avocado Documentation
Release 101.0

Avocado Development Team

Mar 10, 2023

Quick Start

How does it work? 3
Why should I use it? 5
2.1 Multiple result formats L e e e e e e e e e e e e e 5
2.2 Sysinfodatacollector e e e e e e e 5
2.3 JobReplayandJob Diff e e 6
24 Extensible by plugins e 7
2.5 Utlity libraries o L e e e e e e e 7
Avocado Python API 9
How to install 11
Documentation 13
Bugs/Requests 15
Changelog 17
License 19
Build and Quality Status 21
9.1 Welcome to Avocado o L e e e e e e 21
9.1.1 Howdoesit work? e e e e e e e e e 21
9.1.2 WhyshouldTuseit? e e e e e 22
9.1.3 Avocado Python API e 24
9.1.4 Howtoinstall e e e e e 24
9.1.5 Documentation it e e e e e e e e e e e e e e e 25
9.1.6 Bugs/Requests e 25
9.1.7 Changelog e 25
9.1.8 LiCense e e e 25
9.1.9 Build and Quality Status L. e e 25
9.2 Avocado User’'s Guide o o i e e e e e e e e 25
9.2.1 About Avocado e e e e e e e e e e 25
9.22 Installing e e 26
9.23 Introduction e e e e 28
0.2.4 BasicCONCePtS v v v v v e e e e e e e e e e e e e e e e e e e 37
9.2.5 BasicOperations i e e e e e e 41

9.3

9.4

9.5

9.6

9.7

9.8

9.2.6 Results Specification e e e e e e 45
9.2.7 Filtering tests by tags e e e e e e e e e e 47
0.2.8 Configuring o e e e e e e 49
9.2.9 Managing Dependencies L e 53
9.2.10 Managing ASSetS e e 56
9.2.11 Avocado Data Directories ot v i it e e e e 58
9.2.12 Avocado log@ing SyStem e e e e e e e e e e e e e e 59
9.2.13 Understanding the plugin system i i e e e 60
9.2.14 Advanced usageo e e e 64
9.2.15 What’snext? e e e e e e e e 66
Avocado Test Writer’s Guide oL e 66
9.3.1 Writing an Executable Test e 66
9.3.2 Writing Avocado Tests with Python 66
9.3.3 Advanced logging capabilities L o 91
9.3.4 Testparameters oot e e e e e e 94
9.3.5 Utility Libraries e e e 98
9.3.6 Subclassing Avocado 103
9.3.7 Integrating Avocado e e e e e e e e e e e e 105
Avocado Contributor’s Guide e e 105
9.4.1 Briefintroduction L L e e e e 106
9.4.2 Howecanlcontribute?. e 106
9.4.3 Development environment e e e e e e e e 109
9.4.4 Styleguides e e e e e e e e 110
9.4.5 Writing an Avocado plugin e e e 112
9.4.6 The “nrunner” teSLTUNNET ot v vt bttt e e e e e e e e 121
9.4.7 Implementing other result formats oL 0oL, 133
9.4.8 Requestfor Comments (RFCs) 133
9.49 Releasing Avocado e e e e e e e e e 139
9.4.10 Avocado development tipso e e e e e e e e e e 142
9.4.11 Contactinformation e e 143
Optional plugins e e 143
9.5.1 Golang Plugin 143
9.52 Resultplugins 144
9.53 RobotPlugin e e e e e e 147
9.54 CIT Varianter Plugin e e e e e 147
9.5.5 PICT Varianterplugin. e 151
9.5.6 Multiplexer e 152
9.5.7 Multiplexer concept L e e e e e e 152
9.5.8 Yaml_to_muxplugin e e e e e e 155
Avocado Releases L e e e 165
9.6.1 Howwerelease Avocado L e 165
9.6.2 Long Term Stability Releases 165
9.6.3 RegularReleases e 193
BPO00 e 297
9.7.1 TL;DR. . .o e 298
972 Motivation e e e e e e e 298
9.7.3 Specification Lo e 299
9.74 Backwards Compatibility 302
9.7.5 Security Implications e 302
9.7.6 HowtoTeachThis e e e 302
9.7.77 Related Issues e e 302
9.7.8 References e 302
BPOO1 . . . e 302
9.8.1 TL;DR. . . . e 303

