-square-gas-leather-anodic-3-3-1-5:
/:coating => anodic
/:color => red
/:material => leather
/:p10 => 5
/:p7 = 3
/:p8 => 3
/:p9 = 1
/ :shape => square
/:state => gas
Variant red-circle-liquid-aluminum-anodic-5-4-4-1: /

Variant gold-circle-liquid-aluminum-cathodic-7-1-5-5:

/:coating =>
/:color =>
/:material =>
/:pl0 =>
/:p7 =>
/:p8 =>
/:p9 =>
/ :shape =>
/:state =>
/:coating =>
/:color =>
/:material =>
/:pl0 =>
/:p7 =>
/:p8 =>
/:p9 =>
/ :shape =>

anodic
red
aluminum
1

5

4

4

circle
liquid

cathodic
gold
aluminum
5

7

1

5

circle

(continues on next page)

156

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

/:state => liquid

Variant red-triangle-solid-plastic-anodic-1-5-5-2:

/:coating => anodic

/:color => red

/:material => plastic

/:pl0 => 2

/:p7 => 1

/:p8 => 5

/:p9 => 5

/ :shape => triangle

/:state => solid
Variant green-triangle-gas-plastic-cathodic-3-4-5-4:

/:coating => cathodic

/:color => green

/:material => plastic

/:pl0 => 4

/p7 => 3

/:p8 => 4

/:p9 => 5

/ :shape => triangle

/:state => gas
Variant green-square-gas-leather—-anodic-1-5-4-5:

/:coating => anodic

/:color => green

/:material => leather

/:pl0 = 5

/:p7 => 1

/:p8 => 5

/:p9 => 4

/ :shape => square

/:state => gas

Variant red-circle-solid-leather—-anodic-1-1-3-4:

/:coating => anodic

/:color => red

/:material => leather

/:pl0 => 4

/:p7 =1

/:p8 => 1

/:p9 => 3

/ :shape => circle

/:state => solid
Variant gold-circle-liquid-aluminum-anodic-3-2-2-5:

/:coating => anodic

/:color => gold

/:material => aluminum

/:pl0 = 5

/p7 => 3

/:p8 => 2

/:p9 => 2

/ :shape => circle

/:state => liquid

(continues on next page)

9.5. Optional plugins

157

avocado Documentation, Release 90.0

(continued from previous page)

Variant black-square-solid-plastic-cathodic-5-1-1-3:

/:coating =>
/:color =>
/:material =>
/:pl0 =>
/:p7 =>
/:p8 =>
/:p9 =>
/ :shape =>
/:state =>

Variant green-circle-gas—-leather-cathodic-6-1-2-1:

Variant red-square-solid-aluminum-cathodic-7-2-4-3:

/:coating =>
/:color =>
/:material =>
/:pl0 =>
/:p7 =>
/:p8 =>
/:p9 =>
/ :shape =>
/:state =>
/:coating =>
/:color =>
/:material =>
/:pl0 =>
/:p7 =>
/:p8 =>
/:p9 =>
/:shape =>
/:state =>

cathodic
black
plastic
3

5

1

1

square
solid

cathodic
green
leather
1

6

1

2

circle
gas

cathodic
red
aluminum
3

7

2

4

square
solid

Variant red-circle-gas-plastic—-anodic-7-4-2-2:

/:coating =>
/:color =>
/:material =>
/:pl0 =>
/:p7 =>
/:p8 =>
/:p9 =>
/ :shape =>
/:state =>

Variant gold-square-liquid-leather—-anodic-1-4-1-1:

/:coating =>
/:color =>
/:material =>
/:p10 =>
/:p7 =>
/:p8 =>
/:p9 =>
/ :shape =>
/:state =>

Variant gold-square-liquid-leather-cathodic-6-3-4-2:

/:coating =>

anodic
red
plastic
2

7

4

2
circle
gas

anodic
gold
leather
1

1

4

1
square
liquid

cathodic

(continues on next page)

158

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

/:color => gold

/:material => leather

/:pl0 => 2

/:p7 => 6

/:p8 => 3

/:p9 => 4

/ :shape => square

/:state => liquid
Variant gold-square-liquid-leather—-anodic-7-5-3-1: /

/:coating => anodic

/:color => gold

/:material => leather

/:pl0 = 1

/:p7 => 7

/:p8 => 5

/:p9 => 3

/ :shape => square

/:state => liquid
Variant black-triangle-liquid-plastic-anodic-7-2-5-1: /

/:coating => anodic

/:color => black

/:material => plastic

/:p10 => 1

/:p7 => 7

/:p8 => 2

/:p9 => 5

/ :shape => triangle

/:state => liquid
Variant black-square-gas-leather-cathodic-6-2-4-4: /

/:coating => cathodic

/:color => black

/:material => leather

/:pl0 => 4

/7 => 6

/:p8 => 2

/:p9 => 4

/ :shape => square

/:state => gas

To execute tests with those combinations use:

$ avocado run passtest.py —-cit-parameter—-file examples/varianter_cit/params.cit
JOB ID 6abd9%e9f1ff9%ed33a353caB8f3ef845cd4cc404ab
JOB LOG SHOME /avocado/ job-results/job-2018-07-23T08.46-6abd%9/job.log

(01/25) passtest.py:PassTest.test;black-circle-gas-plastic-anodic-3-3-5-5: PASS (0.
—04 s)

(02/25) passtest.py:PassTest.test;gold-square-liquid-leather—-anodic-3-2-1-4: PASS (0.
03 s)

(03/25) passtest.py:PassTest.test;green-square-gas—-plastic-cathodic-3-5-4-1: PASS (O.
—04 s)

(04/25) passtest.py:PassTest.test;gold-circle-solid-leather—-anodic-6-4-4-2: PASS (0.
—~04 s)

(05/25) passtest.py:PassTest.test;green-triangle-liquid-aluminum-cathodic-7-4-5-1:
—PASS (0.04 s)

(continues on next page)

9.5. Optional plugins

159

avocado Documentation, Release 90.0

(continued from previous page)

(06/25) passtest.py:PassTest.test;black-circle-gas-plastic-cathodic-1-4-3-4: PASS (0.
—04 s)

(07/25) passtest.py:PassTest.test;red-square-gas—leather-anodic-3-4-2-3: PASS (0.04_
<—>S)

(08/25) passtest.py:PassTest.test;gold-triangle-solid-leather—-anodic-1-3-2-1: PASS,,
—(0.04 s)

(09/25) passtest.py:PassTest.test;green-circle-gas-plastic-cathodic-7-1-2-4: PASS (0.
—04 s)

(10/25) passtest.py:PassTest.test;green-triangle-gas—aluminum-cathodic-6-2-2-5: PASS
—(0.04 s)

(11/25) passtest.py:PassTest.test;black-circle-liquid-plastic-cathodic-5-5-2-2: PASS_
—(0.03 s)

(12/25) passtest.py:PassTest.test;red-square-solid-aluminum-anodic-5-2-3-1: PASS (0.
—~04 s)

(13/25) passtest.py:PassTest.test;gold-square-solid-leather—-anodic-7-5-3-5: PASS (0.
04 s)

(14/25) passtest.py:PassTest.test;green-triangle-solid-leather—-anodic-1-5-1-3: PASS,_
—(0.04 s)

(15/25) passtest.py:PassTest.test;black-circle-liquid-leather-cathodic-6-1-1-1: PASS
—(0.04 s)

(16/25) passtest.py:PassTest.test;red-triangle-liquid-plastic-anodic-6-3-3-3: PASS,
—(0.04 s)

(17/25) passtest.py:PassTest.test;green-triangle-solid-plastic-cathodic-5-3-4-4:
—PASS (0.04 s)

(18/25) passtest.py:PassTest.test;red-square-liquid-aluminum—-anodic-6-5-5-4: PASS (0.
—~04 s)

(19/25) passtest.py:PassTest.test;red-square-gas—aluminum-cathodic-7-3-1-2: PASS (0.
04 s)

(20/25) passtest.py:PassTest.test; red-square-liquid-aluminum-anodic-1-1-4-5: PASS (0.
—04 s)

(21/25) passtest.py:PassTest.test;gold-circle-gas-plastic-anodic-5-4-1-5: PASS (0.04,
—S)

(22/25) passtest.py:PassTest.test;gold-circle-solid-leather—-anodic-5-1-5-3: PASS (0.
04 s)

(23/25) passtest.py:PassTest.test;red-circle-liquid-plastic-cathodic-1-2-5-2: PASS,,
—(0.04 s)

(24/25) passtest.py:PassTest.test;green-triangle-solid-aluminum-anodic-3-1-3-2: PASS,
H(0.04 s)

(25/25) passtest.py:PassTest.test;black-circle-solid-aluminum-cathodic-7-2-4-3: PASS
—(0.03 s)

RESULTS : PASS 25 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 1.21 s
JOB HTML : SHOME/avocado/job-results/job-2018-07-23T08.46-6abd%e9/results.html

9.5.6 PICT Varianter plugin

avocado_varianter_pict

This plugin uses a third-party tool to provide variants created by “Pair-Wise” algorithms, also known as Combinatorial
Independent Testing.

Installing PICT

PICT is a free software (MIT licensed) tool that implements combinatorial testing. More information about it can be
found at https://github.com/Microsoft/pict/ .

160 Chapter 9. Build and Quality Status

https://github.com/Microsoft/pict/

avocado Documentation, Release 90.0

If you’re building from sources, make sure you have a C++ compiler such as GCC or clang, and make. The included
Makefile should work out of the box and give you a pict binary.

Then copy the pict binary to a location in your $PATH. Alternatively, you may use the plugin ——pict-binary
command line option to provide a specific location of the pict binary, but that is not as convenient as having it on your
$PATH.

Using the PICT Varianter Plugin

The following listing is a sample (simple) PICT file:

arch: intel, amd

block_driver: scsi, ide, virtio
net_driver: rtl8139, 1000, virtio
guest: windows, linux

host: rhel6, rhel7, rhel8

To list the variants generated with the default combination order (2, that is, do a pairwise idenpendent combinatorial
testing):

$ avocado variants —--pict-parameter-file=params.pict
Pict Variants (11):
Variant amd-scsi-rtl18139-windows-rhel6-acff: /run

Variant amd-ide-el000-linux-rhel6-eb43: /run

To list the variants generated with a 3-way combination:

$ avocado variants --pict-parameter-file=examples/params.pict \
——pict-order-of-combinations=3

Pict Variants (28):
Variant intel-ide-virtio-windows-rhel7-aeab: /run

Variant intel-scsi-el000-linux-rhel7-9f61: /run

To run tests, just replace the variants avocado command for run:

$ avocado run —--pict-parameter-file=params.pict /bin/true

The tests given in the command line should then be executed with all variants produced by the combinatorial algorithm
implemented by PICT.

9.5.7 Multiplexer

avocado_varianter_yaml_to_mux.mux

Multiplexer or simply Mux is an abstract concept, which was the basic idea behind the tree-like params struc-
ture with the support to produce all possible variants. There is a core implementation of basic building blocks
that can be used when creating a custom plugin. There is a demonstration version of plugin using this concept in
avocado_varianter_yaml_to_mux which adds a parser and then uses this multiplexer concept to define an
Avocado plugin to produce variants from yaml (or json) files.

9.5. Optional plugins 161

avocado Documentation, Release 90.0

9.5.8 Multiplexer concept
As mentioned earlier, this is an in-core implementation of building blocks intended for writing Varianter plugins based
on a tree with Multiplex domains defined. The available blocks are:

* MuxTree - Object which represents a part of the tree and handles the multiplexation, which means producing all
possible variants from a tree-like object.

* MuxPlugin - Base class to build Varianter plugins

e MuxTreeNode - Inherits from TreeNode and adds the support for control flags (MuxTreeNode.ctrl) and
multiplex domains (MuxTreeNode .multiplex).

And some support classes and methods eg. for filtering and so on.

Multiplex domains

A default avocado-params tree with variables could look like this:

Multiplex tree representation:
paths
— tmp: /var/tmp
— gemu: /usr/libexec/gemu-kvm
environ
— debug: False

The multiplexer wants to produce similar structure, but also to be able to define not just one variant, but to define
all possible combinations and then report the slices as variants. We use the term Multiplex domains to define that
children of this node are not just different paths, but they are different values and we only want one at a time. In
the representation we use double-line to visibily distinguish between normal relation and multiplexed relation. Let’s
modify our example a bit:

Multiplex tree representation:
paths
— tmp: /var/tmp
— gemu: /usr/libexec/gemu-kvm
environ
production
— debug: False
debug
— debug: True

The difference is that environ is now amultiplex node and it’s children will be yielded one at a time producing
two variants:

Variant 1:
paths
— tmp: /var/tmp
— gemu: /usr/libexec/gemu-kvm
environ
production
— debug: False
Variant 2:
paths
— tmp: /var/tmp
— gemu: /usr/libexec/gemu-kvm
environ

(continues on next page)

162 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

debug
— debug: False

Note that the multiplex is only about direct children, therefore the number of leaves in variants might differ:

Multiplex tree representation:
paths
— tmp: /var/tmp
— gemu: /usr/libexec/gemu-kvm
environ
production
— debug: False
debug
system
— debug: False
program
— debug: True

Produces one variant with /paths and /environ/production and other variant with /paths, /environ/
debug/systemand /environ/debug/program.

As mentioned earlier the power is not in producing one variant, but in defining huge scenarios with all possible variants.
By using tree-structure with multiplex domains you can avoid most of the ugly filters you might know from Jenkin’s
sparse matrix jobs. For comparison let’s have a look at the same example in Avocado:

Multiplex tree representation:
os
distro
redhat
fedora
version
20
21
flavor
workstation
cloud
rhel

arch
1386
x86_64

Which produces:

Variant 1: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
—workstation, /os/arch/i386

Variant 2: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
—workstation, /os/arch/x86_64

Variant 3: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
—cloud, /os/arch/i386

Variant 4: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
—~cloud, /os/arch/x86_64

Variant 5: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
—workstation, /os/arch/i1386

Variant 6: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
—workstation, /os/arch/x86_64

(continues on next page)

9.5. Optional plugins 163

avocado Documentation, Release 90.0

(continued from previous page)

Variant 7: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
—~cloud, /os/arch/i386

Variant 8: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
—~cloud, /os/arch/x86_64

Variant 9: /os/distro/redhat/rhel/5, /os/arch/i386

Variant 10: /os/distro/redhat/rhel/5, /os/arch/x86_64

Variant 11: /os/distro/redhat/rhel/6, /os/arch/i1386

Variant 12: /os/distro/redhat/rhel/6, /os/arch/x86_64

Versus Jenkin’s sparse matrix:

os_version = fedora20 fedora2l rhel5 rhelo6
os_flavor = none workstation cloud
arch = 1386 x86_64

filter = ((os_version == "rhelb5").implies (os_flavor == "none") &&
(os_version == "rhel6").implies (os_flavor == "none")) &&
! (os_version == "fedora20" && os_flavor == "none") &&
! (os_version == "fedora2l" && os_flavor == "none")

Which is still relatively simple example, but it grows dramatically with inner-dependencies.

MuxPlugin

avocado_varianter_yaml_ to mux.mux.MuxPlugin

Defines the full interface required by avocado.core.plugin_interfaces.Varianter. The plugin writer
should inherit from this MuxP lugin, then from the Varianter and call the:

self.initialize_mux (root, paths, debug)

Where:
* root - is the root of your params tree (compound of 7TreeNode -like nodes)
* paths - is the Parameter Paths to be used in test with all variants

* debug - whether to use debug mode (requires the passed tree to be compound of TreeNodeDebug-like nodes
which stores the origin of the variant/value/environment as the value for listing purposes and is _ NOT__ in-
tended for test execution.

This method must be called before the Varianter’s second stage. The MuxPlugin’s code will take care of the rest.

MuxTree

This is the core feature where the hard work happens. It walks the tree and remembers all leaf nodes or uses list of
MuxTrees when another multiplex domain is reached while searching for a leaf.

When it’s asked to report variants, it combines one variant of each remembered item (leaf node always stays the
same, but MuxTree circles through it’s values) which recursively produces all possible variants of different multiplex
domains.

9.5.9 Yaml_to_mux plugin

avocado_varianter_yaml_to_mux

164 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

This plugin utilizes the multiplexation mechanism to produce variants out of a yaml file. This section is
example-based, if you are interested in test parameters and/or multiplexation overview, please take a look at
test-parameters.

As mentioned earlier, it inherits from the avocado_varianter. _yaml_to_mux.mux.MuxPluginand the only
thing it implements is the argument parsing to get some input and a custom yaml parser (which is also capable of
parsing json).

The YAML file is perfect for this task as it’s easily read by both, humans and machines. Let’s start with an example
(line numbers at the first columns are for documentation purposes only, they are not part of the multiplex file format):

1 hw:
2 cpu: !mux
3 intel:
4 cpu_CFLAGS: '-march=core2'
5 amd:
6 cpu_CFLAGS: '-march=athlon64d'
7 arm:
8 cpu_CFLAGS: '-mabi=apcs—-gnu —-march=armv8-a -mtune=arm8'
9 disk: !mux
10 scsi:
11 disk type: 'scsi'
12 virtio:
13 disk_type: 'virtio'
14 distro: !'mux
15 fedora:
16 init: 'systemd'
17 mint:
18 init: 'systemv'
19 env: !'mux
20 debug:
21 opt_CFLAGS: '-00 -g'
22 prod:
23 opt_CFLAGS: '-02'

Warning: On some architectures misbehaving versions of CYaml Python library were reported and Av-
ocado always fails with unacceptable character #x0000: control characters are not
allowed. To workaround this issue you need to either update the PyYaml to the version which works prop-
erly, or you need to remove the python2.7/site-packages/yaml/cyaml.py or disable CYaml import
in Avocado sources. For details check out the Github issue

There are couple of key=>value pairs (lines 4,6,8,11,13,...) and there are named nodes which define scope (lines
1,2,3,5,7,9,...). There are also additional flags (lines 2, 9, 14, 19) which modifies the behavior.

Nodes
They define context of the key=>value pairs allowing us to easily identify for what this values might be used for and
also it makes possible to define multiple values of the same keys with different scope.

Due to their purpose the YAML automatic type conversion for nodes names is disabled, so the value of node name is
always as written in the YAML file (unlike values, where yes converts to True and such).

Nodes are organized in parent-child relationship and together they create a tree. To view this structure use avocado
variants —--tree -m <file>:

9.5. Optional plugins 165

https://github.com/avocado-framework/avocado/issues/1190

avocado Documentation, Release 90.0

run
hw
cpu
intel
amd
arm
disk
scsi
virtio
distro
fedora
mint
env
debug
prod

You can see that hw has 2 children cpu and disk. All parameters defined in parent node are inherited to children
and extended/overwritten by their values up to the leaf nodes. The leaf nodes (intel, amd, arm, scsi, ...) are the
most important as after multiplexation they form the parameters available in tests.

Keys and Values

Every value other than dict (4,6,8,11) is used as value of the antecedent node.

Each node can define key/value pairs (lines 4,6,8,11,...). Additionally each children node inherits values of it’s parent
and the result is called node environment.