9.9

9.10

9.11

9.12

9.13

9.14

9.82 Motivation L e e e e e e 304
0.8.3 Specification e e e e e e e e e e 305
9.8.4 Backwards Compatibility L e 309
9.8.5 Security Implications L. e 310
9.8.6 HowtoTeachThis e e e e e e e e 310
9.8.7 RelatedIssues o i e e e e e e e e 310
9.8.8 References e 311
BPO02 . . . e 311
9.9.1 TL;DR. . . o e e e e 312
9.9.2 Motivation i e 312
9.9.3 Specificationl e e 312
9.9.4 Backward Compatibility e e e e e e 315
9.9.5 Security Implications L e e e e e e e 315
99.6 HowtoTeachThis e e e 315
9.9.7 RelatedIssues e e e e e e e e e e e 316
9.9.8 References e e e e e 316
BPO03 . . . e 316
9.10.1 TL;DR . . . oo e e e 317
9.10.2 Motivationsl e e e e e e e e e 318
9.10.3 Goalsof this BluePrint 318
9.10.4 Requirements e e e e e e e e e e 318
9.10.5 Suggested Terminology for the Task Phases 321
9.10.6 Tasklife-cycleexample e e e e e 322
9.10.7 Implementation Example e e e 326
9.10.8 Backwards Compatibility L 331
9.10.9 Security Implications L. e 331
9.10.10 Howto Teach This e e e e e e e e e e e e 331
9.10.11 Related Issues o o i i i e e e e 331
9.10.12 Future work e e e e 332
9.10.13 References e 332
BPO04 . . . 332
9.11.1 TL;DR . . .o e 333
O.11.2 MOtVAON . .+ v v v o et e 333
O.11.3 Specification e e e e e e e e e e e e e 336
9.11.4 Backward Compatibility e e e e 339
9.11.5 Security Implications L. e 339
9.11.6 HowtoTeach This et sttt et e et e e 339
9.11.7 Related Issues v v i i e e e e e e e e e e 339
9.11.8 References o e 340
BPO0S . . . e 340
9.12.1 TL;DR. . e e e e 340
0.12.2 Motivation v i e 341
9.12.3 Specification L e e 341
9.12.4 Backwards Compatibility e e e 343
9.12.5 Security Implications L e e e e e e e e 344
9.12.6 HowtoTeach This e e e e 344
9.12.7 Related Issues L e e e e e e e e e e e e e 344
9.12.8 References e e e e e e 345
Other Resources o v i i e e e e e e e e e e e e e e e 345
9.13.1 Open Source Projects Relyingon Avocado 345
9.13.2 Avocado eXtensions o et e e e e e e e e e e e e 346
9.13.3 Presentations it e e e e e e e e e e e e e e e e 346
Avocado’s Configuration Reference oL 0oL oo 347
9.14.1 assets.fetch.ignore_errors e e e e e e 347

9.14.2 assets.fetch.references L e e e 347

9.14.3 assets.fetch.timeout 347
9.14.4 assets.list.days. e e 347
9.14.5 assets.list.overall limit oL 347
9.14.6 assets.dist.size_filter e e e e 348
9.14.7 assets.purge.days e e e e e 348
9.14.8 assets.purge.overall_limit L e 348
9.14.9 assets.purge.size_filter L e e e 348
9.14.10 asSets.register.Name i e e e e e e e e e e e e e 348
9.14.11 assets.register.shal_hash L L 348
9.14.12 assets.register.urlo e 349
9.14.13 cacheclear e 349
9.14.14 cachellist e 349
9.14.15 config.datadir e e 349
9.14.16 core.paginatoro e e e 349
9.14.17 core.show L e 349
9.14.18 core.verboseo e 350
9.14.19 datadir.paths.base_dir L e e e e 350
9.14.20 datadir.paths.cache_dirs L e 350
9.14.21 datadir.paths.data_dir 350
9.14.22 datadir.pathsdogs_dir 350
9.14.23 datadir.paths.test_dir L 350
9.14.24 diff.create_reportS v v v i i e 350
9.14.25 difffilter L e e 351
9.14.26 diffhtml oL e 351
9.14.27 diffjobids e e e e e e 351
9.14.28 diff.open_browser e e e 351
9.14.29 diffsstrip_id e 351
9.14.30 distro.distro_def_arch 351
9.14.31 distro.distro_def create e 351
9.14.32 distro.distro_def name e 352
9.14.33 distro.distro_def_path L 352
9.14.34 distro.distro_def release e e e e e 352
9.14.35 distro.distro_def _type L. e e e e 352
9.14.36 distro.distro_def_version L L e 352
9.14.37 filterby_tags.include_empty oL 352
9.14.38 filterby_tags.include_empty key oL o oo o 353
9.14.39 filter.by_tags.tags e e e e 353
9.14.40 human_ul.omit.StatuSES . . . + v v v v v v e e e e e e e e e e e e e e e e 353
9.14.41 job.output.doglevel e e e 353
9.14.42 job.output.testlogs.logfiles L 353
9.14.43 job.output.testlogs.statuses oL 353
9.14.44 job.output.testlogs.summary_Statises oo v e i e e e e 354
9.14.45 job.replay.source_job_id L e e e e e 354
9.14.46 job.run.result.html.enabled e 354
9.14.47 job.run.result.html.open_browser Lo 354
9.14.48 job.run.result.htmloutput oL 354
9.14.49 job.run.resultjson.enabledo 354
9.14.50 job.run.result.json.output L. e e e 355
9.14.51 job.run.result.tap.enabled e 355
9.14.52 job.run.result.tap.include_logs e 355
9.14.53 job.run.result.tap.output L. e 355
9.14.54 job.run.result.xunitenabled oL 355
9.14.55 job.run.result.xunit.job_nameo 355

9.14.56 job.run.result.xunit.max_test_log_chars, 355

9.14.57 job.run.result.Xunit.output e e e e e e e e e e e e 356
9.14.58 job.run.store_logging stream oL e e e 356
9.14.59 jobrun.timeouto 356
9.14.60 jobs.showjob_id 356
9.14.61 json.variants.doad L. 356
9.14.62 list.recipes.write_to_direCtory o v v it e e e e e e e e e e e 356
9.14.63 list.write_to_json_file L e e e e 356
9.14.64 plugins.cache.order e 357
9.14.65 plugins.cli.emd.ordero 357
9.14.66 plugins.cliorder e e e 357
9.14.67 plugins.disable e e e e e e e e e 357
9.14.68 plugins.init.order e e e e e e e e e e e e e 357
9.14.69 plugins.job.prepost.order L e 357
9.14.70 plugins.jobsCripts.poOSt e e e e 357
9.14.71 pluginS.jobsCriptsS.pre v v v v i vt i e e e e e e e e e 358
9.14.72 plugins.jobscripts.warn_non_existing_diro oo 358
9.14.73 plugins.jobscripts.warn_non_zero_statls « v v v v v v v v v e e e e e e e e e 358
9.14.74 plugins.ordered_list L. e e 358
9.14.75 plugins.resolver.order oL e 358
9.14.76 plugins.result.order L e e 358
9.14.77 plugins.result_events.order e e e 358
9.14.78 plugins.result_upload.cmd L e e 359
9.14.79 plugins.result_upload.url L. 359
9.14.80 plugins.resultsdb.api_urlo oo 359
9.14.81 plugins.resultsdb.logs urlo oL 359
9.14.82 plugins.resultsdb.note_size_limit 359
9.14.83 plugins.runnable.runner.order L e e e e e e e e e 359
9.14.84 plugins.skip_broken_plugin_notification Lo 359
9.14.85 plugins.spawner.order L. e e e e e e e 360
9.14.86 plugins.suite.runner.order L. .o e e e 360
9.14.87 plugins.test.pre.orderl e e e e e e e e 360
9.14.88 plugins.varianter.order e e e e e e 360
9.14.89 resolverreferences oL e e e 360
9.14.90 run.cit.combination_order L e 360
9.14.91 run.cit.parameter file L. e 360
9.14.92 run.dict_variants e e e e e e e e e e 361
9.14.93 run.dict_variants.variant_id_keys Lo Lo 361
9.14.94 run.dry_run.enabled L L e e e e 361
9.14.95 rundry_run.no_cleanup e e e e e e e e e e e 361
9.14.96 run.execution_order Ll e e e e e 361
9.14.97 runfailfast L. e e 361
9.14.98 run.ignore_missing_references oL e e e e 361
9.14.99 1un.job_Category it e e e e e e e e e e e e e e e e e 362
9.14.100run.journal.enabled L L e e 362
9.14.101run.keep_tmp L. e e 362
9.14.102run.log_test_data_directorieso e e e e e e e e 362
9.14.103run.max_parallel_tasks L 362
9.14.104run.pict_binary e e e e e e e 362
9.14.105run.pict_combinations_order i e e e e e e e e e e e 363
9.14.106run.pict_parameter_file L e 363
9.14.107run.pict_parameter_path L e 363
9.14.108run.results.archive L L e e 363
0.14.109run.results_dir e e e e e e e e e 363

9.14.110run.shuffle e e e 363

QA TTITUNSPAWNCT .« & v v v v v e 363
9.14.112run.status_Server_autd« o v v it e e e e e e e e e e e e e 364
9.14.113run.status_server_buffer_size L e 364
9.14.114run.status_server_LiStEN i e e e e e e e e e e e e 364
0.14.1151un.statuS_SEIVEr _UIT . . « + v v v v v e e e e e e e e e e e e e e e e e 364
0.14. 116rUun.SUItE_TUNNET v v v v v e 364
0. 14.117runtest_parameters v v v v e e e e e e e e e e e e e e e e e e e 364
9.14.118run.unique_job_id L e 365
9.14.119runner.exectest.exitcodes.skip oL oL oo 365
9.14.120runner.identifier_format e e e e 365
9.14.121runner.output.coloro e e e e e e e e e 365
9.14.122runner.output.colored L. L e e e e e 365
9.14.123runner.timeout.after_interrupted oL oL o 365
9.14.124runner.timeout.process_alive L. oL e e e 366
9.14.125runner.timeout.process_died 366
9.14.126simpletests.status.failure_fields oo 366
9.14.127simpletests.status.skip_locationo L e e 366
9.14.128simpletests.status.SKip_regex ot e e e e e e e e e 366
9.14.129simpletests.status.warn_location L. oo 366
9.14.130simpletests.status.Warn_TregeX o v v v b bt e e e e e e e 366
9.14.131spawner.podman.avocado_Spawner_€gg « « v v vttt e e e e 367
9.14.132spawner.podman.bin L. L e e e e e e e e 367
9.14.133spawner.podman.image ot e e e e e e e e e e e e e e e e 367
9.14.134sysinfo.collect.commands_timeout oL 367
9.14.135sysinfo.collect.enabled 367
9.14.136sysinfo.collect.installed_packages o 367
9.14.137sysinfo.collect.locale L e e e e 368
9.14.138sysinfo.collect.optimize o v v i e e e e e e e e e e e 368
9.14.139sysinfo.collect.profiler 368
9.14.140sysinfo.collect.sysinfodir oL 368
9.14.141sysinfo.collectibles.commands oo oo 368
9.14.142sysinfo.collectibles.fail_commands oo o 368
9.14.143sysinfo.collectibles.fail_files e 369
9.14.144sysinfo.collectibles.files L e e e 369
9.14.145sysinfo.collectibles.profilers o L 369
9.14.146task.timeout.TUNNING v v ittt e e e e e e e e e e e 369
9.14.147variants.cit.combination_order e e e e e e e e 369
9.14.148variants.cit.parameter_file e e 369
9.14.149variants.CONtENS v oo e e e e e e e e e e e e e e 370
9.14.150variants.debug e e e 370
9.14.151variants.inherit e e e e e e e e e 370
9.14.152variants.json_variants_dump Lo 370
9.14.153variants.pict_binary L 370
9.14.154variants.pict_combinations_order. L. e e e e 370
9.14.155variants.pict_parameter_file o o o 370
9.14.156variants.pict_parameter_path oL oo 371
9.14.157variants.SUMMATY . . .« « « « v v v vttt e e e e e e e e e e e e e e 371
9.14.158variantS.reeo i e e e e e e e e 371
9.14.159variants.variants o e e e e e e e e e e e e e e e e 371
9.14.160vmimage.get.arch L e e e e e e e e e 371
9.14.161vmimage.get.distro 371
9.14.162vmimage.get.version L. e e e e 371
9.14.163yaml_to_mux.files e e e 372