Given the node structure bellow:

devtools:
compiler: 'cc'
flags:
- '-02"
debug: '-g'
fedora:
compiler: 'gcc'
flags:
- '-Wall'
osx:
compiler: 'clang'
flags:
- '—arch 1386"
- '—arch x86_64"
And the rules defined as:

* Scalar values (Booleans, Numbers and Strings) are overwritten by walking from the root until the final node.
* Lists are appended (to the tail) whenever we walk from the root to the final node.

The environment created for the nodes fedora and osx are:
¢ Node //devtools/fedora environment compiler: ‘'gcc',flags: ['-02', '-Wall']

* Node //devtools/osx environment compiler: 'clang', flags: ['-02"', '—arch
1i386', '—arch x86_64"]

Note that due to different usage of key and values in environment we disabled the automatic value conversion for keys
while keeping it enabled for values. This means that the key is always a string and the value can be YAML value, eg.

166 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

bool, list, custom type, or string. Please be aware that due to limitation None type can be provided in yaml specifically
as string ‘null’.

Variants

In the end all leaves are gathered and turned into parameters, more specifically into AvocadoParams:

setup:
graphic:
user: "guest"
password: "pass"
text:
user: "root"

password: "123456"

produces [graphic, text]. In the testcode you’ll be able to query only those leaves. Intermediary or root nodes
are available.

The example above generates a single test execution with parameters separated by path. But the most powerful
multiplexer feature is that it can generate multiple variants. To do that you need to tag a node whose children are ment
to be multiplexed. Effectively it returns only leaves of one child at the time.In order to generate all possible variants
multiplexer creates cartesian product of all of these variants:

cpu: !mux
intel:
amd:
arm:

fmt: !'mux
gcow2 :
raw:

Produces 6 variants:

/cpu/intel, /fmt/gcow?2
/cpu/intel, /fmt/raw

/cpu/arm, /fmt/raw

The !mux evaluation is recursive so one variant can expand to multiple ones:

fmt: !'mux
gcow: !mux
2:
2v3:
raw:

Results in:

/fmt /gqcow2/2
/fmt /gqcow2/2v3
/raw

Resolution order

You can see that only leaves are part of the test parameters. It might happen that some of these leaves contain different
values of the same key. Then you need to make sure your queries separate them by different paths. When the

9.5. Optional plugins 167

avocado Documentation, Release 90.0

path matches multiple results with different origin, an exception is raised as it’s impossible to guess which key was
originally intended.

To avoid these problems it’s recommended to use unique names in test parameters if possible, to avoid the mentioned
clashes. It also makes it easier to extend or mix multiple YAML files for a test.

For multiplex YAML files that are part of a framework, contain default configurations, or serve as plugin configurations
and other advanced setups it is possible and commonly desirable to use non-unique names. But always keep those
points in mind and provide sensible paths.

Multiplexer also supports default paths. By default it’s /run/ but it can be overridden by ——mux-path, which
accepts multiple arguments. What it does it splits leaves by the provided paths. Each query goes one by one through
those sub-trees and first one to hit the match returns the result. It might not solve all problems, but it can help to
combine existing YAML files with your ones:

ga: # large and complex read-only file, content injected into /qa
tests:
timeout: 10

my_ variants: !mux # yvour YAML file injected into /my_variants
short:
timeout: 1
long:

timeout: 1000

You want to use an existing test which uses params.get ('timeout', '=*').Then you canuse -—mux-path
'/my_variants/+"' '/ga/*"' andit’ll first look in your variants. If no matches are found, then it would proceed
to /ga/*

Keep in mind that only slices defined in mux-path are taken into account for relative paths (the ones starting with *)

Injecting files

You can run any test with any YAML file by:

avocado run sleeptest.py ——mux-yaml file.yaml

This puts the content of file.yaml into /run location, which as mentioned in previous section, is the default
mux-path path. For most simple cases this is the expected behavior as your files are available in the default path and
you can safely use params.get (key).

When you need to put a file into a different location, for example when you have two files and you don’t want the
content to be merged into a single place becoming effectively a single blob, you can do that by giving a name to your
YAML file:

avocado run sleeptest.py ——mux-yaml duration:duration.yaml

The content of duration.yaml is injected into /run/duration. Still when keys from other files don’t clash,
you can use params.get (key) and retrieve from this location as it’s in the default path, only extended by the
duration intermediary node. Another benefit is you can merge or separate multiple files by using the same or
different name, or even a complex (relative) path.

Last but not least, advanced users can inject the file into whatever location they prefer by:

avocado run sleeptest.py ——mux-yaml /my/variants/duration:duration.yaml

Simple params.get (key) won’t look in this location, which might be the intention of the test writer. There are
several ways to access the values:

168 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

¢ absolute location params.get (key, '/my/variants/duration')
 absolute location with wildcards params.get (key, '/my/x) (or /+«/duration/x*...)
* set the mux-path avocado run ... —-mux-path /my/+ and use relative path

It’s recommended to use the simple injection for single YAML files, relative injection for multiple simple YAML files
and the last option is for very advanced setups when you either can’t modify the YAML files and you need to specify
custom resolution order or you are specifying non-test parameters, for example parameters for your plugin, which you
need to separate from the test parameters.

Special values

As you might have noticed, we are using mapping/dicts to define the structure of the params. To avoid surprises we
disallowed the smart typing of mapping keys so:

on: on

Won’t become True: True, but the key will be preserved as string on: True.

You might also want to use dict as values in your params. This is also supported but as we can’t easily distinguish
whether that value is a value or a node (structure), you have to either embed it into another object (list, ..) or you have
to clearly state the type (yaml tag ! ! python/dict). Even then the value won’t be a standard dictionary, but it’ll be
collections.OrderedDict and similarly to nodes structure all keys are preserved as strings and no smart type
detection is used. Apart from that it should behave similarly as dict, only you get the values ordered by the order they
appear in the file.

Multiple files

You can provide multiple files. In such scenario final tree is a combination of the provided files where later nodes with
the same name override values of the preceding corresponding node. New nodes are appended as new children:

file-1l.yaml:

debug:

CFLAGS: '-00 —g'
prod:

CFLAGS: '-02'

file-2.yaml:

prod:
CFLAGS: '-0Os'
fast:
CFLAGS: '-Ofast'
results in:
debug:
CFLAGS: '-00 —g'
prod:
CFLAGS: '-0Os' # overriden
fast:
CFLAGS: '-Ofast' # appended

It’s also possible to include existing file into another a given node in another file. This is done by the /include : $path
directive:

9.5. Optional plugins 169

avocado Documentation, Release 90.0

os:
fedora:
'include : fedora.yaml
gentoo:
!include : gentoo.yaml

Warning: Due to YAML nature, it’s mandatory to put space between /include and the colon () that must follow
it.

The file location can be either absolute path or relative path to the YAML file where the /include is called (even when
it’s nested).

Whole file is merged into the node where it’s defined.

Advanced YAML tags

There are additional features related to YAML files. Most of them require values separated by " : ". Again, in all such
cases it’s mandatory to add a white space (" ") between the tag and the " : ", otherwise " : " is part of the tag name
and the parsing fails.

linclude

Includes other file and injects it into the node it’s specified in:

my_other file:
'include : other.yaml

The content of /my_other_file would be parsed from the other.yaml. It’s the hardcoded equivalent of the —m
Susing:S$path.

Relative paths start from the original file’s directory.

lusing

Prepends path to the node it’s defined in:

tusing : /foo
bar:
lusing : baz

bar is put into baz becoming /baz/bar and everything is put into / foo. So the final path of bar is /foo/baz/
bar.

Iremove_node

Removes node if it existed during the merge. It can be used to extend incompatible YAML files:

170 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

os:
fedora:
windows:
3.11:
95:
os:
'remove node : windows
windows:
win3.11:
win95:

Removes the windows node from structure. It’s different from filter-out as it really removes the node (and all children)
from the tree and it can be replaced by you new structure as shown in the example. It removes windows with all
children and then replaces this structure with slightly modified version.

As /remove_node is processed during merge, when you reverse the order, windows is not removed and you end-up
with ‘windows/{win3.11,win95,3.11,95} nodes.

Iremove_value

It’s similar to /remove_node only with values.

Imux

Children of this node will be multiplexed. This means that in first variant it’ll return leaves of the first child, in second
the leaves of the second child, etc. Example is in section Variants

Ifilter-only

Defines internal filters. They are inherited by children and evaluated during multiplexation. It allows one to specify
the only compatible branch of the tree with the current variant, for example:

cpu:
arm:
!filter-only : /disk/virtio
disk:
virtio:
scsi:

will skip the [arm, scsi] variant and result only in [arm, virtio]

_Note: It’s possible to use ! filter—only multiple times with the same parent and all allowed variants will be
included (unless they are filtered-out by !filter-out)_

_Note2: The evaluation order is 1. filter-out, 2. filter-only. This means when you booth filter-out and filter-only a
branch it won’t take part in the multiplexed variants._

'filter-out

Similarly to /filter-only only it skips the specified branches and leaves the remaining ones. (in the same example the
useof ! filter-out : /disk/scsi results in the same behavior). The difference is when a new disk type is
introduced, ! filter—-only still allows just the specified variants, while ! fi1ter—out only removes the specified
ones.

9.5. Optional plugins 171

avocado Documentation, Release 90.0

As for the speed optimization, currently Avocado is strongly optimized towards fast ! filter-out so it’s highly

recommended using them rather than

Complete example

! filter-only, which takes significantly longer to process.

Let’s take a second look at the first example:

'-march=core2’

'-march=athlon64"’

'-mabi=apcs—-gnu —-march=armv8-a -mtune=arm8’'

'scsi!

'virtio!

'—-00 _gl

1 hw:

2 cpu: !'mux

3 intel:

4 cpu_CFLAGS:
5 amd:

6 cpu_CFLAGS:
7 arm:

8 cpu_CFLAGS:
9 disk: !mux
10 scsi:
11 disk_type:
12 virtio:

13 disk_type:
14 distro: !mux

15 fedora:

16 init: 'systemd'
17 mint:

18 init: 'systemv'
19 env: !mux
20 debug:
21 opt_CFLAGS:
22 prod:
23 opt_CFLAGS:

02"

After filters are applied (simply removes non-matching variants), leaves are gathered and all variants are generated:

$ avocado variants -m selftests/.data/mux-environment.yaml

Variants generated:

Variant 1: /hw/cpu/intel, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 2: /hw/cpu/intel, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 3: /hw/cpu/intel, /hw/disk/scsi, /distro/mint, /env/debug
Variant 4: /hw/cpu/intel, /hw/disk/scsi, /distro/mint, /env/prod
Variant 5: /hw/cpu/intel, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 6: /hw/cpu/intel, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 7: /hw/cpu/intel, /hw/disk/virtio, /distro/mint, /env/debug
Variant 8: /hw/cpu/intel, /hw/disk/virtio, /distro/mint, /env/prod
Variant 9: /hw/cpu/amd, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 10: /hw/cpu/amd, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 11: /hw/cpu/amd, /hw/disk/scsi, /distro/mint, /env/debug
Variant 12: /hw/cpu/amd, /hw/disk/scsi, /distro/mint, /env/prod
Variant 13: /hw/cpu/amd, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 14: /hw/cpu/amd, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 15: /hw/cpu/amd, /hw/disk/virtio, /distro/mint, /env/debug
Variant 16: /hw/cpu/amd, /hw/disk/virtio, /distro/mint, /env/prod
Variant 17: /hw/cpu/arm, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 18: /hw/cpu/arm, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 19: /hw/cpu/arm, /hw/disk/scsi, /distro/mint, /env/debug
Variant 20 /hw/cpu/arm, /hw/disk/scsi, /distro/mint, /env/prod
Variant 21: /hw/cpu/arm, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 22: /hw/cpu/arm, /hw/disk/virtio, /distro/fedora, /env/prod
(continues on next page)
172 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

(continued from previous page)

Variant 23: /hw/cpu/arm, /hw/disk/virtio, /distro/mint, /env/debug
Variant 24: /hw/cpu/arm, /hw/disk/virtio, /distro/mint, /env/prod

Where the first variant contains:

/hw/cpu/intel/ => cpu_CFLAGS: -march=core2

/hw/disk/ => disk_type: scsi
/distro/fedora/ => init: systemd
/env/debug/ => opt_CFLAGS: -00 —-g

The second one:

/hw/cpu/intel/ => cpu_CFLAGS: -march=core2

/hw/disk/ => disk_type: scsi
/distro/fedora/ => init: systemd
/env/prod/ => opt_CFLAGS: -02

From this example you can see that querying for /env/debug works only in the first variant, but returns nothing in
the second variant. Keep this in mind and when you use the !mux flag always query for the pre-mux path, /env/«
in this example.

Injecting values

Beyond the values injected by YAML files specified it’s also possible inject values directly from command line
to the final multiplex tree. It’s done by the argument ——mux—-inject. The format of expected value is
[path:]lkey:node_value.

Warning: When no path is specified to ——mux—inject the parameter is added under tree root /. For example:
running avocado passing ——mux—inject my_key:my_value the parameter can be accessed calling self.
params.get ('my_key'). If the test writer wants to put the injected value in any other path location, like
extending the /run path, it needs to be informed on avocado run call. For example: ——mux—-inject /run/
:my_key :my_value makes possible to access the parameters calling self.params.get ('my_key', '/
run')

A test that gets parameters without a defined path, such as examples/tests/multiplextest.py:

os_type = self.params.get ('os_type', default="'linux')

Running it:

$ avocado —--show=test run —-- examples/tests/multiplextest.py | grep os_type
PARAMS (key=os_type, path=x, default=linux) => 'linux'

Now, injecting a value, by default will put it in /, which is not in the default list of paths searched for:

$ avocado —--show=test run --mux-inject os_type:myos —- examples/tests/multiplextest.

oY% | grep os_type
PARAMS (key=os_type, path=x, default=linux) => 'linux'

A path that is searched for by default is /run. To set the value to that path use:

9.5. Optional plugins 173

avocado Documentation, Release 90.0

$ avocado —--show=test run --mux-inject /run:os_type:myos —-- examples/tests/
—multiplextest.py | grep os_type
PARAMS (key=os_type, path=x, default=linux) => 'myos'

Or, add the / to the list of paths searched for by default:

$ avocado —--show=test run —--mux-inject os_type:myos —--mux-path / -- examples/tests/
—multiplextest.py | grep os_type
PARAMS (key=os_type, path=x, default=linux) => 'myos'

Warning: By default, the values are parsed for the respective data types. When not possible, it falls back to
string. If you want to maintain some value as string, enclose within quotes, properly escaped, and eclose that again
in quotes. For example: a value of 1 is treated as integer, a value of 1, 2 is treated as list, a value of abc is treated
as string, a value of 1,2, 5-10 is treated as list of integers as 1, 2, —5. If you want to maintain this as string,
provide the value as "\"1,2,5-10\""

9.6 Avocado Releases

9.6.1 How we release Avocado

The regular releases are released after each sprint, which usually takes 3 weeks. Regular releases are supported only
until the next version is released.

We also understand that there are multiple projects currently depending on the stability of Avocado and we don’t want
their work to be disrupted by incompatibilities nor instabilities in new releases.

Because of that, we have LTS releases, that are regular releases considering the release cycle, but a new branch is
created and bugfixes are backported on demand for a period of about 18 months after the release. Every year (or so) a
new LTS version is released. Two subsequent LTS versions are guaranteed to have 6 months of supportability overlap.

9.6.2 Long Term Stability Releases

82.0 LTS

The Avocado team is proud to present another LTS (Long Term Stability) release: Avocado 82.0, AKA “Avengers:
Endgame”, is now available!

LTS Release

For more information on what a LTS release means, please read RFC: Long Term Stability.

Upgrading from 69.x to 82.0
Upgrading Installations

Avocado is available on a number of different repositories and installation methods. You can find the complete details
in Installing Avocado. After looking at your installation options, please consider the following when planning an
in-place upgrade or a deployment version bump:

174 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

* Avocado previously also supported Python 2, but it now supports Python 3 only. If your previous installation was
based on Python 2, please consider that the upgrade path includes moving to Python 3. Dependency libraries,
syntax changes, and maybe even the availability of a Python 3 interpreter are examples of things to consider.

* No issues were observed when doing an in-place upgrade from Python 2 based Avocado 69.x LTS to Python 3
based Avocado 82.0 LTS.

* When using Python’s own package management, that is, pip, simply switch to a Python 3 based pip (python3
-m pip is an option) and install the avocado-framework<83.0 package to get the latest release of the
current LTS version.

* When using RPM packages, please notice that there’s no package python-avocado anymore.
Please use python3-avocado instead. The same is true for plugins packages, they all have the
python3-avocado-plugins prefix.

Porting Tests (Test APl compatibility)

If you’re migrating from the previous LTS version, these are the changes on the Test API that most likely will affect
your test:

* The avocado.main function isn’t available anymore. If you were importing it but not really executing the
test script, simply remove it. If you need to execute Avocado tests as scripts, you need to resort to the Job API
instead. See examples/jobs/passjob_with_test.py for an example.

Porting Tests (Utility APl compatibility)

The changes in the utility APIs (those that live under the avocado.utils namespace are too many to present
porting suggestion. Please refer to the Utility APIs section for a comprehensive list of changes, including new features
your test may be able to leverage.

Changes from previous LTS

Note: This is not a collection of all changes encompassing all releases from 69.0 to 82.0. This list contains changes
that are relevant to users of 69.0, when evaluating an upgrade to 82.0.

When compared to the last LTS (version 69.3), the main changes introduced by this versions are:

Users

Avocado can now run on systems with nothing but Python 3 (and “quasi-standard-library” module
setuptools). This means that it won’t require extra packages, and should be easier to deploy on containers,
embedded systems, etc. Optional plugins may have additional requirements.

Improved safeloader support for Python unit tests, including support for finding test classes that use multiple
inheritances. As an example, Avocado’s safeloader is now able to properly find all of its own tests (almost
1000 of them).

Removal of old and redundant command-line options, such as ——silent and ——show-job-1og in favor of
--show=none and —-show=test, respectively.

Job result categorization support, by means of the ——job—-category option to the run command, allows a
user to create an easy to find directory, within the job results directory, for a given type of executed jobs.

9.6. Avocado Releases 175

avocado Documentation, Release 90.0

The glib plugin got a configuration option for safe/unsafe operation, that is, whether it will execute binaries in
an attempt to find the whole list of tests. Look for the glib . conf shipped with the plugin to enable the unsafe
mode.

The HTML report got upgrades as pop-up whiteboard, filtering support and resizable columns.

When using the output check record features, duplicate files created by different tests/variants will be consoli-
dated into unique files.

The new vmimage command allows a user to list the virtual machine images downloaded by means of
avocado.utils.vmimage or download new images via the avocado vmimage get command.

The avocado assets fetch command now accepts a ——ignore—errors option that returns exit code 0
even when some of the assets could not be fetched.

The avocado sysinfo feature file will now work out of the box on pip based installations.

The sysinfo collection now logs a much clearer message when a command is not found and thus can not have
its output collected.

Users can now select which runner plugin will be used to run tests. To select a runner on the command line, use
the ——test-runner option. Please refer to avocado plugins to see the runner plugins available.