vi

9.14.164yaml_to_mux.filter_only 372

9.14.165yaml_to_mux.filter_out L L e e e e 372
9.14.166yaml_to_mux.inject L e e e e e e e e e e e e e e 372
9.14.167yaml_to_mux.parameter_paths oL 372
10 Test API 373
10.1 Test APIS o . e e e e e e e e e e e e e e e e 373
10.1.1 Module contents i e e e e e e e e e e e e e e e e 373
10.2 Internal (Core) APIS e e e e e 377
10.2.1 Subpackages e e 377
10.2.2 Submodules e e e e e e 404
10.2.3 avocado.core.appmodule L. L e e e 404
10.2.4 avocado.core.data_dirmodule 404
10.2.5 avocado.core.decoratorsmodule 406
10.2.6 avocado.core.dispatchermodule Lo 407
10.2.7 avocado.core.enabled_extension_managermodule 408
10.2.8 avocado.core.exceptionsmodule L. L e e e 408
10.2.9 avocado.core.exit_codesmodule e 410
10.2.10 avocado.core.extension_managermodule oL oL oL oL 411
10.2.11 avocado.corejobmodule 412
10.2.12 avocado.core.job_idmodule 414
10.2.13 avocado.corejobdatamodule e e e 415
10.2.14 avocado.core.mainmodule e e 415
10.2.15 avocado.core.messagesmodule L oL 415
10.2.16 avocado.core.outputmodule 421
10.2.17 avocado.core.parametersmodule oL Lo 425
10.2.18 avocado.core.parsermodule L. e e e 426
10.2.19 avocado.core.parser_common_argsmodule L. L. 427
10.2.20 avocado.core.plugin_interfacesmodule o oL oo 427
10.2.21 avocado.core.referencesmodule 433
10.2.22 avocado.core.resolvermodule 433
10.2.23 avocado.core.resultmodule 434
10.2.24 avocado.core.settingsmodule L. e e e 435
10.2.25 avocado.core.settings_dispatcher module oL 0oL, 439
10.2.26 avocado.core.streamsmodule e e e e e 440
10.2.27 avocado.core.suite module e e 440
10.2.28 avocado.core.sysinfomodule L. e 441
10.2.29 avocado.core.tagsmodule L L e e e 442
10.2.30 avocado.core.tapparser module L. oL e 442
10.2.31 avocado.core.testmodule e e e 443
10.2.32 avocado.core.test_idmodule 447
10.2.33 avocado.core.teststatus module L. e 448
10.2.34 avocado.core.treemodule e e e 448
10.2.35 avocado.core.varianter module 450
10.2.36 avocado.core.versionmodule e e 452
10.2.37 Module contents e e e e e e e e e e e e e e e e e e 452
10.3 Utilities APIS o e e e e e e 453
10.3.1 Subpackages e e e e e e e e e e e e 453
10.3.2 Submodules e e e e e e 471
10.3.3 avocado.utils.armodule L e e e 471
10.3.4 avocado.utils.archivemodule o 472
10.3.5 avocado.utils.assetmodule 474
10.3.6 avocado.utils.astringmodule oL 476
10.3.7 avocado.utils.aurlmodule e 479

vii

10.3.8 avocado.utils.buildmodule 479
10.3.9 avocado.utils.cloudinitmodule L 479
10.3.10 avocado.utils.cpumodule oL e e e 481
10.3.11 avocado.utils.cryptomodule oo 483
10.3.12 avocado.utils.data_factory module 484
10.3.13 avocado.utils.data_structuresmodule e 484
10.3.14 avocado.utils.datadrainermodule oL L 486
10.3.15 avocado.utils.debugmodule L. e 487
10.3.16 avocado.utils.diff_validatormodule 488
10.3.17 avocado.utils.disk module e 490
10.3.18 avocado.utils.distromodule e e e 492
10.3.19 avocado.utils.dmesg module 494
10.3.20 avocado.utils.download module L L 495
10.3.21 avocado.utils.exit_codesmodule L e 496
10.3.22 avocado.utils.file_utilsmodule 496
10.3.23 avocado.utils.filelockmodule 497
10.3.24 avocado.utils.gdbmodule 497
10.3.25 avocado.utils.geniomodule L. e e e 501
10.3.26 avocado.utils.gitmodule e e 503
10.3.27 avocado.utils.is09660 module oL Lo 504
10.3.28 avocado.utils.kernel module 507
10.3.29 avocado.utils.linux module 508
10.3.30 avocado.utils.linux_modulesmodule e 508
10.3.31 avocado.utils.lv_utilsmodule 509
10.3.32 avocado.utils.memory module L 514
10.3.33 avocado.utils.multipathmoduleo oo 517
10.3.34 avocado.utilsnvme module L. L e e e 519
10.3.35 avocado.utils.outputmodule 520
10.3.36 avocado.utils.partitionmodule L. e e e 520
10.3.37 avocado.utils.pathmodule oL 522
10.3.38 avocado.utils.pcimodule oL 523
10.3.39 avocado.utils.pmem module L. 526
10.3.40 avocado.utils.podman moduleo 530
10.3.41 avocado.utils.processmodule e e e e 531
10.3.42 avocado.utils.scriptmoduleo e 539
10.3.43 avocado.utils.servicemodule L. oL e 541
10.3.44 avocado.utils.softwareraid module 543
10.3.45 avocado.utils.sshmoduleo e 545
10.3.46 avocado.utils.stacktrace module oL 546
10.3.47 avocado.utils.sysinfomodule L. L e 547
10.3.48 avocado.utils.vmimagemodule oL o oo 549
10.3.49 avocado.utils.waitmodule e e 552
10.3.50 Module contents o i i e e e e e e e e e e e e e e e e e e e 553
10.4 Extension (plugin) APIs e 553
10.4.1 Subpackages i e e e e e e e e e 553
1042 Submodules 564
10.4.3 avocado.plugins.archive module 564
10.4.4 avocado.plugins.assetsmoduleo 565
10.4.5 avocado.plugins.beaker_resultmodule oL oo 566
10.4.6 avocado.plugins.bystatus module L e 567
10.4.7 avocado.plugins.cache module e 567
10.4.8 avocado.plugins.configmodule oL oL 567
10.4.9 avocado.plugins.dependency moduleo oL oL 568
10.4.10 avocado.plugins.dict_variants module Lo 568