A new runner, called nrunner, has been introduced and has distinguishing features such as parallel test exe-
cution support either in processes or in Podman based containers.

A massive documentation overhaul, now designed around guides to different target audiences. The “User’s
Guide”, “Test Writer’s Guide” and “Contributor’s Guide” can be easily found as first level sections containing
curated content for those audiences.

It’s now possible to enforce colored or non-colored output, no matter if the output is a terminal or not. The
configuration item color was introduced in the runner.output section, and recognizes the values auto,
always, Oor never.

The jsonresult plugin added warn and interrupt fields containing counters for the tests that ended with
WARN and INTERRUPTED status, respectively.

Avocado’s avocado.utils.software_manager functionality is now also made available as the
avocado-software—-manager command-line tool.

Avocado now supports “hint files” that can tweak how the Avocado resolver will recognize tests. This is use-
ful for projects making use of Avocado as a test runner, and it can allow complete integration with a simple
configuration file in a project repository. For more information check out the documentation.

The ——ignore-missing-references option now takes no parameter. The feature it controls is not en-
abled unless you supply the command line option (but no on or off is required).

A brand new command, jobs, enables users to, among other things, list information about previously executed
jobs. A command such as avocado jobs show will show the latest job information.

The remote, vm, and docker runner plugins were removed.
The multiplex command, an alias to variants, has been removed.

A new settings API that is tightly linked to the Job APIL. You can see all the existing configurations at runtime
by running avocado config reference. To integrate Avocado to an existing project or a CI environment, a custom
job with a few configurations will give you a lot of flexibility with very little need to write Python code. Some
examples are available at examples/ jobs.

176

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

Test Writers

Python 2 support has been removed. Support for Python versions include 3.5, 3.6, 3.7 and 3.8. If you require
Python 2 support, the 69.X LTS version should be used.

A fully usable Job API, making most of Avocado’s functionalities programmable and highly customizable.

Support for multiple test suites in a Job, so that each test suite can be configured differently and independently
from each other. Fulfill your use case easily (or let your imagination go wild) and define different runners, dif-
ferent parameters to different test suites, or run some test suites locally, while others run isolated on containers.
Anything that is configurable with the new settings API should be transparently configurable in the context of a
test suite (provided the test suite deals with that feature).

A completely new implementation of the CIT Varianter plugin, now with support for constraints. Refer to CIT
Varianter Plugin for more information.

The new avocado.cancel_on () decorator has been added to the Test APIs, allowing you to define the
conditions for a test to be considered canceled. See one example here.

Avocado can now use tags inside Python Unittests, and not only on its own Instrumented tests.

The tags feature (see Categorizing tests) now supports an extended character set, adding . and - to the allowed
characters. A tag such as :avocado: tags=machine:s390-ccw-virtio isnow valid.

INSTRUMENTED tests using the avocado. Test. fetch_asset () can take advantage of plugins that
will attempt to download (and cache) assets before the test execution. This should make the overall test execution
more reliable, and give better test execution times as the download time will be excluded. Users can also
manually execute the avocado assets command to manually fetch assets from tests.

The avocado.Test.fetch asset () method now has two new parameters: find_only and
cancel_on_missing. These can be combined to cancel tests if the asset is missing after a download attempt
(find_only=False) or only if it’s present in the local system without a download having been attempted
during the test (find_only=True). This can bring better determinism for tests that would download sizable
assets, and/or allow test jobs to be executable in offline environments.

A new test type, TAP has been introduced along with a new loader and resolver. With a TAP test, it’s possible
to execute a binary or script, similar to a SIMPLE test, and parse its Test Anything Protocol output to determine
the test status.

The decorators avocado. skip (), avocado.skipIf (), and avocado.skipUnless () can now be
used to decorate entire classes, resulting in all its tests getting skipped if/when the given condition is satisfied.

The “log level” of Avocado is now defined using the standard Python level names. If you have a custom
configuration for this setting, you may need to adjust it.

The yaml_to_mux varianter plugin now attempts to respect the type of the value given to ——mux-inject. For
example, 1 is treated as an integer, a value of 1, 2 is treated as a list, a value of abc is treated as a string, and a
valueof 1, 2, 5-10 is treated as a list of integersas 1, 2, =5 (asitis evaluated by ast . literal _eval ()).

For users of the Job API, a “dictionary-based” varianter was introduced, that allows you to describe the variations
of tests in a test suite directly via a Python dictionary.

The avocado.utils. runtime module has been removed.

The test runner feature that would allow binaries to be run transparently inside GDB was removed. The reason
for dropping such a feature has to do with how it limits the test runner to run one test at a time, and the use of
the avocado.utils. runtime mechanism, also removed.

The “standalone job” feature was removed. The alternative is to use an Avocado Job (using the Job API), with a
test defined on the same file, as can be seen on the example file examples/jobs/passjob_with_test.
py in the source tree.

9.6.

Avocado Releases 177

https://docs.python.org/3/library/ast.html#ast.literal_eval

avocado Documentation, Release 90.0

Utility APIs

Two simple utility APIs, avocado.utils.genio.append_file () and avocado.utils.genio.
append_one_1line () have been added.

The new avocado.utils.datadrainer provides an easy way to read from and write to various in-
put/output sources without blocking a test (by spawning a thread for that).

The new avocado.utils.diff _validator can help test writers to make sure that given changes have
been applied to files.

avocado.utils.partitionnow allows mkfs and mount flags to be set.

Users of the avocado.utils.partition.mount () function can now skip checking if the de-
vices/mountpoints are mounted, which is useful for bind mounts.

avocado.utils.cpu.get_cpu_vendor_ name () now returns the CPU vendor name for POWER9.

The avocado.utils.cpuchanged how it identifies CPU vendors, architectures, and families, making those
more consistent across the board.

The names of the avocado. utils. cpu functions changed, from what’s listed on left hand side (now depre-
cated) the ones on the right hand side:

avocado.utils.cpu.total_cpus_count () =>avocado.utils.cpu.total_count ()
avocado.utils.cpu._get_cpu_info () =>avocado.utils.cpu._get_info ()
avocado.utils.cpu._get_cpu_status () =>avocado.utils.cpu._get_status()
avocado.utils.cpu.get_cpu_vendor_name () =>avocado.utils.cpu.get_vendor ()
avocado.utils.cpu.get_cpu_arch () =>avocado.utils.cpu.get_arch ()
avocado.utils.cpu.cpu_online 1list () =>avocado.utils.cpu.online 1ist ()
avocado.utils.cpu.online_cpus_count () => avocado.utils.cpu.online count ()
avocado.utils.cpu.get_cpuidle _state () =>avocado.utils.cpu.get_idle state()
avocado.utils.cpu.set_cpuidle_state () =>avocado.utils.cpu.set_idle_state()

avocado.utils.cpu.set_cpufreq_governor () => avocado.utils.cpu.
set__freq governor ()

Il
\Y

avocado.utils.cpu.get_cpufreq_governor ()
get_freq_governor ()

avocado.utils.cpu.

Additionally, avocado.utils.cpu.get_arch () implementation for powerpc has been corrected to re-
turn powerpc instead of cpu family values like power8, power9.

New avocado.utils.cpu.get_family () isadded to get the cpu family values like power8, power9.

The avocado.utils.cpu.online () and avocado.utils.cpu.offline () will now check the
status of the CPU before attempting to apply a possibly (unnecessary) action.

The avocado.utils.asset module now allows a given location, as well as a list, to be given, simplifying
the most common use case.

avocado.utils.process.SubProcess.stop () now supports setting a timeout.
avocado.utils.memory now properly handles huge pages for the POWER platform.

avocado.utils.sshnow allows password-based authentication, in addition to public key-based authenti-
cation.

178

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

e The new avocado.utils.ssh.Session.get_raw_ssh_command () method allows access to the
generated (local) commands, which could be used for advanced use cases, such as running multiple (remote)
commands in a test. See the examples/apis/utils/ssh.py for an example.

e The avocado.utils.ssh.Session.cmd () method now allows users to ignore the exit status of the
command with the ignore_status parameter.

* avocado.utils.path.usable_ro_dir () will no longer create a directory, but will just check for its
existence and the right level of access.

e avocado.utils.archive.compress () and avocado.utils.archive.uncompress () and
now supports LZMA compressed files transparently.

e The avocado. utils.vmimage module now has providers for the CirrOS cloud images.

e The avocado.utils.vmimage library now allows a user to define the gemu-img binary that will be used
for creating snapshot images via the avocado. utils.vmimage.QEMU_IMG variable.

e The avocado. utils.vmimage module will not try to create snapshot images when it’s not needed, acting
lazily in that regard. It now provides a different method for download-only operations, avocado.utils.
vmimage. Image.download () that returns the base image location. The behavior of the avocado.
utils.vmimage.Image.get () method is unchanged in the sense that it returns the path of a snapshot
image.

e The avocado.utils.configure network module introduced a number of utilities, including MTU
configuration support, a method for validating network among peers, IPv6 support, etc.

e The avocado.utils.configure network.set_ip () function now supports different interface types
through a interface_type parameter, while still defaulting to Ethernet.

e avocado.utils.configure network.is_interface_link_up () is a new utility function that
returns, quite obviously, whether an interface link is up.

e The avocado.utils.network module received a complete overhaul and provides features for getting,
checking, and setting network information from local and even remote hosts.

e The avocado.utils.network.interfaces module now supports different types of output produced
by iproute.

e avocado.utils.kernel received a number of fixes and cleanups, and also new features. It’s now possi-
ble to configure the kernel for multiple targets, and also set kernel configurations at configuration time with-
out manually touching the kernel configuration files. It also introduced the avocado.utils.kernel.
KernelBuild.vmlinux property, allowing users to access that image if it was built.

¢ New functions such as avocado.utils.multipath.add path(),avocado.utils.multipath.
remove_path (), avocado.utils.multipath.get_mpath_status () and avocado.utils.
multipath.suspend_mpath () have been introduced to the avocado.utils.mult ipath module.

e The new avocado. utils.pmem module provides an interface to manage persistent memory. It allows for
creating, deleting, enabling, disabling, and re-configuring both namespaces and regions depending on supported
hardware. It wraps the features present on the ndctl and daxctl binaries.

e All of the avocado. utils.gdb APIs are now back to a working state, with many fixes related to bytes and
strings, as well as buffered I/O caching fixes.

Contributors

* The Avocado configuration that is logged during a job execution is now the dictionary that is produced by
the new avocado. core.settings module, instead of the configuration file(s) content. This is relevant
because this configuration contains the result of everything that affects a job, such as defaults registered by

9.6. Avocado Releases 179

avocado Documentation, Release 90.0

plugins, command-line options, all in addition to the configuration file. The goal is to have more consistent
behavior and increased job “replayability”.

Complete list of changes

For a complete list of changes between the last LTS release (69.3) and this release, please check out the Avocado
commit changelog.

69.0 LTS

The Avocado team is proud to present another LTS (Long Term Stability) release: Avocado 69.0, AKA “The King’s
Choice”, is now available!

LTS Release

For more information on what a LTS release means, please read RFC: Long Term Stability.

Upgrading from 52.x to 69.0
Upgrading Installations

Avocado is available on a number of different repositories and installation methods. You can find the complete details
in Installing Avocado. After looking at your installation options, please consider the following highlights about the
changes in the Avocado installation:

¢ Avocado fully supports both Python 2 and 3, and both can even be installed simultaneously. When using RPM
packages, if you ask to have python-avocado installed, it will be provided by the Python 2 based package.
If you want a Python 3 based version you must use the python3—-avocado package. The same is true for
plugins, which have a python2-avocado-plugins or python3-avocado-plugins prefix.

* Avocado can now be properly installed without super user privileges. Previously one would see an error such as
could not create '/etc/avocado': Permission denied when trying to do a source or PIP
based installation.

* When installing Avocado on Python “venvs”, the user’s base data directory is now within the venv. If you had
content outside the venv, such as results or tests directories, please make sure that you either configure your data
directories on the [datadir.paths] section of your configuration file, or move the data over.

Porting Tests (Test APl compatibility)

If you’re migration from the previous LTS version, these are the changes on the Test API that most likely will affect
your test.

Note: Between non-LTS releases, the Avocado Test APIs receive a lot of effort to be kept as stable as possible. When
that’s not possible, a deprecation strategy is applied and breakage can occur. For guaranteed stability across longer
periods of time, LTS releases such as this one should be used.

* Support for default test parameters, given via the class level default_params dictionary has been removed.
If your test contains a snippet similar to:

180 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/69.3...82.0
https://github.com/avocado-framework/avocado/compare/69.3...82.0

avocado Documentation, Release 90.0

default_params = {'paraml': 'valuel',
'param2': 'value2'}

def test (self):
valuel = self.params.get ('paraml')
value2 = self.params.get ('param2')

It should be rewritten to look like this:

def test (self):
valuel = self.params.get ('paraml', default='valuel')
value2 = self.params.get ('param2', default='value2')

Support for getting parameters using the self.params.key syntax has been removed. If your test contains
a snippet similar to:

def test (self):
valuel = self.params.keyl

It should be rewritten to look like this:

def test (self):
valuel = self.params.get ('keyl'")

Support for the datadir test class attribute has been removed in favor of the get_data () method. If your
test contains a snippet similar to:

def test (self):
data = os.path.join(self.datadir, 'data')

It should be rewritten to look like this:

def test (self):
data = self.get_data('data')

Support for for srcdir test class attribute has been removed in favor of the workdir attribute. If your test
contains a snippet similar to:

def test (self):
compiled = os.path.join(self.srcdir, 'binary')

It should be rewritten to look like this:

def test (self):
compiled = os.path.join(self.workdir, 'binary')

The :avocado: enableand :avocado: recursive tags may notbe necessary anymore, given that
“recursive” is now the default loader behavior. If you test contains:

def test (self):

mwn

ravocado: enable

mmwn

9.6.

Avocado Releases 181

avocado Documentation, Release 90.0

def test (self):

mwn

ravocado: recursive

mwn

Consider removing the tags completely, and check if the default loader behavior is sufficient with:

$ avocado list your-test-file.py

Support for the sk ip method has been removed from the avocado . Test class. If your test contains a snippet
similar to:

def test (self):
if not condition():
self.skip("condition not suitable to keep test running")

It should be rewritten to look like this:

def test (self):
if not condition():
self.cancel ("condition not suitable to keep test running")

Porting Tests (Utility APl compatibility)

The changes in the utility APIs (those that live under the avocado.utils namespace are too many to present
porting suggestion. Please refer to the Utility APIs section for a comprehensive list of changes, including new features
your test may be able to leverage.

Changes from previous LTS

Note: This is not a collection of all changes encompassing all releases from 52.0 to 69.0. This list contains changes
that are relevant to users of 52.0, when evaluating an upgrade to 69.0.

When compared to the last LTS (version 52.1), the main changes introduced by this versions are:

Test Writers

Test APIs

 Test writers will get better protection against mistakes when trying to overwrite avocado. core.test.Test

“properties”. Some of those were previously implemented using avocado.utils.data_structures.
LazyProperty () which did not prevent test writers from overwriting them.

The avocado.Test.default_parameters mechanism for setting default parameters on tests has been
removed. This was introduced quite early in the Avocado development, and allowed users to set a dictionary
at the class level with keys/values that would serve as default parameter values. The recommended approach
now, is to just provide default values when calling the self.params.get within a test method, such as
self.params.get ("key", default="default_value_for_key").

182

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

The __getattr__ interface for self.params has been removed. It used to allow users to use a syntax
such as self.params.key when attempting to access the value for key key. The supported syntax is
self.params.get ("key") to achieve the same thing.

The support for test data files has been improved to support more specific sources of data. For instance, when
a test file used to contain more than one test, all of them shared the same datadir property value, thus the
same directory which contained data files. Now, tests should use the newly introduced get_data () API,
which will attempt to locate data files specific to the variant (if used), test name, and finally file name. For more
information, please refer to the section Accessing test data files.

The avocado.Test .srcdir attribute has been removed, and with it, the AVOCADO_TEST_SRCDIR en-
vironment variable set by Avocado. Tests should have been modified by now to make use of the avocado.
Test.workdir instead.

The avocado.Test .datadir attribute has been removed, and with it, the AVOCADO_TEST_DATADIR
environment variable set by Avocado. Tests should now to make use of the avocado. Test.get_data ()
instead.

Switched the FileLoader discovery to :avocado: recursive by default. All tags enable, disable and recursive are
still available and might help fine-tuning the class visibility.

The deprecated skip method, previously part of the avocado. Test API, has been removed. To skip a test,
you can still use the avocado.skip (), avocado.skipIf () and avocado.skipUnless () decora-
tors.

The Avocado Test class now exposes the tags to the test. The test may use that information, for
instance, to decide on default behavior.

The Avocado test loader, which does not load or execute Python source code that may contain tests for security
reasons, now operates in a way much more similar to the standard Python object inheritance model. Before,
classes containing tests that would not directly inherit from avocado. Test would require a docstring state-
ment (either :avocado: enable or :avocado: recursive). This is not necessary for most users
anymore, as the recursive detection is now the default behavior.

Utility APIs

The avocado.utils.archive module now supports the handling of gzip files that are not compressed
tarballs.

avocado.utils.astring.ENCODING is a new addition, and holds the encoding used on many other
Avocado utilities. If your test needs to convert between binary data and text, we recommend you use it as the
default encoding (unless your test knows better).

avocado.utils.astring.to_text () now supports setting the error handler. This means that when a
perfect decoding is not possible, users can choose how to handle it, like, for example, ignoring the offending
characters.

The avocado.utils.astring.tabular_output () will now properly strip trailing whitespace from
lines that don’t contain data for all “columns”. This is also reflected in the (tabular) output of commands such
as avocado list -w.

Simple bytes and “unicode strings” utility functions have been added to avocado.utils.astring, and
can be used by extension and test writers that need consistent results across Python major versions.

The avocado.utils.cpu.set_cpuidle state () function now takes a boolean value for its
disable parameter (while still allowing the previous integer (0/1) values to be used). The goal is to have
a more Pythonic interface, and to drop support legacy integer (0/1) use in the upcoming releases.

9.6.

Avocado Releases 183

avocado Documentation, Release 90.0

The avocado.utils.cpu functions, such as avocado.utils.cpu.cpu_oneline_list () now
support the S390X architecture.

The avocado.utils.distromodule has dropped the probe that depended on the Python standard library
platform.dist (). The reason is the platform.dist () has been deprecated since Python 2.6, and has
been removed on the upcoming Python 3.8.

The avocado.utils.distromodule introduced a probe for the Ubuntu distros.

The avocado.core.utils.vmimage library now allows users to expand the builtin list of image
providers. If you have a local cache of public images, or your own images, you can quickly and easily reg-
ister your own providers and thus use your images on your tests.

The avocado.utils.vmimage library now contains support for Avocado’s own JeOS (“Just Enough Op-
erating System”) image. A nice addition given the fact that it’s the default image used in Avocado-VT and the
latest version is available in the following architectures: x86_64, aarch64, ppc64, ppc64le and s390x.