viii

10.4.11 avocado.plugins.diff module L 569

10.4.12 avocado.plugins.distromodule e 569
10.4.13 avocado.plugins.exec_pathmodule 572
10.4.14 avocado.plugins.humanmodule L o oL oo 572
10.4.15 avocado.pluginsjobsmoduleo o 573
10.4.16 avocado.plugins.jobscriptsmodule oL 574
10.4.17 avocado.plugins.journal module e 574
10.4.18 avocado.plugins.json_variantsmodule Lo 575
10.4.19 avocado.plugins.jsonresultmodule oL oL 576
10.4.20 avocado.plugins.listmodule 0oL oo 577
10.4.21 avocado.plugins.pluginsmodule L 577
10.4.22 avocado.plugins.replay module Lo 577
10.4.23 avocado.plugins.requirement_cache module 578
10.4.24 avocado.plugins.resolversmodule o oL oo 578
10.4.25 avocado.plugins.runmodule oL oL 000 579
10.4.26 avocado.plugins.runner_nrunner module Lo 580
10.4.27 avocado.plugins.sysinfomodule L oo 581
10.4.28 avocado.plugins.tapmodule L e e 581
10.4.29 avocado.plugins.testlogsmodule L e 582
10.4.30 avocado.plugins.teststmpdirmoduleo 583
10.4.31 avocado.plugins.variants module oo 583
10.4.32 avocado.plugins.vmimage module oL 584
10.4.33 avocado.plugins.xunitmodule e e 584
10.4.34 Module contents e 585

10.5 Optional Plugins APL. o e 585
10.6 Indicesand tables e e e e e e e e 585
Python Module Index 587
Index 591

avocado Documentation, Release 101.0

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

Quick Start 1

avocado Documentation, Release 101.0

2 Quick Start

CHAPTER 1

How does it work?

You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

$ avocado run /bin/true

JOB ID : 3a5c4c51ceb5369f23702efb10b42090111141b2
JOB LOG : SHOME/avocado/ job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests.

Tip: See more at the Test types section on the Avocado User’s Guide.

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/concepts.html#test-types
https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html

avocado Documentation, Release 101.0

4 Chapter 1. How does it work?

CHAPTER 2

Why should | use it?

2.1 Multiple result formats

A regular run of Avocado will present the test results on standard output, a nice and colored report useful for human
beings. But results for machines can also be generated.

Check the job-results folder (SHOME /avocado/ job—-results/latest/) to see the outputs.
Currently we support, out of box, the following output formats:

e xUnit: an XML format that contains test results in a structured form, and are used by other test automation
projects, such as jenkins.

¢ JSON: a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to
the xunit output plugin.

* TAP: Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado
machine readable outputs this one is streamlined (per test results).

Note: You can see the results of the latest job inside the folder $SHOME /avocado/job-results/latest/. You
can also specify at the command line the options ——xunit, ——json or ——tap followed by a filename. Avocado
will write the output on the specified filename.

When it comes to outputs, Avocado is very flexible. You can check the various output plugins. If you need something
more sophisticated, visit our plugins section.

2.2 Sysinfo data collector

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very helpful when trying to identify the cause of a test failure.

Check out the files stored at SHOME /avocado/ job-results/latest/sysinfo/:

https://testanything.org/
https://avocado-framework.readthedocs.io/en/latest/plugins/index.html

avocado Documentation, Release 101.0

$ 1s SHOME/avocado/job-results/latest/sysinfo/pre/

'brctl show' hostname modules

cmdline 'ifconfig -a' mounts

cpuinfo installed_packages 'numactl --hardware show'
current_clocksource interrupts partitions

'df -mP' 'ip link' scaling_governor

dmesg 'ld --version' 'uname -a'

dmidecode lscpu uptime

'fdisk -1" 'lspci —vvnn' version

'gcc —--version' meminfo

For more information about sysinfo collector, please consult the Avocado User’s Guide.

2.3 Job Replay and Job Diff

In order to reproduce a given job using the same data, one can use the replay subcommand, informing the hash id
from the original job to be replayed. The hash id can be partial, as long as the provided part corresponds to the initial
characters of the original job id and it is also unique enough. Or, instead of the job id, you can use the string latest and
Avocado will replay the latest job executed.

Example:

$ avocado replay 825b86

JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956¢c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323£f8d7cad
JOB LOG : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log

(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.11 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

—-—— 7025aaba9c2ab8bidbba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d9%a761£d07672ff
@@ -1,15 +1,15 Q@

COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
—l-sleeptest.py:SleepTest.test: PASS
+1l-passtest.py:PassTest.test: PASS

6 Chapter 2. Why should | use it?

https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html

avocado Documentation, Release 101.0

2.4 Extensible by plugins

Avocado has a plugin system that can be used to extend it in a clean way. The avocado command line tool has a
builtin plugins command that lets you list available plugins. The usage is pretty simple:

$ avocado plugins

Plugins that add new commands (avocado.plugins.cli.cmd):

exec-path Returns path to Avocado bash libraries and exits.

run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information

Plugins that add new options to commands (avocado.plugins.cli):
remote Remote machine options for 'run' subcommand
journal Journal options for the 'run' subcommand

For more information about plugins, please visit the Plugin System section on the Avocado User’s Guide.

2.5 Utility libraries

When writing tests, developers often need to perform basic tasks on OS and end up having to implement these routines
just to run they tests.

Avocado has more than 40 utility modules that helps you to perform basic operations.
Below a small subset of our utility modules:

* utils.vmimage: This utility provides a API to download/cache VM images (QCOW) from the official distribu-
tions repositories.

* utils.memory: Provides information about memory usage.

e utils.cpu: Get information from the current’s machine CPU.

* utils.software_manager: Software package management library.
* utils.download: Methods to download URLs and regular files.

« utils.archive: Module to help extract and create compressed archives.

2.4. Extensible by plugins 7

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/plugins.html
https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html

avocado Documentation, Release 101.0

8 Chapter 2. Why should | use it?

CHAPTER 3

Avocado Python API

If the command-line is limiting you, then you can use our new API and create custom jobs and test suites:

import sys
from avocado.core. job import Job

with Job.from_config({'resolver.references': ['/bin/true']l}) as Jjob:
sys.exit (job.run())

avocado Documentation, Release 101.0

10 Chapter 3. Avocado Python API

CHAPTER 4

How to install

It is super easy, just run the follow command:

$ pip3 install --user avocado-framework

This will install the avocado command in your home directory.

Note: For more details and alternative methods, please visit the Installing section on Avocado User’s Guide

11

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/installing.html#installing

avocado Documentation, Release 101.0

12 Chapter 4. How to install

CHAPTER B

Documentation

Please use the following links for full documentation, including installation methods, tutorials and API or browse this
site for more content.

e Jatest release

* development version

13

https://avocado-framework.readthedocs.io/
https://avocado-framework.readthedocs.io/en/latest/

avocado Documentation, Release 101.0

14 Chapter 5. Documentation

CHAPTER O

Bugs/Requests

Please use the GitHub issue tracker to submit bugs or request features.

15

https://github.com/avocado-framework/avocado/issues

avocado Documentation, Release 101.0

16 Chapter 6. Bugs/Requests

CHAPTER /

Changelog

Please consult the Avocado Releases for fixes and enhancements of each version.

17

https://avocado-framework.readthedocs.io/en/latest/releases/index.html

avocado Documentation, Release 101.0

18 Chapter 7. Changelog

CHAPTER 8

License

Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed under the
GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree that these contributions are your own (or approved by your employer) and you grant a full,
complete, irrevocable copyright license to all users and developers of the Avocado project, present and future, pursuant
to the license of the project.

19

https://www.gnu.org/licenses/gpl-2.0.html

avocado Documentation, Release 101.0

20 Chapter 8. License

CHAPTER 9

Build and Quality Status

build N progress

Contents:

9.1 Welcome to Avocado

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

9.1.1 How does it work?
You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

21

https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/
https://cirrus-ci.com/github/avocado-framework/avocado
https://lgtm.com/projects/g/avocado-framework/avocado/alerts/
https://codeclimate.com/github/avocado-framework/avocado/maintainability
https://lgtm.com/projects/g/avocado-framework/avocado/context:python
https://lgtm.com/projects/g/avocado-framework/avocado/context:javascript
https://avocado-framework.readthedocs.io/en/latest/

avocado Documentation, Release 101.0

$ avocado run /bin/true

JOB ID : 3a5c4c51ceb5369f23702efb10b42090111141b2
JOB LOG : SHOME/avocado/ job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests.

Tip: See more at the Test types section on the Avocado User’s Guide.

9.1.2 Why should | use it?

Multiple result formats

A regular run of Avocado will present the test results on standard output, a nice and colored report useful for human
beings. But results for machines can also be generated.

Check the job-results folder (SHOME /avocado/ job-results/latest/) to see the outputs.

Currently we support, out of box, the following output formats:

e xUnit: an XML format that contains test results in a structured form, and are used by other test automation
projects, such as jenkins.

¢ JSON: a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to
the xunit output plugin.

* TAP: Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado
machine readable outputs this one is streamlined (per test results).

Note: You can see the results of the latest job inside the folder $SHOME /avocado/job-results/latest/. You
can also specify at the command line the options ——xunit, ——json or ——tap followed by a filename. Avocado
will write the output on the specified filename.

When it comes to outputs, Avocado is very flexible. You can check the various output plugins. If you need something
more sophisticated, visit our plugins section.

Sysinfo data collector

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very helpful when trying to identify the cause of a test failure.