The avocado.utils.vmimage library got a provider implementation for OpenSUSE. The limitation is that
it tracks the general releases, and not the rolling releases (called Tumbleweed).

The avocado.utils.vmimage. get () function now provides a directory in which to put the snapshot file,
which is usually discarded. Previously, the snapshot file would always be kept in the cache directory, resulting
in its pollution.

The exception raised by the utility functions in avocado.utils.memory has been renamed from
MemoryError and became avocado. utils.memory.MemError. The reason is that MemoryError is
a Python standard exception, that is intended to be used on different situations.

When running a process by means of the avocado.utils.process module utilities, the output of such
a process is captured and can be logged in a stdout/stderr (or combined output) file. The logging is
now more resilient to decode errors, and will use the replace error handler by default. Please note that the
downside is that this may produce different content in those files, from what was actually output by the processes
if decoding error conditions happen.

The avocado.utils.process has seen a number of changes related to how it handles data from the ex-
ecuted processes. In a nutshell, process output (on both stdout and stderr) is now considered binary
data. Users that need to deal with text instead, should use the newly added avocado.utils.process.
CmdResult.stdout_text and avocado.utils.process.CmdResult.stderr text, which
are convenience properties that will attempt to decode the stdout or stderr data into a string-like type
using the encoding set, and if none is set, falling back to the Python default encoding. This change of behavior
was needed to accommodate Python’s 2 and Python’s 3 differences in bytes and string-like types and handling.

The avocado.utils.process library now contains helper functions similar to the Python 2 commands.
getstatusoutput () and commands.getoutput () which can be of help to people porting code from
Python 2 to Python 3.

New avocado.utils.process.get_parent_pid() and avocado.utils.process.
get_owner_1id () process related functions

The avocado.utils.kernel library now supports setting the URL that will be used to fetch the Linux
kernel from, and can also build installable packages on supported distributions (such as .deb packages on
Ubuntu).

The avocado.utils.iso9660 module gained a pycdlib based backend, which is very capable, and pure
Python ISO9660 library. This allows us to have a working avocado.utils. is09660 backend on environ-
ments in which other backends may not be easily installable.

The avocado.utils.is09660.1s509660 () function gained a capabilities mechanism, in which users
may request a backend that implement a given set of features.

184

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

e The avocado.utils.iso9660 module, gained “create” and “write” capabilities, currently implemented
on the pycdlib based backend. This allows users of the avocado.utils. is09660 module to create ISO
images programatically - a task that was previously done by running mkisofs and similar tools.

e The avocado.utils.download module, and the various utility functions that use it, will have extended
logging, including the file size, time stamp information, etc.

e A brand new module, avocado.utils.cloudinit, that aides in the creation of ISO files containing con-
figuration for the virtual machines compatible with cloudinit. Besides authentication credentials, it’s also possi-
ble to define a “phone home” address, which is complemented by a simple phone home server implementation.
On top of that, a very easy to use function to wait on the phone home is available as avocado.utils.
cloudinit.wait_for._phone_home ().

e A new utility library, avocado. utils. ssh, has been introduced. It’s a simple wrapper around the OpenSSH
client utilities (your regular /usr/bin/ssh) and allows a connection/session to be easily established, and
commands to be executed on the remote endpoint using that previously established connection.

e The avocado.utils.cloudinit module now adds support for instances to be configured to allow root
logins and authentication configuration via SSH keys.

e New avocado.utils.disk.get_disk_blocksize () and avocado.utils.disk.
get_disks () disk related utilities.

* A new network related utility function, avocado.utils.network.PortTracker was ported from
Avocado-Virt, given the perceived general value in a variety of tests.

* A new memory utility utility, avocado.utils.memory.MemInfo, and its ready to use instance
avocado.utils.memory.meminfo, allows easy access to most memory related information on Linux
systems.

* A number of improvements to the avocado.utils.lv_utils module now allows users to choose if they
want or not to use ramdisks, and allows for a more concise experience when creating Thin Provisioning LVs.

* New utility function in the avocado.utils.genio that allows for easy matching of patterns in files. See
avocado.utils.is_pattern_in_file () for more information.

e New utility functions are available to deal with filesystems, such as avocado.utils.disk.
get_available filesystems () and avocado.utils.disk.get_filesystem type ().

e The avocado.utils.process.kill_process_tree () now supports waiting a given timeout, and
returns the PIDs of all process that had signals delivered to.

e The avocado.utils.network.is_port_free () utility function now supports IPv6 in addition to
IPv4, as well as UDP in addition to TCP.

* A new avocado.utils.cpu.get_pid_cpus () utility function allows one to get all the CPUs being
used by a given process and its threads.

e The avocado.utils.process module now exposes the t imeout parameter to users of the avocado.
utils.process.SubProcess class. It allows users to define a timeout, and the type of signal that will be
used to attempt to kill the process after the timeout is reached.

Users

 Passing parameters to tests is now possible directly on the Avocado command line, without the use of any
varianter plugin. In fact, when using variants, these parameters are (currently) ignored. To pass one parameter
to a test, use -p NAME=VAL, and repeat it for other parameters.

e The test filtering mechanism using tags now support “key:val” assignments for further categorization. See
Python unittest Compatibility Limitations And Caveats for more details.

9.6. Avocado Releases 185

avocado Documentation, Release 90.0

The output generated by tests on stdout and stderr are now properly prefixed with [stdout] and
[stderr] in the job.log. The prefix is not applied in the case of Stest_result/stdout and
Stest_result/stderr files, as one would expect.

The installation of Avocado from sources has improved and moved towards a more “Pythonic” approach. In-
stallation of files in “non-Pythonic locations” such as /et c are no longer attempted by the Python setup.py
code. Configuration files, for instance, are now considered package data files of the avocado package. The
end result is that installation from source works fine outside virtual environments (in addition to installations
inside virtual environments). For instance, the locations of /etc (config) and /usr/libexec (libexec) files
changed to live within the pkg_data (eg. /usr/lib/python2.7/site-packages/avocado/etc) by
default in order to not to modify files outside the package dir, which allows user installation and also the dis-
tribution of wheel packages. GNU/Linux distributions might still modify this to better follow their conventions
(eg. for RPM the original locations are used). Please refer to the output of the avocado config command
to see the configuration files that are actively being used on your installation.

SIMPLE tests were limited to returning PASS, FAIL and WARN statuses. Now SIMPLE tests can now also
return SKIP status. At the same time, SIMPLE tests were previously limited in how they would flag a WARN
or SKIP from the underlying executable. This is now configurable by means of regular expressions.

Sysinfo collection can now be enabled on a test level basis.

Avocado can record the output generated from a test, which can then be used to determine if the test passed
or failed. This feature is commonly known as “output check”. Traditionally, users would choose to record
the output from STDOUT and/or STDERR into separate streams, which would be saved into different files.
Some tests suites actually put all content of STDOUT and STDERR together, and unless we record them to-
gether, it’d be impossible to record them in the right order. This version introduces the combined option to
—-—output-check-record option, which does exactly that: it records both STDOUT and STDERR into a
single stream and into a single file (named output in the test results, and out put . expected in the test data
directory).

The complete output of tests, that is the combination of STDOUT and STDERR is now also recorded in the test
result directory as a file named output.

When the output check feature finds a mismatch between expected and actual output, will now produce a unified
diff of those, instead of printing out their full content. This makes it a lot easier to read the logs and quickly spot
the differences and possibly the failure cause(s).

The output check feature will now use the to the most specific data source location available, which is a conse-
quence of the switch to the use of the get_data () API discussed previously. This means that two tests in a
single file can generate different output, generate different stdout .expected or stderr.expected.

SIMPLE <test_type_simple> tests can also finish with SKIP OR WARN status, depending on the output pro-
duced, and the Avocado test runner configuration. It now supports patterns that span across multiple lines. For
more information, refer to SIMPLE Tests Status.

A better handling of interruption related signals, such as SIGINT and SIGTERM. Avocado will now try harder
to not leave test processes that don’t respond to those signals, and will itself behave better when it receives them.
For a complete description refer to signal_handlers.

Improvements in the serialization of TestIDs allow test result directories to be properly stored and accessed on
Windows based filesystems.

The deprecated jobdata/urls link to jobdata/test_references has been removed.

The avocado command line argument parser is now invoked before plugins are initialized, which allows the
use of ——config with configuration file that influence plugin behavior.

The test log now contains a number of metadata about the test, under the heading Test metadata:. You’ll
find information such as the test file name (if one exists), its workdir and its test stmpdir if one is set.

186

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

The test runner wil now log the test initialization (look for INIT in your test logs) in addition to the already
existing start of test execution (logged as START).

The test profilers, which are defined by default in /etc/avocado/sysinfo/profilers, are now exe-
cuted without a backing shell. While Avocado doesn’t ship with examples of shell commands as profilers, or
suggests users to do so, it may be that some users could be using that functionality. If that’s the case, it will now
be necessary to write a script that wraps you previous shell command. The reason for doing so, was to fix a bug
that could leave profiler processes after the test had already finished.

The Human UI plugin, will now show the “reason” behind test failures, cancellations and others right along the
test result status. This hopefully will give more information to users without requiring them to resort to logs
every single time.

When installing and using Avocado in a Python virtual environment, the ubiquitous “venvs”, the base data
directory now respects the virtual environment. If you have are using the default data directory outside of a
venv, please be aware that the updated

Avocado packages are now available in binary “wheel” format on PyPI. This brings faster, more convenient and
reliable installs via pip. Previously, the source-only tarballs would require the source to be built on the target
system, but the wheel package install is mostly an unpack of the already compiled files.

The legacy options ——filter-only, ——filter-out and —-multiplex have now been removed.
Please adjust your usage, replacing those options with ——mux-filter-only, ——mux-filter-out and
——mux-yaml respectively.

The location of the Avocado configuration files can now be influenced by third parties by means of a new plugin.

The configuration files that have been effectively parsed are now displayed as part of avocado config
command output.

Output Plugins

Including test logs in TAP plugin is disabled by default and can be enabled using —-tap-include-logs.

The TAP result format plugin received improvements, including support for reporting Avocado tests with CAN-
CEL status as SKIP (which is the closest status available in the TAP specification), and providing more visible
warning information in the form of comments when Avocado tests finish with WARN status (while maintaining
the test as a PASS, since TAP doesn’t define a WARN status).

A new (optional) plugin is available, the “result uploader”. It allows job results to be copied over to a centralized
results server at the end of job execution. Please refer to Results Upload Plugin for more information.

Added possibility to limit the amount of characters embedded as “system-out” in the xunit output plugin
(-—xunit-max-test—-log-chars XX).

The xunit result plugin can now limit the amount of output generated by individual tests that will make into
the XML based output file. This is intended for situations where tests can generate prohibitive amounts of output
that can render the file too large to be reused elsewhere (such as imported by Jenkins).

The xunit output now names the job after the Avocado job results directory. This should make the correlation of
results displayed in Uls such as Jenkins and the complete Avocado results much easier.

The xUnit plugin now should produce output that is more compatible with other implementations, specifically
newer Jenkin’s as well as Ant and Maven. The specific change was to format the time field with 3 decimal
places.

Redundant (and deprecated) fields in the test sections of the JSON result output were removed. Now, instead of
url, test and id carrying the same information, only id remains.

9.6.

Avocado Releases 187

avocado Documentation, Release 90.0

Test Loader Plugins

A new loader implementation, that reuses (and resembles) the YAML input used for the varianter yaml_to_mux
plugin. It allows the definition of test suite based on a YAML file, including different variants for different tests.
For more information refer to yaml_loader.

Users of the YAML test loader have now access to a few special keys that can tweak test attributes, including
adding prefixes to test names. This allows users to easily differentiate among execution of the same test, but
executed different configurations. For more information, look for “special keys” in the YAML Loader plugin
documentation.

A new plugin enables users to list and execute tests based on the GLib test framework. This plugin allows
individual tests inside a single binary to be listed and executed.

Avocado can now run list and run standard Python unittests, that is, tests written in Python that use the
unittest library alone.

Support for listing and running golang tests has been introduced. Avocado can now discover tests written in Go,
and if Go is properly installed, Avocado can run them.

Varianter Plugins

* A new varianter plugin has been introduced, based on PICT. PICT is a “Pair Wise” combinatorial tool, that

can generate optimal combination of parameters to tests, so that (by default) at least a unique pair of parameter
values will be tested at once.

A new varianter plugin, the CIT Varianter Plugin. This plugin implements a “Pair-Wise”, also known as “Com-
binatorial Independent Testing” algorithm, in pure Python. This exciting new functionality is provided thanks
to a collaboration with the Czech Technical University in Prague.

Users can now dump variants to a (JSON) file, and also reuse a previously created file in their future jobs
execution. This allows users to avoid recomputing the variants on every job, which might bring significant
speed ups in job execution or simply better control of the variants used during a job. Also notice that even when
users do not manually dump a variants file to a specific location, Avocado will automatically save a suitable file
at jobdata/variants. json as part of a Job results directory structure. The feature has been isolated into
a varianter implementation called json_variants, that you can see with avocado plugins.

Test Runner Plugins

* The command line options ——-filter-by-tags and ——-filter-by-tags-include-empty are now

white listed for the remote runner plugin.

* The remote runner plugin will now respect ~/ . ssh/config configuration.

Complete list of changes

For a complete list of changes between the last LTS release (52.1) and this release, please check out the Avocado
commit changelog.

52.0 LTS

The Avocado team is proud to present another release: Avocado version 52.0, the second Avocado LTS version.

188

Chapter 9. Build and Quality Status

https://developer.gnome.org/glib/stable/glib-Testing.html
https://docs.python.org/3/library/unittest.html#module-unittest
https://github.com/avocado-framework/avocado/compare/52.1...69.0
https://github.com/avocado-framework/avocado/compare/52.1...69.0

avocado Documentation, Release 90.0

What’s new?

When compared to the last LTS (v36), the main changes introduced by this versions are:

Support for TAP[2] version 12 results, which are generated by default in test results directory (results.tap
file).

The download of assets in tests now allow for an expiration time.

Environment variables can be propagated into tests running on remote systems.

The plugin interfaces have been moved into the avocado.core.plugin_interfaces module.
Support for running tests in a Docker container.

Introduction of the “Fail Fast” feature (——failfast on option) to the run command, which interrupts the
Job on a first test failure.

Special keyword 1atest for replaying previous jobs.

Support to replay a Job by path (in addition to the Job ID method and the Latest keyword).
Diff-like categorized report of jobs (avocado diff <JOB_1> <JOB_2>).

The introduction of a rr based wrapper.

The automatic VM IP detection that kicks in when one uses —--vm-domain without a matching
-—vm-hostname, now uses a more reliable method (libvirt/qgemu-gust-agent query).

Set LC_ALL=C by default on sysinfo collection to simplify avocado diff comparison between different ma-
chines.

Result plugins system is now pluggable and the results plugins (JSON, XUnit, HTML) were turned into steve-
dore plugins. They are now listed in the avocado plugins command.

Multiplexer was replaced with Varianter plugging system with defined API to register plugins that generate test
variants.

Old -—multiplex argument, which used to turn yaml files into variants, is now handled by an optional plugin
called yaml_to_mux and the ——multiplex option is being deprecated in favour of the ——mux—-yaml
option, which behaves the same way.

It’s now possible to disable plugins by using the configuration file.

Better error handling of the virtual machine plugin (-—vm-domain and related options).

When discovering tests on a directory, the result now is a properly alphabetically ordered list of tests.
Plugins can now be setup in Avocado configuration file to run at a specific order.

Support for filtering tests by user supplied “tags”.

Users can now see the test tags when listing tests with the —V (verbose) option.

Users can now choose to keep the complete set of files, including temporary ones, created during an Avocado
job run by using the ——keep—-tmp option (e.g. to keep those files for rr).

Tests running with the external runner (-—external-runner) feature will now have access to the extended
behavior for SIMPLE tests, such as being able to exit a test with the WARNING status.

Encoding support was improved and now Avocado should safely treat localized test-names.

Test writers now have access to a test temporary directory that will last not only for the duration of the
test, but for the duration of the whole job execution to allow sharing state/exchanging data between tests.
The path for that directory is available via Test API (self.teststmpdir) and via environment variable
(AVOCADO_TESTS_COMMON_TMPDIR).

9.6.

Avocado Releases 189

avocado Documentation, Release 90.0

* Avocado is now available on Fedora standard repository. The package name is python2-avocado. The
optional plugins and examples packages are also available. Run dnf search avocado to list them all.

* Optional plugins and examples packages are also available on PyPI under avocado-framework name.

* Avocado test writers can now use a family of decorators, namely avocado.skip (), avocado.skipIf ()
and avocado.skipUnless () to skip the execution of tests.

* Sysinfo collection based on command execution now allows a timeout to be set in the Avocado configuration
file.

e The non-local runner plugins, the html plugin and the yaml_to_mux plugin are now distributed in separate
packages.

* The Avocado main process will now try to kill all test processes before terminating itself when it receives a
SIGTERM.

* Support for new type of test status, CANCEL, and of course the mechanisms to set a test with this status (e.g. via
self.cancel ()).

* avocado.TestFail,avocado.TestError and avocado.TestCancel are now public Avocado Test
APIs, available in the main avocado namespace.

* Introduction of the robot plugin, which allows Robot Framework tests to be listed and executed natively within
Avocado.

* A brand new ResultsDB optional plugin.
* Listing of supported loaders (——1oaders \?) was refined.

* Variant-IDs generated by yaml_to_mux plugin now include leaf node names to make them more meaningful,
making easier to skim through the results.

* yaml_to_mux now supports internal filters defined inside the YAML file expanding the filtering capabilities even
further.

* Avocado now supports resuming jobs that were interrupted.

e The HTML report now presents the test ID and variant ID in separate columns, allowing users to also sort and
filter results based on those specific fields.

* The HTML report will now show the test parameters used in a test when the user hovers the cursor over the test
name.

* Avocado now reports the total job execution time on the Ul, instead of just the tests execution time.
* New avocado variants has been added which supersedes the avocado multiplex.

* Loaders were tweaked to provide more info on avocado 1list -V especially when they don’t recognize the
reference.

e Users canuse ——ignore-missing-references on torun ajob with undiscovered test references

e Users can now choose in which order the job will execute tests (from its suite) and vari-
ants. The two available options are ——execution-order=variants-per-test (default) or
—-—execution-order=tests-per-variant.

* Test methods can be recursively discovered from parent classes by upon the : avocado: recursive doc-
string directive.

Besides the list above, we had several improvements in our utils libraries that are important for test writers, some
of them are listed below:

* time_to_seconds, geometric_mean and compare_matrices were added in avocado.utils.
data_structures.

190 Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

e avocado.utils.distro was refined.

e Many avocado.utils new modules were introduced, like filelock, lv_utils, multipath,
partitionand pci.

e avocado.utils.memory contains several new methods.

e New avocado.utils.process.SubProcess.get_pid () method.

* sudo support in avocado.utils.process was improved

* The avocado.utils.process library makes it possible to ignore spawned background processes.
e New avocado.utils.linux_modules.check_kernel_config().

e Users of the avocado.utils.process module will now be able to access the process ID in the avocado.
utils.process.CmdResult.

e Improved avocado.utils.is09660 with a more complete standard API across all back-end implementa-
tions.

e Improved avocado.utils.build.make (), which will now return the make process exit status code.

e The avocado.Test class now better exports (and protects) the core class attributes members (such as
params and runner_queue).

* avocado.utils.linux_modules functions now returns module name, size, submodules if present, file-
name, version, number of modules using it, list of modules it is dependent on and finally a list of params.

It is also worth mentioning:

* Improved documentation, with new sections to Release Notes and Optional Plugins, very improved Contribution
and Community Guide. New content and new examples everywhere.

* The avocado-framework-tests GitHub organization was founded to encourage companies to share Avocado tests.

* Bugs were always handled as high priority and every single version was delivered with all the reported bugs
properly fixed.

When compared to the last LTS, we had:
¢ 1187 commits (and counting).
* 15 new versions.
* 4811 more lines of Python code (+27,42%).
¢ 1800 more lines of code comment (+24,67%).
* 31 more Python files (+16,48%).
69 closed GitHub issues.

* 34 contributors from at least 12 different companies, 26 of them contributing for the fist time to the project.

Switching from 36.4 to 52.0

You already know what new features you might expect, but let’s emphasize the main changes required to your work-
flows/tests when switching from 36.4 to 52.0

9.6. Avocado Releases 191

avocado Documentation, Release 90.0

Installation

All the previously supported ways to install Avocado are still valid and few new ones were added, but beware that
Avocado was split into several optional plugins so you might want to adjust your scripts/workflows.

Multiplexer (the YAML parser which used to generate variants) was turned into an optional plugin
yvaml_to_mux also known as avocado_framework_plugin_varianter_yaml_to_mux. Without
it Avocado does not require PyYAML, but you need it to support the parsing of YAML files to variants (unless
you use a different plugin with similar functionality, which is now also possible).

The HTML result plugin is now also an optional plugin so one has to install it separately.

The remote execution features (——remote—-hostname, ——vm—domain, ——docker) were also turned into
optional plugins so if you need those you need to install them separately.

Support for virtual environment (venv) was greatly improved and we do encourage people who want to use
pip to do that via this method.

As for the available ways:

Fedora/RHEL can use our custom repositories, either LTS-only or all releases. Note that latest versions (non-1ts)
are also available directly in Fedora and also in EPEL.

OpenSUSE - Ships the 36 LTS versions, hopefully they’ll start shipping the 52 ones as well (but we are not in
charge of that process)

Debian - The contrib/packages/debian script is still available, although un-maintained for a long time

PyPl/pip - Avocado as well as all optional plugins are available in PyPI and can be installed viapip install
avocado-framework\ , or selectively one by one.

From source - Makefile target install is still available but it does not install the optional plugins. You have to
install them one by one by going to their directory (eg. cd optional_plugins/html and running sudo
python setup.py install)

As before you can find the details in /nstalling Avocado.

Usage

Note:

As mentioned in previous section some previously core features were turned into optional plugins. Do check

your install script if some command described here are missing on your system.

Most workflows should work the same, although there are few little changes and a few obsoleted constructs which are
still valid, but you should start using the new ones.

The hard changes which does not provide backward compatibility:

Human result was tweaked a bit:

— The TESTS entry (displaying number of tests) was removed as one can easily get this information
from RESULTS.

— Instead of tests time (sum of test times) you get job time (duration of the job execution) in the human
result

Json results also contain some changes:
— They are pretty-printed

— As cancel status was introduced, json result contain an entry of number of canceled tests (cancel)

192

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

— url was renamed to id (url entry is to be removed in 53.0 so this is actually a soft change with a
backward compatibility support)

* The avocado multilex|variants does not expect multiplex YAML files as positional arguments, one
has to use —m | ——mux-yaml followed by one or more paths.

e Test variants are not serialized numbers anymore in the default yaml_to_mux (multiplexer), but ordered
list of leaf-node names of the variant followed by hash of the variant content (paths+environment). Therefor
instead of my_test : 1 you can get something like my_test:arm64-virtio_scsi-RHEL7-4a3c.

* results.tap is now generated by default in job results along the results. json and results.xml
(unless disabled)

* The avocado run —--replay and avocado diff are unable to parse results generated by 36. 4 to this
date. We should be able to introduce such feature with not insignificant effort, but no one was interested yet.

And the still working but to be removed in 53 . 0 constructs:

e The long version of the -m|--multiplex argument available in avocado
run|multiplex|variants was renamed to -m|--mux-yaml which corresponds better to the
rest of ——mux—+ arguments.

e The avocado multiplex wasrenamed to avocado variants

e The avocado multiplex|variants arguments were reworked to better suite the possible multiple vari-
anter plugins:

— Instead of picking between tree representation of list of variants one can use —-summary,
resp —-variants followed by verbosity, which supersedes —-c|contents, -t|--tree,
—-i|--inherit

— Instead of ——filter-only|-—-filter-out the ——mux-filter-only|--mux—-filter—out

are available

— The ——mux-path is now also available in avocado multiplex|variants

Test API

Main features stayed the same, there are few new ones so do check our documentation for details. Anyway while
porting tests you should pay attention to following changes:

* If you were overriding avocado . Test attributes (eg. name, params, runner_qgueue, ...) you’ll get an
AttributeError: can't set attribute erroras most of them were turned into properties to avoid
accidental override of the important attributes.

* The tearDown method is now executed almost always (always when the setUp is entered), including when
the test is interrupted while running set Up. This might require some changes to your setUp and tearDown
methods but generally it should make them simpler. (See Setup and cleanup methods and following chapters for
details)

 Test exceptions are publicly available directly in avocado (TestError, TestFail, TestCancel) and
when raised inside test they behave the same way as self.error, self.fail or self.cancel. (See
avocado)

* New status is available called CANCEL. It means the test (or even just setUp) started but the test does not
match prerequisites. It’s similar to SKIP in other frameworks, but the SKIP result is reserved for tests that were
not executed (nor the setUp was entered). The CANCEL status can be signaled by self.cancel or by rais-
ing avocado.TestCancel exception and the SKIP should be set only by avocado.skip, avocado.
skipIf or avocado.skipUnless decorators. The self.skip method is still supported but will be re-

9.6. Avocado Releases 193

avocado Documentation, Release 90.0

moved after in 53 . 0 so you should replace it by self.cancel which has similar meaning but it additionally
executes the tearDown. (See Test statuses

The tag argument of avocado.Test was removed as it is part of name, which can only be avocado.
core.test.TestName instance. (See avocado.core.test.Test ())

The self. job.logdir which used to be abused to share state/data between tests inside one job can now be
dropped towards the self.teststmpdir, which is a shared temporary directory which sustains throughout
job execution and even between job executions if set via AVOCADO_TESTS_COMMON_ TMPDIR environmental
value. (See avocado.core.test.Test.teststmpdir())

Those who write inherited test classes will be pleasantly surprised as it is now possible to mark a class as
avocado test including all test * methods coming from all parent classes (similarly to how dynamic discovery
works inside Python unittest, see docstring-directive-recursive for details)

The self.text_output is not published after the test execution. If you were using it simply open the
self.logfile and read the content yourself.

Utils API

Focusing only on the changes you might need to adjust the usage of:

e avocado.utils.build.make calls as it now reports only exit_status. To get the full result object

you need to execute avocado.utils.build.run_make.

* avocado.utils.distro reports Red Hat Enterprise Linux/rhel instead of Red

Hat/redhat.

* avocado.process where the check for availability of sudo was improved, which might actually start exe-

cuting some code which used to fail in 36.4.

Also check out the avocado. utils for complete list of available utils as there were many additions between 36.4
and 52.0.

Complete list of changes

For a complete list of changes between the last LTS release (36.4) and this release, please check out the Avocado
commit changelog.

The Next LTS

The Long Term Stability releases of Avocado are the result of the accumulated changes on regular (non-LTS) releases.

This section tracks the changes introduced on each regular (non-LTS) Avocado release, and gives a sneak preview of
what will make into the next LTS release.

What’s new?

When compared to the last LTS (82.x), the main changes to be introduced by the next LTS version are:

194

Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/36.4...52.0
https://github.com/avocado-framework/avocado/compare/36.4...52.0

avocado Documentation, Release 90.0

Test Writers

Test APIs

Utility APIs

Users

Output Plugins

Test Loader Plugins
Varianter Plugins

Test Runner Plugins
Complete list of changes

For a complete list of changes between the last LTS release (82.0) and this release, please check out the Avocado
commit changelog.

9.6.3 Regular Releases

90.0 Bladerunner

The Avocado team is proud to present another release: Avocado 90.0, AKA “Bladerunner”, is now available!

Release documentation: Avocado 90.0

Important Announcement

The Avocado team is planning to switch the default runner, from the implementation most people currently use (in-
ternally simply called runner), to the newer architecture and implementation called nrunner. This is scheduled to
happen on version 91.0 (the next release).

Users installing and relying on the latest Avocado release will be impacted by this change and should plan
accordingly.

To keep using the current (soon to be legacy) runner, you must set the ——test-runner=runner command line
option (or the equivalent test_runner configuration option, under section [run]).

Known issues are being tracked on our GitHub project page, with the nrunner tag, and new issue reports are appre-
ciated.

Tip: To select the nrunner on this release (90.0 and earlier), run avocado run —--test-runner=nrunner.

9.6. Avocado Releases 195

https://github.com/avocado-framework/avocado/compare/82.0...master
https://github.com/avocado-framework/avocado/compare/82.0...master
http://avocado-framework.readthedocs.io/en/90.0/

avocado Documentation, Release 90.0

Users/Test Writers

* Avocado’s safeloader (the system used to find Python based tests without executing them) received a major
overhaul and now supports:

1. Multi-level module imports, such as from my.base.test import Test where a project may contain a
my /base directory structure containing test . py that defines a custom Test class.

2. Support for following the import/inheritance hierarchy when a module contains an import for a given symbol,
instead of the actual class definition of a symbol.

3. Considers coroutines (AKA async def) as valid tests, reducing the number of boiler plate code necessary for
tests of asyncio based code.

4. Supports class definitions (containing tests or not) that use a typing hint with subscription, commonly used in
generics.

¢ Test parameters given with —p are now support when using the nrunner.
» All status server URIs in the configuration are now respected for nrunner executions.
* The resolver plugins now have access to the job/suite configuration.

* The data directories now have less heuristics and are now more predictable and consistent with the configuration
set.

e The JSON results (results. json) now contain a field with the path of the test log file.

* The root logger for Python’s 10gging should no longer be impacted by Avocado’s own logging initialization
and clean up (which now limits itself to avocado . » loggers).

Bug Fixes

* The whiteboard file and data are now properly saved when using the nrunner
e The Podman spawner will now respect the Podman binary set in the job configuration.

* The date and time fields shown on some result formats, such as in the HTML report, now are proper dates/times,

5, ¢

and not Python’s “monotonic” date/time.

* The correct failure reason for tests executed with the nrunner are now being captured, instead of a possible
exception caused by a error within the runner itself.

Utility APIs

e avocado.utils.sshnow respects the username set when copying files via scp.

Misc Changes

» Update of all executable script’s “shebangs” to /usr/bin/env python3from /usr/bin/env python
* Better handling of KeyboardInterrupt exceptions on early stages of the Avocado execution.

 The list of external resources was updated adding a number of projects that either are extensions of Avocado, or
that use Avocado for their testing needs.

196 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/logging.html#module-logging

avocado Documentation, Release 90.0

Internal Changes

e selftests/check_tmp_dirs will only check for directories, ignoring files.

* The examples in the documentation no longer contain user references to specific users, using generic names and
paths instead.

* A duplicated step has been removed from pre-release test plan.
* A setuptools command to build the man page was added.

* Updates to the Travis CI jobs, testing only Python 3.9 on s390x, ppc64le, and arm64, following the move to
GHA.

* A weekly GHA CI job was introduced.
* Better standardization of the messages that nrunner runners generate by means of new utility methods.
* Allows the exclusion of optional plugins when doing python3 setup.py develop.

For more information, please check out the complete Avocado changelog.

89.0 Shrek

The Avocado team is proud to present another release: Avocado 89.0, AKA “Shrek”, is now available!

Release documentation: Avocado 89.0

Important Announcement

The Avocado team is planning to switch the default runner, from the implementation most people currently use (in-
ternally simply called runner), to the newer architecture and implementation called nrunner. This may happen as
soon as version 90.0 (the next release).

Users installing and relying on the latest Avocado release will be impacted by this change and should plan
accordingly.

To keep using the current (soon to be legacy) runner, you must set the ——test-runner=runner command line
option (or the equivalent test_runner configuration option, under section [run]).

Known issues are being tracked on our GitHub project page, with the nrunner tag, and new issue reports are appre-
ciated.

Tip: To select the nrunner on this release (89.0 and earlier), run avocado run —--test-runner=nrunner.

Users/Test Writers

* A new asset requirement type has been introduced, allowing users to declare any asset obtainable with
avocado.utils.asset to be downloaded, cached and thus be available to tests.

e ——dry-run is now supported for the nrunner.

* The man page has been thoroughly updated and put in sync with the current avocado command features and
options.

9.6. Avocado Releases 197

https://github.com/avocado-framework/avocado/compare/89.0...90.0
http://avocado-framework.readthedocs.io/en/89.0/

avocado Documentation, Release 90.0

* Avocado can now run from Python eggs. It’s expected that official egg builds will be made available starting
with Avocado 90.0. Avocado is planning to use eggs as an automatic and transparent deployment mechanism
for environments such as containers and VMs.

e The datadir.paths.logs_dir and datadir.paths.data_dir are set to more consistent and pre-
dictable values, and won’t rely anymore on dynamic probes for “suitable” directories.

Bug Fixes

e The nrunner now properly sets all test status status to the suite summary, making sure that errors are commu-
nicated to the end user through, among other means, the avocado execution exit code.

* When running tests in parallel, multiple downloads of the same image (when using avocado.utils.
vmimage) is now prevented by a better (early) locking.

¢ A condition in which tests running in parallel could collide over the existence of the asset’s cache directory
(created by other running tests) is now fixed.

Utility APIs

e avocado.utils.software _manager.SoftwareManager.extract_from package () 1is a
new method that lets users extract the content of supported package types (currently RPM and deb).

* avocado.utils.vmimage.get () is now deprecated in favor of avocado.utils.vmimage.
Image.from parameters ()

Internal Changes

* avocado.core.plugin_interfaces.Discoverer is a new type of plugin interface that has been
introduced to allow tests to be discovered without the need of references.

* Avocado now uses t ime .monotonic () pretty much everywhere it’s possible. This time function will survive
clock updates, and will never go back.

* The safeloader, the Avocado component that looks for avocado—-instrumentedand python-unittest
tests without executing possibly untrusted code, has seen a big refactor in this release, with an extended test
coverage too.

e The avocado-runner-requirement-package will now check for a package before installing it. This
is an optimization and reduces the chance of multiple instances attempting to install packages at the same time.

* Improvements to the handling and saving of messages generated by the nrunner.

e The nrunner received some prep work for supporting variants. Jobs using the nrunner can now see the
variants being applied to test suites, but be aware that the parameters on variants are still not passed to the tests.

* The requirement runnables now have access to their “parent” configuration.

Misc Changes

* The documentation has been update and gives more precise instructions for the set up of development environ-
ments.

* Major changes to the CI, in a trend towards using more GH Actions based jobs.

For more information, please check out the complete Avocado changelog.

198 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/time.html#time.monotonic
https://github.com/avocado-framework/avocado/compare/(88).0...89.0

avocado Documentation, Release 90.0

88.1 The Serpent

This is a hotfix release for 88.0, with only one change to accommodate a documentation build error on readthedocs.org
caused by a new version of an external package requirement.

For the other (more relevant) changes in the 88.x release, please refer to the 88.0 Release Notes.

88.0 The Serpent

The Avocado team is proud to present another release: Avocado 88.0, AKA “The Serpent”, is now available!

Release documentation: Avocado 88.0

Users/Test Writers

The Requirements Resolver feature has been introduced, and it’s available for general use. It allows users to
describe requirements tests may have, and will attempt to fulfill those before the test is executed. This initial
version has support for “package” requirements, meaning operating system level packages such as RPM, DEB,
etc.

Long story short, if you’re writing a functional test that manipulates Logical Volumes, you may want to declare
that the 1vm2 is a package requirement of your test.

This can greatly simplify the setup of the environments the tests will run on, and at the same time, not cause test
errors because of the missing requirements (which will cause the test to be skipped).

For more information please refer to the Managing Requirements section.
avocado list gota—-Jjson option, which will output the list of tests in a machine readable format.

The minimal Python version requirement now is 3.6. Python 3.5 and earlier are not tested nor supported starting
with this release.

Because of the characteristics of the nrunner architecture, it has been decided that log content generated by
tests will not be copied to the job. log file, but will only be available on the respective test logs on the
test-results directory. Still, will often need to know if tests have been started or have finished while
looking at the job. log file. This feature has been implemented by means of the test 1ogs plugin.

Avocado will log a warning, making it clear that it can not check the integrity of a requested asset when
no hash is given. This is related to users of the avocado.utils.asset module or avocado. Test.
fetch_asset () utility method.

Avocado’s cache directory defined in the configuration will now have the ultimate saying, instead of the dynamic
probe for “sensible” cache directories that could end up not respecting user’s configurations.

Bug Fixes

Avocado will now give an error message and exit cleanly, instead of crashing, when the resulting test suite to
be executed contains no tests. That can happen, for instance, when invalid references are given along with the
—-—ignore-missing-references command line option.

A crash when running avocado distro —-distro-def-create has been fixed.

9.6.

Avocado Releases 199

http://avocado-framework.readthedocs.io/en/88.0/

avocado Documentation, Release 90.0

Internal Changes

 All Python files tracked by version control are now checked by linters.

* An nrunner Task class now has a category. Only if a task has its category set to test (the default) it
will be accounted for in the test results.

* avocado.utils.processnow uses t ime.monotonic () to handle timeouts, which is better suited for
the task and will survive clock updates.

* The core.show configuration item (also available as the ——show command line option) is now a set of
logging streams.

* A Task 'sidentifier now gets converted to a avocado. core. test_id. Test ID before being handed over
to result plugins.

¢ The avocado-runner—-avocado—instrumented runner now better handles its own errors (in addition
to the exceptions possibly raised by tests).

For more information, please check out the complete Avocado changelog.

87.0 Braveheart

The Avocado team is proud to present another release: Avocado 87.0, AKA “Braveheart”, is now available!

Release documentation: Avocado 87.0

Users/Test Writers

e The avocado assets command has been expanded and now can purge the cache based on its over-
all size. To keep 4 GiB of the most recently accessed files, you can run avocado assets purge
——by-overall-1limit=4g. For more information, please refer to the documentation: Removing by overall
cache limit.

* avocado.skipIf () and avocado.skipUnless () now allow the condition to be a callable, to be eval-
uate much later, and also gives them access to the test class. For more information, please refer to the documen-
tation: Advanced Conditionals.

* The presentation of SIMPLE tests have been improved in the sense that they’re are now much more configurable.
One can now set the simpletests.status.failure_fields to configure how the status line shown
just after a failed test will look like, and job.output.testlogs.logfiles to determine the files that
will be shown at the end of the job for failed tests.