Check out the files stored at SHOME /avocado/ job-results/latest/sysinfo/:

$ 1ls S$HOME/avocado/job-results/latest/sysinfo/pre/

'brctl show' hostname modules

cmdline 'ifconfig -a' mounts

cpuinfo installed_packages 'numactl --hardware show'
current_clocksource interrupts partitions

'df —mP' 'ip link' scaling_governor

dmesg 'ld —-version' 'uname -a'

(continues on next page)

22 Chapter 9. Build and Quality Status

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/concepts.html#test-types
https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html
https://testanything.org/
https://avocado-framework.readthedocs.io/en/latest/plugins/index.html

avocado Documentation, Release 101.0

(continued from previous page)

dmidecode lscpu uptime
'fdisk -1" 'lspci —vvnn' version
'gcc --version' meminfo

For more information about sysinfo collector, please consult the Avocado User’s Guide.

Job Replay and Job Diff

In order to reproduce a given job using the same data, one can use the replay subcommand, informing the hash id
from the original job to be replayed. The hash id can be partial, as long as the provided part corresponds to the initial
characters of the original job id and it is also unique enough. Or, instead of the job id, you can use the string latest and
Avocado will replay the latest job executed.

Example:

$ avocado replay 825b86

JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956¢c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323£f8d7cad
JOB LOG : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log

(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.11 s
JOB HTML : SHOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

——— 7025aaba%%c2ab8b4bba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d%a761£d07672fF
@@ -1,15 +1,15 @@

COMMAND LINE
—/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
—l-sleeptest.py:SleepTest.test: PASS
+l-passtest.py:PassTest.test: PASS

Extensible by plugins

Avocado has a plugin system that can be used to extend it in a clean way. The avocado command line tool has a
builtin plugins command that lets you list available plugins. The usage is pretty simple:

$ avocado plugins
Plugins that add new commands (avocado.plugins.cli.cmd) :
exec-path Returns path to Avocado bash libraries and exits.

(continues on next page)

9.1. Welcome to Avocado 23

https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html

avocado Documentation, Release 101.0

(continued from previous page)

run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information

Plugins that add new options to commands (avocado.plugins.cli):
remote Remote machine options for 'run' subcommand
journal Journal options for the 'run' subcommand

For more information about plugins, please visit the Plugin System section on the Avocado User’s Guide.

Utility libraries

When writing tests, developers often need to perform basic tasks on OS and end up having to implement these routines
just to run they tests.

Avocado has more than 40 utility modules that helps you to perform basic operations.

Below a small subset of our utility modules:

* utils.vmimage: This utility provides a API to download/cache VM images (QCOW) from the official distribu-
tions repositories.

* utils.memory: Provides information about memory usage.

e utils.cpu: Get information from the current’s machine CPU.

* utils.software_manager: Software package management library.
« utils.download: Methods to download URLs and regular files.

* utils.archive: Module to help extract and create compressed archives.

9.1.3 Avocado Python API

If the command-line is limiting you, then you can use our new API and create custom jobs and test suites:

import sys
from avocado.core.job import Job

with Job.from_config({'resolver.references': ['/bin/true']l}) as job:
sys.exit (job.run())

9.1.4 How to install

It is super easy, just run the follow command:

$ pip3 install --user avocado-framework

This will install the avocado command in your home directory.

Note: For more details and alternative methods, please visit the Installing section on Avocado User’s Guide

24 Chapter 9. Build and Quality Status

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/plugins.html
https://avocado-framework.readthedocs.io/en/latest/guides/user/index.html
https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/installing.html#installing

avocado Documentation, Release 101.0

9.1.5 Documentation

Please use the following links for full documentation, including installation methods, tutorials and API or browse this
site for more content.

e Jatest release

* development version

9.1.6 Bugs/Requests

Please use the GitHub issue tracker to submit bugs or request features.

9.1.7 Changelog

Please consult the Avocado Releases for fixes and enhancements of each version.

9.1.8 License

Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed under the
GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree that these contributions are your own (or approved by your employer) and you grant a full,
complete, irrevocable copyright license to all users and developers of the Avocado project, present and future, pursuant
to the license of the project.

9.1.9 Build and Quality Status

build N progress

9.2 Avocado User’s Guide

9.2.1 About Avocado

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

9.2. Avocado User’s Guide 25

https://avocado-framework.readthedocs.io/
https://avocado-framework.readthedocs.io/en/latest/
https://github.com/avocado-framework/avocado/issues
https://avocado-framework.readthedocs.io/en/latest/releases/index.html
https://www.gnu.org/licenses/gpl-2.0.html
https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/
https://cirrus-ci.com/github/avocado-framework/avocado
https://lgtm.com/projects/g/avocado-framework/avocado/alerts/
https://codeclimate.com/github/avocado-framework/avocado/maintainability
https://lgtm.com/projects/g/avocado-framework/avocado/context:python
https://lgtm.com/projects/g/avocado-framework/avocado/context:javascript
https://avocado-framework.readthedocs.io/en/latest/
https://docs.python.org/3/library/unittest.html#module-unittest

avocado Documentation, Release 101.0

Avocado is composed of:

* A test runner that lets you execute tests. Those tests can be either written in your language of choice, or be
written in Python and use the available libraries. In both cases, you get facilities such as automated log and
system information collection.

e Libraries that help you write tests in a concise, yet expressive and powerful way. You can find more information
about what libraries are intended for test writers at Utility Libraries.

* Plugins that can extend and add new functionality to the Avocado Framework.
* A Python API for creating custom jobs and test suites for more advanced users.
Avocado is built on the experience accumulated with Autotest, while improving on its weaknesses and shortcomings.