Bug Fixes

e The avocaod.core.safeloader now supports relative imports with names, meaning that syntax such as
from ..upper import foo isnot properly parsed.

e The nrunner TAP runner now supports/parses large amounts of data, where it would previously crash when
buffers were overrun.

* The assets plugin (avocado assets command) now returns meaningful exit code on some failures and
success situations.

200 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/time.html#time.monotonic
https://github.com/avocado-framework/avocado/compare/87.0...88.0
http://avocado-framework.readthedocs.io/en/87.0/

avocado Documentation, Release 90.0

Utility APIs

e The avocado.utils.partition utility module now properly keeps track of loop devices and multiple
mounts per device.

Internal Changes

e The nrunner message handling code was mostly rewritten, with specific handlers for specific message types.
Also, the expected (mandatory and optional) is now documented.

e The avocado. core.nrunner. Task identifier is now automatically assigned if one is not explicitly pro-
vided.

* The selftests/check.py Job API-based script now prints a list of the failed tests at the end of the job.

e The nrunner standalone runners are now on their own directory on the source code tree (avocado/core/
runners).

¢ The nrunner base class runner is now an abtract base class.

¢ The Job’s Test suite for the nrunner architecture now contains Runnables instead of Tasks, which are a better fit
at that stage. Tasks will be created closer to the execution of the Job. This solves the dilemma of changing a
Task identifier, which should be avoided if possible.

* The CI jobs on Cirrus have been expanded to run the selftests in a Fedora based container environment, and a
simple smokecheck on Windows.

* A GitHub actions based job was added to the overall CI systems, initially doing the static style/lint checks.

 The selftests have been reorganized into directories for utility modules and plugins. This should, besides making
it easier to find the test file for a particular featured based on its type, also facilitate the repo split.

¢ A number of test status which are not being used were removed, and the current definitions now better match
the general style and are documented.

* COPR RPM package check not attempts to install a specific package NVR (name-version-release).

* Many Python code lint improvements, with new checks added.

Misc Changes

* Updated Debian packaging, now based on Pybuild build system

For more information, please check out the complete Avocado changelog.

86.0 The Dig

The Avocado team is proud to present another release: Avocado 86.0, AKA “The Dig”, is now available!

Release documentation: Avocado 86.0

Users/Test Writers

¢ The avocado assets command now introduces two new different subcommands: 11ist and purge. Both
allow listing and purging of assets based on their sizes or the number of days since they have been last accessed.
For more information please refer to Managing Assets.

9.6. Avocado Releases 201

https://github.com/avocado-framework/avocado/compare/86.0...87.0
http://avocado-framework.readthedocs.io/en/86.0/

avocado Documentation, Release 90.0

Bug Fixes

e The avocado replay command was calling pre/post plugins twice after a change delegated that responsi-
bility to avocado. core. job.Job. run ().

e The testlog plugin wasn’t able to show the log location for tests executed via the
avocado-runner—avocado—-instrumented runner (for the nrunner architecture’) and this is
now fixed.

e The avocado-runner—-avocado-instrumented was producing duplicate log entries because of Avo-
cado’s log handler for the avocado. core. test. Test was previously configured to propagate the logged
messages.

Utility APIs

e The avocado.utils.cpu now makes available a mapping of vendor names to the data that matches in
/proc/cpuinfo on that vendor’s CPUs (avocado.utils.cpu.VENDORS_MAP). This allows users to
have visibility about the logic used to determine the vendor’s name, and overwrite it if needed.

* Various documentation improvements for the avocado.core.multipath module.

Internal Changes

e The avocado. core. test. Test class no longers require to be given an avocado. core. job. Job as
an argument. This breaks (in a good way) the circular relationship between those, and opens up the possiblity
for deprecation of legacy code.

¢ A number of lint checks were added.

* Remove unnecessary compatibility code for Python 3.4 and earlier.

Misc Changes

For more information, please check out the complete Avocado changelog.

85.0 Bacurau

The Avocado team is proud to present another release: Avocado 85.0, AKA “Bacurau”, is now available!

Release documentation: Avocado 85.0

Users/Test Writers

* It’s now possible to set a timeout (via the task.timeout . running configuration option) for nrunner tasks.
Effectively this works as an execution timeout for tests run with ——test-runner=nrunner.

e Users of the asset feature can now register their own assets with a avocado assets register com-
mand. Then, the registered asset can be used transparently with the avocado.core.test.Test.
fetch_asset () by its name. This feature helps with tests that need to use assets that can not be downloaded
by Avocado itself.

202 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/85.0...86.0
http://avocado-framework.readthedocs.io/en/85.0/

avocado Documentation, Release 90.0

Utility APIs

e The avocado.utils.cloudinit module will give a better error message when the system is not capable
of creating ISO images, with a solution for resolution.

e The avocado.utils.vmimage can now access both current and non-current Fedora versions (which are
hosted at different locations).

e The avocado.utils.network.interfaces now supports setting configuration for SuSE based sys-
tems.

Internal Changes

e The make 1link, useful for developing Avocado with external plugins (say Avocado-VT), became make
develop-external, and it requires the AVOCADO_EXTERNAL_PLUGINS_PATH variable to now be set.

* Various cleanups to the Makefile and consolidation into the setup . py file.
* A large number additional lint and style checks and fixes were added.

e The “SoB” check (selftests/signedoff-check. sh) is now case insensitive.

Misc Changes

For more information, please check out the complete Avocado changelog.

84.0 The Intouchables

The Avocado team is proud to present another release: Avocado 84.0, AKA “The Intouchables”, is now available!

Release documentation: Avocado 84.0

Users/Test Writers

Yaml To Mux plugin now properly supports None values.

Command line options related to results, such as —--json-job-result, —-—-tap-job-result,
——xunit-job-result and --html-job-result are now “proper boolean” options (such as
—--disable-json-job-result, -—disable-xunit-job-result, etc).

Pre and Post (job) plugins are now respected in when used with the Job APIL

Support for avocado 1ist “extrainformation” has been restored. This is used in Avocado-VT loaders. They
will be removed (again) for good after its usage is deprecated and removed in Avocado-VT.

Bug Fixes

The run.dict_variants setting is now properly registered in an Init plugin.

* The nrunner implementation for exec and exec-test suffered from a limitation to the amount of output it
could collect. It was related the size of the PIPE used internally by the Python subprocess module. This
limitation has been now lifted.

The nrunner status server can be configured with the maximum buffer size that it uses.

9.6.

Avocado Releases 203

https://github.com/avocado-framework/avocado/compare/84.0...85.0
http://avocado-framework.readthedocs.io/en/84.0/
https://docs.python.org/3/library/subprocess.html#module-subprocess

avocado Documentation, Release 90.0

* The avocado—-instrumented nrunner runner now covers all valid test status.
* The nrunner status server socket is now properly closed, which allows multiple test suites in a job to not conflict.

* The nrunner status server now properly handles the asyncio API under Python 3.6.

Utility APIs

e avocado.utils.pcinow accomodates newer slot names.

e avocado.utils.memory now properly handles the 16GB hugepages with both the HASH and Radix MMU
(by removing the check in case Radix is used).

* avocado.utils.ssh.Session now contains a avocado.utils.ssh.Session.
cleanup_master () method and a :property:‘avocado.utils.ssh.Session.control_master® property.

Internal Changes

* Yaml To Mux documentation updates regarding the data types and null values.

* Release documentation now include the Fedora/EPEL refresh steps.

* BP0O0O is included and approved.

e The Makefile now works on systems such as Fedora 33 because a bad substitution was fixed.

* Only enough nrunner workers to deal with the number of tasks in a suite are created and started.
 All nrunner based runners are now checked with a basic interface test.

* The same check script (selftests/check.py) is now used run under RPM builds.

Misc Changes

* The contrib scripts to run the KVM unit tests was updated and supports the nrunner and skip exit codes.

For more information, please check out the complete Avocado changelog.

83.0 Crime and Punishment

The Avocado team is proud to present another release: Avocado 83.0, AKA “Crime and Punishment”, is now available!

Release documentation: Avocado 83.0

Users/Test Writers

* All configuration whose namespace start with the runner. prefix will be forwarded to runners. This allows
centrally managed configuration to be sent to runners executed by different types of spawners.

* The exec—test runner now accepts a configuration (runner.exectest.exitcodes.skip) that will
determine valid exit codes to be treated as SKIP test results.

* The Loader based on the YAML Multiplexer has been removed. Users are advised to use Job API and multiple
test suites to fulfill similar use cases.

e The GLib plugin has been removed. Users are advised to use TAP test types instead, given that GLib’s GTest
framework now defaults to producing TAP output.

204 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/83.0...84.0
http://avocado-framework.readthedocs.io/en/83.0/

avocado Documentation, Release 90.0

* A runner for GO, aka golang, tests, compatible with the nrunner, has been introduced.
* The paginator feature is now a boolean style option. To enable it, use ——enable-paginator.

e The nrunner status server now has two different options regarding its URI. The first one,
—-—nrunner—-status—-server—listen determines the URI in which a status server will listen to.
The second one, ——nrunner—-status—server—-uri determines where the results will be sent to. This
allows status server to be on a different network location than the tasks reporting to it.

* The avocado-software-manager command line application now properly returns exit status for failures.

e The Podman spawner now exposes command line options to set the container image
(-—spawner-podman-image) and the Podman binary (--spawner-podman-bin) used on an
avocado invocation.

e Command line options related to results, such as —--json-job-result, —--tap-job-result,
—-—xunit-job-result and ——html-job-result currently take a on or off parameter. That is now
deprecated and a warning has been added. Those options will soon become “proper boolean” options (such as
——enable-$Stype—-job-result and/or ——disable-$Stype—-job-result).

Bug Fixes

e avocado.utils.network.interfaces.NetworkInterface.is admin_link_up () and
avocado.utils.network.interfaces.NetworkInterface.is_operational_ link_ up()
now behave properly on interfaces based on bonding.

* The selection of an nrunner based runner, from its Python module name/path has been fixed.

e avocado.utils.process utilities that use sudo would check for executable permissions on the binary.
Many systems will have sudo with the executable bit set, but not the readable bit. This is now accounted for.

* The “external runner” feature now works properly when used outside of a avocado command line invocation,
that is, when used in a script based on the Job APIs.

Utility APIs

* A new module avocado.utils.dmesg with utilities for interacting with the kernel ring buffer messages.

e A new utility avocado.utils.linux.is_selinux_enforcing () allows quick check of SELinux
enforcing status.

e The avocado.utils.network. interfaces now support configuration files compatible with SuSE dis-
tros.

e avocado.utils.network.interfaces.NetworkInterface.remove_link () is a new utility
method that allows one to delete a virtual interface link.

* avocado.utils.network.hosts.Host.get_default_route_interface () is a new utility
method that allows one to get a list of default routes interfaces.

e The avocado. utils. cpu library now properly handles s390x z13 family of CPUs.

e The avocado.utils.pmem library introduced a number of new utility methods, adding support for daxctl
operations such as offline-memory, online-memory and reconfigure-device.

Internal Changes

* The safeloader has been migrated from using imp (deprecated) to the more modern importlib.

9.6. Avocado Releases 205

https://docs.python.org/3/library/imp.html#module-imp
https://docs.python.org/3/library/importlib.html#module-importlib

avocado Documentation, Release 90.0

Instead of using hardcoded . . to refer to the parent directory, portability was improved by switching to os.
path.pardir ().

Runners based on the avocado. core.nrunner module, when called on the command line, can now omit
the ——kind parameter, if information can be gathered from the executable name.

Avocado’s make check is now based on a Job API script, found at selftests/check.py. It combines
previously separate set of tests described by multiple command line executions.

CI “smoke checks” for OS X and Windows have been introduced. This does not mean, however, that Avocado
is supported on those platforms.

For more information, please check out the complete Avocado changelog.

82.0 Avengers: Endgame

The Avocado team is proud to present another release: Avocado 82.0, AKA “Avengers: Endgame”, is now available!

This release is also an LTS Release, with a different Release Notes that covers the changes since 69.x LTS.

Release documentation: Avocado 82.0

Bug Fixes

Avocado can now find tests on classes that are imported using relative import statements with multiple classes.
Previously only the first class imported in such a statement was properly processed.

avocado run will now create test suites without an automatic (and usually very verbose) name, but instead
without a name, given that there will be only one suite on such jobs. This restores the avocado run behavior
users expected and are used to.

Hint files are now being respected again, this time within the context of test suite creation.

Filtering by tags is now working properly when using the resolver, that is, when using avocado list
--resolver -t $tag —-- S$Sreference.

Test suites now properly respect the configuration given to them, as opposed to using a configuration composed
by the default registered option values.

Fixed the “elapsed time” produced by the avocado-instrumented nrunner runner (that is,
avocado-runner-avocado—instrumented).

avocado --verbose list —--resolver —-- S$reference has reinstated the presentation of failed
resolution information, which is useful for understanding why a test reference was not resolved into a test.

The “legacy replay plugin”, that is, avocado run --replay, can now replay a subset of tests based on
their status.

The avocado diff command won’t crash anymore if given sysinfo files with binary content. It will log
the issue, and not attempt to present binary differences.

The HTML report generated by avocado diff now runs properly and won’t crash.
The asset fetcher plugin won’t crash anymore due to differences in the AST based node attributes.

avocado.utils.process.FDDrainer now properly respects the presence and absence of newlines pro-
duced when running new processes via avocado.utils.process. run () and friends. This also fixes tests
that relied on the “output check” feature because of missing newlines.

The nrunner plugin will now always display test status in the most natural order, that is, STARTED before
PASS or FATL.

206

Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/82.0...83.0
http://avocado-framework.readthedocs.io/en/82.0/

avocado Documentation, Release 90.0

The nrunner plugin will now properly set the job status in case of test failures, resulting in the job (and
avocado run) exit status to properly signal failures.

A vast documentation review was performed, with many fixes and improvements.

For more information, please check out the complete Avocado changelog.

81.0 Avengers: Infinity War

The Avocado team is proud to present another release: Avocado 81.0, AKA “Avengers: Infinity War”, is now available!

This release introduces many exciting new features. We can’t even wait to get to the more specific sections bellow to
talk about some of the highlights:

A new test runner architecture, previously known as the “N(ext) Runner”, now available as the “nrunner” plugin.
It currently allows tests to be run in parallel in either processes or into Podman based containers. In the near
future, it should include LXC, Kata Containers, QEMU/KVM based virtual machines, etc. It also includes the
foundation of a requirement resolution mechanism, in which tests can declare what they need to run (specific
Operating System versions, architectures, packages, etc). Expect the Avocado feature set to evolve around this
new architecture.

A fully usable Job API, making most of Avocado’s functionalities programmable and highly customizable.
Expect the Job API to be declared public soon, that is, to be available as avocado . Job (instead of the current
avocado.core. job.Job) just like the Avocado Test API is available at avocado. Test.

A new settings API that is tightly linked to the Job API. You can see all the existing configurations at runtime by
running avocado config reference. To integrate Avocado to an existing project or a CI environment, a
custom job with a few configurations will give you a lot of flexibility with very little need to write Python code.
Some examples are available at examples/ jobs.

Support for multiple test suites in a Job, so that each test suite can be configured differently and independently of
each other. Fulfill your use case easily (or let your imagination go wild) and define different runners for different
test suites, different parameters to different test suites, or run some test suites locally, while others isolated on
containers. Anything that is configurable with the new settings API should be transparently configurable in the
context of a test suite (provided the test suite deals with that feature).

This release is also a “pre-LTS release”. Development sprint #82 will focus on stabilization, culminating in the 82.0
LTS release.

Release documentation: Avocado 81.0

Users/Test Writers

The remote, vm and docker runners (which would run jobs on remote, vim and docker containers) were
removed, after having being deprecated on version 78.0.

The “standalone job” feature, in which a test could be run as a standalone job was removed after having being
deprecated on version 80.0. The alternative is to use an Avocado Job (using the Job API), with a test defined
on the same file, as can be seen on the example file examples/jobs/passjob_with_test.py in the
source tree.

The yaml_to_mux varianter plugin now attempts to respect the type of the value given to ——mux-inject.
For example, 1 is treated as integer, a value of 1, 2 is treated as list a value of abc is treated as string, and a
value of 1, 2, 5-10 is treated as list of integers as 1, 2, -5 (as it is evaluated by ast . literal_eval ()).

Python unittests names are now similar to Avocado’s own instrumented tests names, that is, they list the file
name as a path, followed by the class and method name. The positive aspect of this change is that that they can
be reused again as a test reference (which means you can copy and paste the name, and re-run it).

9.6.

Avocado Releases 207

https://github.com/avocado-framework/avocado/compare/81.0...82.0
http://avocado-framework.readthedocs.io/en/81.0/
https://docs.python.org/3/library/ast.html#ast.literal_eval

avocado Documentation, Release 90.0

The avocado-runner—« standalone runners can now look for a suitable Python class to handle a given test
kind by using setuptools entrypoints.

For users of the Job API, a “dictionary based” varianter was introduced, that allows you to describe the variations
of tests in a test suite directly via a Python dictionary.

The output produced on the human UI for failed STMPLE tests is now much more straightforward and contains
more relevant data.

Users attempting to use both the ——1oader and the ——external-runner features will be warned against
it, because of its inherent incompatibility with each other.

A new avocado replay command supersedes the avocado run --replay command/option.

The previous experimental command nlist has been removed, and its functionality can now be activated
by using avocado list —--resolver. This is part of promotion of the N(ext) Runner architecture from
experimental to being integrated into Avocado.

Bug Fixes

Filtering using tags while listing the tests (but not while running them) was broken on the previous release, and
has now been fixed.

Result event plugins were misbehaving because they were instantiated too early. Now they’re loaded later and
lazily.

Failure to load and run the Python unittest with the nrunner’s avocado.core.nrunner.
PythonUnittestRunner depending on the directory it was called from is now fixed.

Utility APIs

e The avocado.utils.vmimage now contains an auxiliary documentation (Supported images) that lists the

exact Operating System names, versions and architectures that have been tested with an Avocado release.

e The avocado.utils.pmem library can now check if a given command is supported by the underlying

ndct1 binary.

Internal Changes

Improvements to the selftests, including a collection of jobs that are run as tests, and a job that tests a good
number of Job API features using variants.

The avocado.core.settings is a completely redesigned module, and central to Avocado’s future set
and Job APL. It was present as avocado.core. future.settings on previous versions. All module and
plugins have been migrated to the new APL

The avocado.utils.software_manager module has been split into a finer grained directory and mod-
ule structure.

Various documentation content improvements, and various build warnings were addressed.

The avocado_variants attribute is no longer kept in the job configuration as an instance of a avocado.
core.varianter.Varianter, instead, the configuration for the various variants are kept in the configu-
ration and it’s instantiated when needed.

avocado.utils.waitnowusestime.monotonic (), which makes it more reliable and less susceptible
to errors when the system clock changes while this utility function is running.

208

Chapter 9. Build and Quality Status

https://docs.python.org/3/library/time.html#time.monotonic

avocado Documentation, Release 90.0

Refactors resulting in more code being shared among Avocado Instrumented and Python unittest handling on
the avocado. core. safeloader module.

The avocado. core. safeloader module now supports relative imports when attempting to follow imports
to find valid classes with tests.

A new avocado. core. suite was introduced, which is the basis of the multiple test suite support in a Job.
Codeclimate.com is now being used for code coverage services.

Codeclimate.com now has the bandit plugin enabled, which means that security related alerts are also caught
and shown on the analysis.

For more information, please check out the complete Avocado changelog.

80.0 Parasite

The Avocado team is proud to present another release: Avocado 80.0, AKA “Parasite”, is now available!

This release (and the previous one) contains mainly internal changes in preparation for the N(ext) Runner architecture
to replace the current one, and for the Job API to become a fully supported feature.

It’s expected that release 81.0 will be the last release containing major changes before a “pre-LTS release”. This way,
development sprint #82 will focus on stabilization, culminating in an 82.0 LTS release.

Release documentation: Avocado 80.0

Users/Test Writers

The Avocado configuration that is logged during a job execution is now the dictionary that is produced by the
avocado.core.future.settings module, instead of the configuration file(s) content. This is relevant
because this configuration contains the result of everything that affects a job, such as defaults registered by
plugins, command line options, all in addition to the configuration file. The goal is to have more consistent
behavior and increased job “replayability”.

As explained in the previous point, an Avocado Job is now configured by the configuration set by the avocado.
core.future.settings code. Because of the way this module works, options need to be registered, before
the content on the config files can be considered valid values for a given option. This has been done for a large
number of Avocado features, but be advised that some configuration may not yet be seen by the job, because of
the lack of option registration. We’re working to identify and enable complete feature configuration on the next
release.

The “log level” of an Avocado is now defined using the standard Python level names. If you have a custom
configuration for this setting, you may need to adjust it (usually only a matter of lowercase to uppercase).

The runner that will be used in a job can now be defined in the command line (in addition to being previously
supported by a configuration entry). If you want to try out the experimental N(ext) Runner, for instance, you
should be able to use a command such as avocado run —--test-runner=nrunner /path/to/my/
tests.

The N(ext) Runner received support for job timeouts, and won’t run further tests if the timeout expires.

The N(ext) Runner now users the same Test ID that the current test runner uses, both in the to-be-removed
avocado nrun and inthe avocado run —--test-runner=nrunner scenario.

A brand new command, jobs enables users to, among other things to list information about previously executed
jobs. A command such as avocado jobs show will show the latest job information.

9.6.

Avocado Releases 209

https://github.com/avocado-framework/avocado/compare/80.0...81.0
http://avocado-framework.readthedocs.io/en/80.0/

avocado Documentation, Release 90.0

The “standalone jobs” feature has been deprecated. This feature allows users to write a test, that contains a
builtin job executor for such a test that allows the test file to be executable. This will be replaced by the Job API,
which transparently supports the specification of the same file as a source of tests.

The avocado run —--loaders ? command to list available loaders has been removed. This command line
usage pattern is not consistent across Avocado (or follows the POSIX guidelines), and with the N(ext) Runner
architecture depending on the avocado. core. resolver feature set, one will be able to see the resolvers
with the avocado plugins command.

The lower level avocado. core. job. Job, instead of the avocado run command, is now responsible for
generating result files, such as the JSON (results. json), XxUnit (results.xml), etc. This allows users
of the Job API, as well as users of the avocado run command to have results generated as intended.

The lower level avocado. core. job. Job, instead of the avocado run command, is now also responsi-
ble for collecting the job-level system information (AKA sysinfo). This allows users of the Job API, as well
as users of the avocado run command to have this feature available.

Bug Fixes

The avocado sysinfo command reverts to the pre-regression behavior, and now creates a directory follow-
ing the sysinfo-$TIMESTAMP pattern and uses that for the content of the sysinfo output, instead of using
the current directory by default.

An incorrect configuration key name of the result_upload command, as part of the “results_upload” plugin,
was fixed.

avocado.utils.disk.get_disks () now supports all block devices, like multipaths, LVs, etc. Previ-
ously it used to return only /dev/sdX devices.

Utility APIs

e All of the avocado.utils.gdb APIs are now back to a working state, with many fixes related to bytes and

strings, as well as buffered I/O caching fixes.

* avocado.utils.pmemnow supports the all namespace behavior for newer versions of the ndct 1 utility.

e avocado.utils.software_manager support for the Zypper package manager was improved to support

the installation of package build dependencies.

Internal Changes

Refactors for the avocado. core.nrunner.BaseRunnerApp that made the list of commands available
as a class attribute avoiding multiple resolutions and string manipulation when a command needs to be resolved.

The N(ext) Runner received some foundation work for the persistence and retrieval of test generated artifacts.
The work takes into consideration that tests may be run disconnected of the the overall test job, and the job can
retrieve those at a later time.

The N(ext) Runner spawner selection is on the avocado nrun command is now done by means of the
—-—spawner= option that takes a spawner name, instead of the previous ——podman-spawner option. This
logic should be kept on the avocado run implementation and allow for new spawners to be used transpar-
ently.

Internal reliability improvements to the N(ext) Runner status server implementation.

The avocado nrun command now respects the -—verbose command line option, producing less output if
it’s not given.

210

Chapter 9. Build and Quality Status

avocado Documentation, Release 90.0

The core sysinfo implementation received cleanups and now makes now distinction between collection at job or
test time, and works on both or at any other moment.

The avocado.core. future.settings now allows command line parsers to be added to previously reg-
istered options. This allows features that don’t require a command line to register options, and plugins that want
to control such options with a command line to do so in a decoupled and extensive way.

A new plugin interface, avocado.core.plugin_interfaces.Init, was introduced to allow plugins
that need to initialize themselves very early (and automatically) on Avocado. Such plugins have no knowledge
of the current configuration, but may use that interface to register new options (among other things).

An Avocado Job is now run as part of the selftests suite, and more can be added. This is intended to avoid
breakage of the Job API as it gets closer to become a supported feature.

For more information, please check out the complete Avocado changelog.

79.0 La vita e bella

The Avocado team is proud to present another release: Avocado 79.0, AKA “La vita ¢ bella”, is now available!

This releases contains mainly internal changes in preparation for the N(ext)Runner architecture to replace the current
one. It’s expected that an LTS release will be done within the next two or three releases, before the switch the current
runner architecture is deprecated and removed.

Release documentation: Avocado 79.0

Users/Test Writers

The Remote, VM and Docker runner plugins have been deprecated. The current implementation would re-
quire a major rewrite to be compatible with the new Fabric API (currently uses the Fabric3 API). Also, the
N(ext)Runner architecture requires that individual tests be executed in isolated environments (be them local or
remote) and the current implementation actually runs a complete Avocado Job so it’s not suitable to be reused
in the N(ext)Runner.

The Avocado docstring directives (the ones that go into docstrings and are prefixed with :avocado:) now
support requirement entries. Those will be used as part of the “Requirements Resolver” features, as per
BP002.

The ——ignore-missing-references option, which used to take a on or of £ parameter, now takes no
parameter. Now, the feature it controls is not enabled unless you supply the command line option (but no on or
off is required).

Bug Fixes
* When using the Job API (with the conventional runner or the N(ext)Runner) the job.log ended up being
empty empty, but now it produces just like when using the Avocado command line tool. This fix is part of the
stabilization effort to declare the Job API as supported soon.
* Fixed an issue with the avocado. core. safeloader that would return duplicate tests when both a parent
and child class implemented methods with the same name.
¢ Fixed an issue in the avocado.core.utils.cpu.cpu_has_flags () that could cause a crash because
of a mixed used of bytes coming from reading /proc/cpuinfo and a string based regex.
9.6. Avocado Releases 211

https://github.com/avocado-framework/avocado/compare/79.0...80.0
http://avocado-framework.readthedocs.io/en/79.0/

avocado Documentation, Release 90.0

Utility APIs

The avocado.utils.gdb.GDBRemot e implementation of the GDB Remote Protocol now deals with bytes
(instead of possibly multibyte strings), more in line with the original protocol specification.

Users of the avocado.utils.partition.mount () can now skip checking if the devices/mountpoints
are mounted, which is useful for bind mounts.

The avocado.utils.cpu.online () and avocado.utils.cpu.offline () will now check the
status of the CPU before attempting to apply a possibly (unnecessary) action.

The avocado.utils.software_manager.DnfBackend now properly implements a build_dep
functionality, which differs from its parent avocado.utils.software_manager.YUMBackend.

Internal Changes

Optional plugins (shipped by Avocado) will now require a matching Avocado version. This should prevent users
from having installation and usage problems with versions mismatch.

A number of selftests were ported from unittest.TestCase to avocado. Test, making use of Avo-
cado’s features and following a “eat your own dog food” approach.

A new code style lint check is now enforced, W601, which drops the use of has_key () in favor for the key
in idiom.

The N(ext)Runner main module, avocado.core.nrunner, now has two explicit registries
for the two different types of supported runners. The first one, avocado.core.nrunner.
RUNNERS_REGISTRY_STANDALONE_EXECUTABLE is populated at run time with standalone executable
runners available on the system (those named avocado-runner-$kind). The second one, avocado.
core.nrunner.RUNNERS _REGISTRY PYTHON_CLASS contains Python based runner implementations,
which are currently set manually following a class implementation definition (but may be converted to dynamic
lookups, such as setuptools’ entrypoints in the future).

The N(ext)Runner example job is one way of checking the progress of its integration into the overall Avocado
framework. It’s been broken, but it’s now back to operation status and being used by the release process in the
jobs/timesensitive.py job, which has replaced the make check-full rule.

The N(ext)Runner standard runner implementations, say, avocado-runner—-exec-text, will
now create an “output directory” on behalf of the test, and communicate its location via the
AVOCADO_TEST_OUTPUT_DIR environment variable. Further work will implement the retrieval and stor-
age of individual tests’ output into an organized Avocado Job result structure.

The nrun command, a temporary entrypoint into the N(ext)Runner, will now show a list of tasks that failed
with fail or error results, which can be helpful while debugging Avocado’s own selftests failures (or for
those brave enough to be running nrun already).

A number of optional plugins, including resultsdb, results_upload, varianter_cit and
varianter_pict have been migrated to the “future” settings API, which delivers a consistent configura-
tion between command line, configuration files and Job API usage.

Documentation improvements on the Fetching asset files section, and on the explanation of the current and 7he
“nrunner” and “runner” test runner architecture.

Because the minimum supported Python version was lifted from 3.4 to 3.5 back in Avocado version 74.0, it
was possible, but not done before, to upgrade the asyncio syntax from the asyncio.coroutine () and
yield from to the more modern async def and await syntax.

Python 3.8 is now formally supported, being enabled in the Python package manifest, and being actively tested
on our CI.

212

Chapter 9. Build and Quality Status

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-task.html#asyncio.coroutine

avocado Documentation, Release 90.0

For more information, please check out the complete Avocado changelog.

78.0 Outbreak

The Avocado team is proud to present another release: Avocado 78.0, AKA “Outbreak™, is now available!

Release documentation: Avocado 78.0

Users/Test Writers

e The HTML plugin now produces reports with resizeable columns and standardized tooltips (besides some inter-
nal cleanups).

e The avocado assets fetch command now accepts a ——ignore-errors option that returns exit code
0 even when some of the assets could not be fetched. This is useful in some unattended executions such as CI
environments, in which the avocado assets fetch is used in conjuntion with the canceling of tests that
depend on assets not found. Without this option, an entire CI job can be stopped at the initial failure.

* Avocado now supports “hint files” that can tweak how the Avocado resolver will recognize tests. This is use-
ful for projects making use of Avocado as a test runner, and it can allow complete integration with a simple
configuration file in a project repository. For more information check out the documentation about 7he hint
files.

e The experimental N(ext) Runner now allows users to set the number of parallel tasks with the
——parallel-tasks command line option (or by setting the parallel_tasks configuration under the
nrun section). The default value is still the same (twice the number of CPUs, minus one).

¢ The experimental N(ext) Runner now checks the status of tasks right after spawning them. This can serve as an
indication if a task crashes too soon. Users will now see a “<task> spawned and alive” on most cases.

* The experimental N(ext) Runner now provides a container based execution of tasks with command line option
--podman-spawner. While this is not yet intended for general use, it serves as an early technology preview
of the multiple test isolation strategies that will be fully supported by the N(ext) Runner.

e The avocado vmimage get command now returns a proper error exit code when it fails to retrieve the
requested image.

Bug Fixes

e The avocado.utils.asset used to produce an empty string when the asset name parameter was not a full
URL, resulting in a broken hash value.

* The avocado.utils.asset could fail trying to remove a temporary file that may not ever have been cre-
ated.

Utility APIs

¢ The CentOS provider of the avocado. utils.vmimage module now supports the location and image file
names for version 8.

* The OpenSUSE provider of the avocado. utils.vmimage module now returns the pure version numbers,
instead of the ones containing the Leap__ prefixes.

* The Debian provider of the the avocado. utils. vmimage module now properly matches the version num-
bers.

9.6. Avocado Releases 213

https://github.com/avocado-framework/avocado/compare/78.0...79.0
http://avocado-framework.readthedocs.io/en/78.0/

avocado Documentation, Release 90.0

* The Ubuntu provider of the the avocado. utils. vmimage module now doesn’t attempt to convert versions
into numbers, which could result in lost digits (10.40 would become 10.4).

* The avocado.utils.network.interfaces module now supports different types output produced by
iproute.

e The avocado.utils.ssh.Session.cmd () method now allows users to ignore the exit status of the
command with the ignore_status parameter.

e The avocado.utils.cpuchanged how it identifies CPU vendors, architectures and families, making those
more consistent across the board.

Internal Changes

* The experimental N(ext) Runner now produces less ambiguious state messages, with a dedicated result field
on the final state message, instead of reusing the status field.

* A “release job” was introduced to be run in addition to the other selftests before a release is cut. It currently
includes a complete coverage of all the :mod: ‘avocado.utils.vmimage providers, amounting to almost 200 test
variations.

e The loader_yaml and html plugins were migrated to the new (future) settings APIL.

For more information, please check out the complete Avocado changelog.

77.0 The Hangover

The Avocado team is proud to present another release: Avocado 77.0, AKA “The Hangover”, is now available!

Release documentation: Avocado 77.0

Users/Test Writers

e The avocado.Test.fetch asset method now has two new parameters: find_only and
cancel_on_missing. These can be combined to cancel tests if the asset is missing after a download attempt
(find_only=False) or only if it’s present in the local system without a download having been attempted
during the test (find_only=True). This can bring better determinism for tests that would download sizable
assets, and/or allow test jobs to be executable in offline environments.

* The avocado-software-manager script, a frontend to the avocado.utils.software _manager
module, now produces output as expected from a script.

e The multiplex command, an alias to variants, has been deprecated for a long time, and has now finally
been removed.

Bug Fixes

e When a dry-run is executed, by passing the ——dry-run command line option, the proper file name of the test
will be shown, instead of the file implementing the “fake” avocado.core.test.DryRun class.

e Usersof avocado.utils.ssh.Session asacontext manager, would have all the exceptions captured and
suppressed because of a buggy ___exit___ implementation.

214 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/77.0...78.0
http://avocado-framework.readthedocs.io/en/77.0/

avocado Documentation, Release 90.0

Utility APIs

The new avocado. utils.pmem module provides an interface for manage persistent memory. It allows for
creating, deleting, enabling, disabling and re-configuring both namespaces and regions depending on supported
hardware. It wraps the features present on the ndct1 and daxct1 binaries.

The new avocado.utils.ssh.Session.get_raw_ssh_commands () allows access to the generated
(local) commands, which could be used for advanced use cases, such as running multiple (remote) commands
in a test. See the examples/apis/utils/ssh.py for an example.

The avocado.utils.network module received a complete overhaul, and provides features for getting,
checking and setting network information from local and even remote hosts.

Better documentation for the avocado.utils.ssh, avocado.utils.cloudinit, avocado.
utils.service and other modules.

Internal Changes

The foundation of the BPOO! has been implemented, in the form of the avocado.core. future.
settings and by adjusting pretty much all of Avocado’s code to make use of it. In the near future, this
is going to replace avocado. core.settings.

It’s now easier to write a runner script that extends the types of runnables supported by the N(ext) Runner. For
an example, please refer to examples/nrunner/runners/avocado-runner—foo.

Many more refactors on the avocado. utils.asset module.

For more information, please check out the complete Avocado changelog.

76.0 Hotel Mumbai

The Avocado team is proud to present another release: Avocado 76.0, AKA “Hotel Mumbai”, is now available!

Release documentation: Avocado 76.0

Users/Test Writers

The decorators avocado.skip (), avocado.skipIf () and avocado.skipUnless () can now be
used to decorate entire classes, resulting in all its tests getting skipped if/when the condition given is satisfied.

A TAP capable test runner for the N(ext) Runner has been introduced and is available as
avocado-runner—tap. Paired with the resolver implementation introduced in the previous release, this
allows the avocado nrun command to find and execute tests that produce TAP compatible output.

Avocado’s avocado.utils.software_manager functionality is now also made available as the
avocado-software—-manager command line tool.

The sysinfo collection now logs a much clearer message when a command is not found and thus can not have
its output collected.

Documentation improvements and fixes in guide sections and utility libraries.

A second blueprint, BP002, was approved (and committed) to Avocado. It’s about a proposal about a “Require-
ments resolver”, that should give tests automatic resolution of various types of requirements they may need to
run.

9.6.

Avocado Releases 215

https://github.com/avocado-framework/avocado/compare/76.0...77.0
http://avocado-framework.readthedocs.io/en/76.0/

avocado Documentation, Release 90.0

Bug Fixes

e The N(ext) Runner will now properly escape Runnable arguments that start with a dash when generating a
command to execute a runner, avoiding the runner itself to try to parse it as an option to itself.

* The Journal plugin will now only perform its test status journaling tasks if the ——journal option is given, as
it was originally intended.

e The HTML plugin has been pinned to the jinja2 package version compatible with Python 3.5 and later.

Utility APIs

e The avocado.utils.kernel.KernelBuild.build () now allows the definition of the number of
jobs, using semantics very similar to the one used by GNU make itself. That means one should be careful
when using None, as it means no limit to the number of parallel jobs.

Internal Changes

» Workarounds on Travis CI for caching failures on s390x and aarch64.
* Many refactors on the avocado.utils.asset module
» Multiple refactors on the N(ext) Runner code

For more information, please check out the complete Avocado changelog.

Changes expected for the next release (77.0)

We are working hard to use a good name convention related to configuration options (either via command-line or via
configuration file). Because of that, to keep consistency, some options are going to be changed.

Beginning with this release (76.0), users will notice a few warnings (i.e FutureWarning) messages on the
STDERR. Those are early warnings of changes that will be introduced soon, because of the work mentioned before.
On the next release (77.0), it’s expected that compatibility will be affected.

In the end, we will have an improved configuration module, that will handle both command line and configuration
options. This intends to deliver a better way to register and to retrieve configuration options. Also, soon we will
provide better documentation and a complete template config file, covering all options supported.

For more information, please visit the BP0OI.

75.1 Voyage to the Prehistoric Planet (minor release)

The Avocado team is proud to present another release: Avocado 75.1, AKA “Voyage to the Prehistoric Planet”, is now
available!

Release documentation: Avocado 75.1

Changes from 75.0 to 75.1

* The file used as the project description, README . rst was slightly changed to only contain reStructuredText
content, and be accepted into the PyPI repository.

* The missing 75.0 release notes document was added.

216 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/75.0...76.0
http://avocado-framework.readthedocs.io/en/75.1/

avocado Documentation, Release 90.0

* A missing slash from the readthedocs.org badge URL was added.

75.0 Release Changes

The following are the original changes part of the 75.0 release.

Users/Test Writers

* The very first blueprint was approved (and committed) to Avocado. It’s about a “Configuration by convention”
proposal, which will positively impact users deploying and using Avocado, and will end up making the Job API
have a much better usability.

* Warnings for the deprecation of some options, as determined by the design decisions on the “Configuration by
convention” blueprint have been added to the command line tool. Users should pay attention to not rely on the
content on STDERR, as it may contain those warnings.

e The jsonresult plugin, that generated a JSON representation of the job results, added warn and
interrupt fields containing counters for the tests that ended with WARN and INTERRUPTED status, re-
spectively.

¢ The still experimental “N(ext) Runner” has introduced an initial integration with the Avocado Job. Users running
avocado plugins will see a new entry under “Plugins that run test suites on a job (runners)”. The only way
to activate this runner right now is to run a custom job such as the one in examples/job/nrunner.py.

Bug Fixes

* The YAML Loader did not behave correctly when a None reference was given to it. It would previously try to
open a file named None.

Utility APIs

* A previously deprecated function called thin_1lv_created was removed from the avocado.utils.
1v_utils module.

e avocado.utils.configure network.is_interface_link_up () is a new utility function that
returns, quite obviously, whether an interface link is up.

Internal Changes

* Inspektor was replaced with a PyLint for the lint checks due to parallel execution errors that were plaguing CI,
mostly on non-x86 architectures.

e The avocado.utils.asset received a number of refactors, in preparation for some major changes ex-
pected for the next releases.

e The avocado.utils.cloudinit selftest now queries the allocated port from the created socket itself,
which removes a race condition that existed previously and caused intermittent test failures.

* A test for the sysinfo content on the HTML report was added, removing the need for the manual test on the
release test plan.

* The deployment selftests have been reorganized, and now are based on Ansible roles (and other best practices).

9.6. Avocado Releases 217

avocado Documentation, Release 90.0

e The handling of a “Job results directory” resolution, based either on its ID (partial or complete) or path has
been improved, and has internally been moved from the avocado. core. jobdata to avocado.core.
data_dir.

For more information, please check out the complete Avocado changelog.

75.0 Voyage to the Prehistoric Planet
The Avocado team is proud to present another release: Avocado 75.0, AKA “Voyage to the Prehistoric Planet”, is now
available!

Release documentation: Avocado 75.0

Users/Test Writers

* The very first blueprint was approved (and committed) to Avocado. It’s about a “Configuration by convention”
proposal, which will positively impact users deploying and using Avocado, and will end up making the Job API
have a much better usability.

» Warnings for the deprecation of some options, as determined by the design decisions on the “Configuration by
convention” blueprint have been added to the command line tool. Users should pay attention to not rely on the
content on STDERR, as it may contain those warnings.

e The jsonresult plugin, that generated a JSON representation of the job results, added warn and
interrupt fields containing counters for the tests that ended with WARN and INTERRUPTED status, re-
spectively.

¢ The still experimental “N(ext) Runner” has introduced an initial integration with the Avocado Job. Users running
avocado plugins will see a new entry under “Plugins that run test suites on a job (runners)”. The only way
to activate this runner right now is to run a custom job such as the one in examples/job/nrunner.py.

Bug Fixes

* The YAML Loader did not behave correctly when a None reference was given to it. It would previously try to
open a file named None.

Utility APIs

» A previously deprecated function called thin_1lv_created was removed from the avocado.utils.
1v_utils module.

e avocado.utils.configure network.is_interface_link_up () is a new utility function that
returns, quite obviously, whether an interface link is up.

Internal Changes

* Inspektor was replaced with a PyLint for the lint checks due to parallel execution errors that were plaguing CI,
mostly on non-x86 architectures.

e The avocado.utils.asset received a number of refactors, in preparation for some major changes ex-
pected for the next releases.

218 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/74.0...75.0
http://avocado-framework.readthedocs.io/en/75.0/

avocado Documentation, Release 90.0

e The avocado.utils.cloudinit selftest now queries the allocated port from the created socket itself,
which removes a race condition that existed previously and caused intermittent test failures.

* A test for the sysinfo content on the HTML report was added, removing the need for the manual test on the
release test plan.

* The deployment selftests have been reorganized, and now are based on Ansible roles (and other best practices).

e The handling of a “Job results directory” resolution, based either on its ID (partial or complete) or path has
been improved, and has internally been moved from the avocado. core. jobdata to avocado.core.
data_dir.

For more information, please check out the complete Avocado changelog.

74.0 Home Alone

The Avocado team is proud to present another release: Avocado 74.0, AKA “Home Alone”, is now available!

Release documentation: Avocado 74.0

Users/Test Writers

* A new test type, TAP has been introduced along with a new loader and resolver. With a TAP test, it’s possible
to execute a binary or script, similar to a SIMPLE test, and part its Test Anything Protocol output to determine
the test status.

* It’s now possible to enforce colored or non-colored output, no matter if the output is a terminal or not. The
configuration item color was introduced in the runner.output section, and recognize the values auto,
always or never.

Bug Fixes

e The safeloader mechanism that discovers both Avocado’s Python based INSTRUMENTED tests, and
Python’s native unittests, would fail to find any tests if any of the classes on a given file contained references to
a module that was not on a parent location. Now, the safeloader code will continue the discovery process,
ignoring the modules that were not found at parent locations.

Utility APIs

* avocado.utils.kernel received a number of fixes and cleanups, and also new features. It’s now possi-
ble to configure the kernel for multiple targets, and also set kernel configurations at configuration time with-
out manually touching the kernel configuration files. It also introduced the avocado.utils.kernel.
KernelBuild.vmlinux () property, allowing users to access that image if it was built.

e avocado.utils.network utilities avocado.utils.network.ping_check () and avocado.
utils.network.set_mtu_host () now are plain functions, instead of methods of a class that shared
nothing between them.

e New functions such as avocado.utils.multipath.add path (), :func:avocado.utils.
multipath.remove_path () avocado.utils.multipath.get_mpath_status () and
avocado.utils.multipath.suspend _mpath () have been introduced :func:to the avocado.
utils.multipath module.

9.6. Avocado Releases 219

https://github.com/avocado-framework/avocado/compare/74.0...75.0
http://avocado-framework.readthedocs.io/en/74.0/
https://testanything.org

avocado Documentation, Release 90.0

e The avocado. utils.vmimage module will not try to create snapshot images when it’s not needed, acting
lazily in that regard. It now provides a different method for download-only operations, avocado.utils.
vmimage.Image.download () that returns the base image location. The behavior of the avocado.
utils.vmimage.Image.get () method is unchanged in the sense that it returns the path of a snapshot
image.

Internal Changes

* A PyLint configuration file was added to the tree, facilitating the use of the standard Python linter when devel-
oping Avocado in IDEs that support this feature.

For more information, please check out the complete Avocado changelog.

73.0 Pulp Fiction

The Avocado team is proud to present another release: Avocado 73.0, AKA “Pulp Fiction”, is now available!

Release documentation: Avocado 73.0

Users/Test Writers

e INSTRUMENTED tests using the avocado. core.test.Test.fetch_asset () can take advantage of
plugins that will attempt to download (and cache) assets before the test execution. This should make the overall
test execution more reliable, and give better test execution times as the download time will be excluded. Users
can also manually execute the avocado assets command to manually fetch assets from tests.

¢ The still experimental “N(ext) Runner” support for Avocado Instrumented tests is more complete and supports
tag filtering and passing tags to the tests.

* A new architecture for “finding” tests has been introduced as an alternative to the avocado. core. loader
code. It’s based around the avocado.core.resolver, and it’s currently used in the still experi-
mental “N(ext) Runner”. It currently supports tests of the following types: avocado-instrumented,
exec-test, glib, golang, python-unittest and robot. You can experiment it by running
avocado nlist, similarly to how avocado 1list isused.

* Avocado sysinfo feature file will now work out of the box on pip based installations. Previously, it would
require configuration files tweaks to adjust installation paths.

* A massive documentation overhaul, now designed around guides to different target audiences. The “User’s
Guide”, “Test Writer’s Guide” and “Contributor’s Guide” can be easily found as first lever sections contain
curated content for those audiences.

Bug Fixes

* Content supposed to be UI only could leak into TAP files, making them invalid.

* Avocado’s sysinfo feature will now run commands without a shell, resulting in more proper captured output,
without shell related content.

* avocado.utils.process.SubProcess.send_signal () will now send a signal to itself correctly
even when using sudo mode.

220 Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/73.0...74.0
http://avocado-framework.readthedocs.io/en/73.0/

avocado Documentation, Release 90.0

Utility APIs

e The avocado.utils.vmimage library now allows a user to define the gemu—img binary that will be used
for creating snapshot images via the avocado.utils.vmimage.QEMU_TMG variable.

e The avocado.utils.configure_network module introduced a number of utilities, including MTU
configuration support, a method for validating network among peers, IPv6 support, etc.

e The avocado.utils.configure_network.set_ip () function now supports different interface types
through a interface_type parameter, while still defaulting to Ethernet.

Internal Changes

 Package support for Enterprise Linux 8.

* Increased CI coverage, having tests now run on four different hardware architectures: amd64 (x86_64), arm64
(aarch64), ppc64le and s390x.

 Packit support adding extended CI coverage, with RPM packages being built for Pull Requests and results shown
on GitHub.

* Pylint checks for w0703 were enabled.

e Runners, such as the remote runner, v runner, docker runner, and the default local runner now conform to a
“runner” interface and can be seen as proper plugins with avocado plugins.

* Avocado’s configuration parser will now treat values with relative paths as a special value, and evaluate their
content in relation to the Python’s distribution directory where Avocado is installed.

For more information, please check out the complete Avocado changelog.

72.0 Once upon a time in Holywood
The Avocado team is proud to present another release: Avocado 70.0, AKA “Once upon a time in Holywood”, is now
available!

Release documentation: Avocado 72.0

Users/Test Writers

* The new vmimage command allows a user to list the virtual machine images downloaded by means of
avocado.utils.vmimage or download new images via the avocado vmimage get command.

 The tags feature (see Categorizing tests) now supports an extended character set, adding . and - to the allowed
characters. A tag such as :avocado: tags=machine:s390-ccw-virtio isnow valid.

* The still experimental “N(ext) Runner”, introduced on version 71.0, can now run most Avocado Instrumented
tests, and possibly any test who implements a matching avocado-runner-$ (TEST_TYPE) script that
conforms to the expected interface.

Bug Fixes

¢ A bug introduced in version 71.0 rendered avocado.utils.archive incapable of handling LZMA (also
known as xz) archives was fixed.

9.6. Avocado Releases 221

https://github.com/avocado-framework/avocado/compare/72.0...73.0
http://avocado-framework.readthedocs.io/en/72.0/

avocado Documentation, Release 90.0

A Python 3 (bytes versus text) related issue with avocado.utils. cpu.get_cpu_vendor_name () has
been fixed.

Utility APIs

avocado.utils.ssh now allows password based authentication, in addition to public key based authenti-
cation.

avocado.utils.path.usable ro_dir () will no longer create a directory, but will just check for its
existence and the right level of access.

avocado.utils.archive.compress () and avocado.utils.archive.uncompress () and
now supports LZMA compressed files transparently.

The avocado. utils.vmimage now has providers for the CirrOS cloud images.

Internal Changes

Package build fixes for Fedora 31 and Fedora 32.
Increased test coverage of mux-suite and the yaml-loader features.

A number of pylint checks were added, including w0201, w1505, w1509, w0402 and w1113.

For more information, please check out the complete Avocado changelog.

71.0 Downton Abbey

The Avocado team is proud to present another release: Avocado 70.0, AKA “Downton Abbey”, is now available!

Release documentation: Avocado 71.0

Users/Test Writers

Avocado can now run on systems with nothing but Python 3 (and “quasi-standard-library” module
setuptools). This means that it won’t require extra packages, and should be easier to deploy on containers,
embedded systems, etc. Optional plugins may have additional requirements.

A new and still experimental test runner implementation, known as “N(ext) Runner” has been introduced. It
brings a number of different concepts, increasing the decoupling between a test (and its runner) and the job. For
more information, please refer to the early documentation <nrunner>.

The new avocado.cancel_on () decorator has been added to the Test APIs, allowing you to define the
conditions for a test to be considered canceled. See one example /ere.

The glib plugin got a configuration option its safe/unsafe operation, that is, whether it will execute binaries in
an attempt to find the whole list of tests. Look for the glib. conf shipped with the plugin to enable the unsafe
mode.

Avocado can now use tags inside Python Unittests, and not only on its own Instrumented tests. It’s expected that
other forms or providing tags for other types of tests will also be introduced in the near future.

The HTML report will now show, as a handy pop-up, the contents of the test whiteboard. If you set, say,
performance metrics there, you’ll able to see straight from the report.

The HTML report now has filtering support by test status, and can show all records in the table.

222

Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/71.0...72.0
http://avocado-framework.readthedocs.io/en/71.0/

avocado Documentation, Release 90.0

e The avocado.utils. runtime module, a badly designed mechanism for sharing Avocado runtime settings
with the utility libraries, has been removed.

* The test runner feature that would allow binaries to be run transparently inside GDB was removed. The reason
for dropping such a feature have to do with how it limits the test runner to run one test at a time, and the use of
the avocado.utils.runtime mechanism, also removed.

* Initial examples for writing custom jobs, using the so called Job API, have been added to examples/ jobs.
These APIs are still non-public (under core), but they’re supposed to become public and supported soon.

* By means of a new plugin (merge_files, of type job.prepost), when using the output check record
features, duplicate files created by different tests/variants will be consolidated into unique files.

Bug Fixes

The HTML plugin now correctly shows the date for tests that were never executed because of interrupted jobs.
* A temporarily workaround for a stack overflow problem in Python 3.7 has been addressed.
 The pict plugin (a varianter implementaion) now properly yields the variants paths as a list.

* A Python 3 related fix to mod:avocado.utils.software_manager, that was using Python 2 next on
get_source.

* A Python 3 related fix to the docker plugin, that wasn’t caught earlier.

Utility APIs

* avocado.utils.partitionnow allows mkfs and mount flags to be set.
e avocado.utils.cpu.get_cpu_vendor_name () now returns the CPU vendor name for POWERO9.

* avocado.utils.asset now allows a given location, as well as a list, to be given, simplifying the most
common use case.

* avocado.utils.process.SubProcess.stop () now supports setting a timeout. Please refer to the
documentation for the important details on its behavior.

* avocado.utils.memory now properly handles hugepages for POWER platform.

Internal Changes

* Removal of the stevedore library dependency (previously used for the dispatcher/plugins infrastructure).
* make check now runs selftests using the experimental N(ext) Runner.
* Formal support for Python 3.7, which is now on our CI checks, documentation and module information.

* The Yaml to Mux plugin now uses a safe version of the Yaml loader, so that the execution of arbitrary Python
code from Yaml input is now no longer possible.

» Codecov coverage reports for have been enabled for Avocado, and can be seen on every pull request.
* New tests have been added to many of the optional plugins.
* Various pylint compliance improvements, including w0231, w0235, w0706, w0715 and w0221.

* Avocado’s selftests now use tempfile. TemporaryDirectory instead of mkdtemp and shutil.rmtree.

9.6. Avocado Releases 223

avocado Documentation, Release 90.0

* avocado.core. job.Job instantiation now takes a config dictionary parameter, instead of a

argparse.Namespace instance, and keeps it in a config attribute.

* avocado.core. job.Job instances don’t have a references attribute anymore. That information is

available in the conf ig attribute, that is, my job.config['references'].

* Basic checks for Fedora and RHEL 8 using Cirrus CI have been added, and will be shown on every pull request.

For more information, please check out the complete Avocado changelog.

70.0 The Man with the Golden Gun

The Avocado team is proud to present another release: Avocado 70.0, AKA “The Man with the Golden Gun”, is now
available!

Release documentation: Avocado 70.0

Users/Test Writers

A completely new implementation of the CIT Varianter plugin implementation, now with support for constraints.
Refer to CIT Varianter Plugin for more information.

Python 2 support has been removed. Support Python versions include 3.4, 3.5, 3.6 and 3.7. An effort to support
Python 3.8 is also underway. If you require Python 2 support, the 69.0 LTS series (currently at version 69.1)
should be used. For more information on what a LTS release means, please read RFC: Long Term Stability.

Improved safeloader support for Python unittests, including support for finding test classes that use multiple
inheritance. As an example, Avocado’s safeloader is now able to properly find all of its own tests (around 700
of them).

Removal of old and redundant command line options, such as ——silent and ——show—-job-1og in favor of
—-—show=none and —-show=test, respectively.

Job result categorization support, by means of the ——job-category option to the run command, allows a
user to create an easy to find directory, within the job results directory, for a given type of executed jobs.

Bug Fixes

Log files could have been saved as “hidden” files files (. INFO, .DEBUG, .WARN, .ERROR) because the root
logger’s name is an empty string. Now, those are saved with a 1 og prefix if one is not given.

The second time Avocado crashes, a “crash” directory is created to hold the backtrace. On a subsequent crash, if
the directory already exists, an exception would be raised for the failed attempted to create an existing directory,
confusing users on the nature of the crash. Now a proper handling for the possibly existing directory is in place.

The CIT Varianter plugin was returning variants in an invalid form to the runner. This caused the plugin to fail
when actually used to run tests. A functional test has also been aded to avoid a regression here.

The avocado.utils.distro module now properly detects RHEL 8 systems.

The safeloader would fail to identify Python module names when a relative import was used. This means that the
experience with $ avocado listand $ avocado run would suffer when trying to list and run tests that
either directly or indirectly imported modules containing a relative import such as from . import foo.

The avocado.utils.vmimage can now find Fedora images for s390x.
The avocado.utils.vmimage now properly makes use of the build option.

avocado 1list will now show the contents of the “key:val” tags.

224

Chapter 9. Build and Quality Status

https://github.com/avocado-framework/avocado/compare/70.0...71.0
http://avocado-framework.readthedocs.io/en/70.0/

avocado Documentation, Release 90.0

* The Avocado test loader will correctly apply filters with multiple “key:val” tags.

Utility APIs

e Two simple utility APIs, avocado.utils.genio.append file() and avocado.utils.
genio.append_one_line () have been added to the benefit of some avocado-mist-tests
<https://github.com/avocado-framework-tests/avocado-misc-tests>.

e The new avocado.utils.datadrainer provide an easy way to read from and write to various in-
put/output sources without blocking a test (by spawning a thread for that).

e The new avocado.utils.diff_validator can help test writers to make sure that