Avocado tries as much as possible to comply with standard Python testing technology. Tests written using the Avocado
API are derived from the unittest class, while other methods suited to functional and performance testing were added.
The test runner is designed to help people to run their tests while providing an assortment of system and logging
facilities, with no effort, and if you want more features, then you can start using the API features progressively.

9.2.2 Installing

Avocado is primarily written in Python, so a standard Python installation is possible and often preferable. You can
also install from your Linux distribution repository, if available.

Note: Please note that this installs the Avocado core functionality. Many Avocado features are distributed as non-core
plugins. Visit the Avocado Plugin section on the left menu.

Tip: If you are looking for Virtualization specific testing, also consider looking at Avocado-VT installation instruc-
tions after finishing the Avocado installation.

Installing from PyPI

The simplest installation method is through pip. On most POSIX systems with Python 3.4 (or later) and pip avail-
able, installation can be performed with a single command:

$ pip3 install --user avocado-framework

This will fetch the Avocado package (and possibly some of its dependencies) from the PyPI repository, and will
attempt to install it in the user’s home directory (usually under ~/ . local), which you might want to add to your
PATH variable if not done already.

Tip: If you want to perform a system-wide installation, drop the ——user switch.

If you want even more isolation, Avocado can also be installed in a Python virtual environment. with no additional
steps besides creating and activating the “venv” itself:

$ python3 -m venv /path/to/new/virtual_environment
$ source /path/to/new/virtual_environment/bin/activate
$ pip3 install avocado-framework

26 Chapter 9. Build and Quality Status

http://autotest.github.io/
https://avocado-vt.readthedocs.io/en/latest/GetStartedGuide.html#installing-avocado-vt

avocado Documentation, Release 101.0

Installing from packages

Fedora

Avocado modules are available on standard Fedora repos starting with version 29. To subscribe to the latest version
stream, run:

$ dnf module enable avocado:latest

Or, to use the LTS (Long Term Stability) version stream, run:

$ dnf module enable avocado:821ts

Then proceed to install a module profile or individual packages. If you’re unsure about what to do, simply run:

$ dnf module install avocado

Enterprise Linux

Avocado modules are also available on EPEL (Extra Packages for Enterprise Linux) repos, starting with version 8. To
enable the EPEL repository, run:

$ dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest—-8.noarch.rpm

Then to enable the module, run:

$ dnf module enable avocado:latest

And finally, install any number of packages, such as:

$ dnf install python3-avocado python3-avocado-plugins-output-html python3-avocado-
—plugins-varianter-yaml-to-mux

Latest Development RPM Packages from COPR

Avocado provides a repository of continuously built packages from the GitHub repository’s master branch. These
packages are currently available for some of the latest Enterprise Linux and Fedora versions, for a few different
architectures.

If you’re interested in using the very latest development version of Avocado from RPM packages, you can do so by
running:

$ dnf copr enable @avocado/avocado-latest
$ dnf install python3-avocadox

The following image shows the status of the Avocado packages building on COPR:

build N progress

9.2. Avocado User’s Guide 27

https://copr.fedorainfracloud.org/coprs/g/avocado/avocado-latest/package/python-avocado/

avocado Documentation, Release 101.0

OpenSUSE

The OpenSUSE project provides packages for Avocado. Check the Virtualization:Tests project in OpenSUSE build
service to get the packages from there.

Debian

DEB package support is available in the source tree (look at the contrib/packages/debian directory. No
actual packages are provided by the Avocado project or the Debian repos.

Installing from source code

First make sure you have a basic set of packages installed. The following applies to Fedora based distributions, please
adapt to your platform:

$ sudo dnf install -y python3 git gcc python3-pip

Then to install Avocado from the git repository run:

$ git clone git://github.com/avocado-framework/avocado.git
$ cd avocado
$ python3 setup.py install --user

Optionally, to install the plugins run:

$ python3 setup.py plugin —install=golang —user $ python3 setup.py plugin —install=html —user $ python3
setup.py plugin —install=result_upload —user $ python3 setup.py plugin —install=resultsdb —user $ python3
setup.py plugin —install=robot —user $ python3 setup.py plugin —install=varianter_cit —user $ python3
setup.py plugin —install=varianter_pict —user $ python3 setup.py plugin —install=varianter_yaml_to_mux
—user

9.2.3 Introduction

Avocado Hello World
You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

$ avocado run /bin/true

JOB ID : 3a5c4c51ceb5369£23702efb10b4209b111141b2
JOB LOG : SHOME/avocado/job-results/job-2019-10-31T10.34-3a5c4c5/job.log
(1/1) /bin/true: PASS (0.04 s)
RESULTS : PASS 1 | ERROR 0 | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.15 s

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as executable tests (exec-test), but there is also another type of test, which we call instrumented tests .
See more at fest-types or just keep reading.

28 Chapter 9. Build and Quality Status

https://build.opensuse.org/project/show/Virtualization:Tests
https://build.opensuse.org/project/show/Virtualization:Tests

avocado Documentation, Release 101.0

Running a job with multiple tests

You can run any number of test in an arbitrary order, as well as mix and match instrumented and executable tests:

$ avocado run examples/tests/sleeptest.py examples/tests/failtest.py examples/tests/
—synctest.py /tmp/exec_test.sh
JOB ID : 2391dddf53b950631589bd1d44a5a6£dd023b400
JOB LOG : SHOME/avocado/job-results/job-2021-09-27T16.35-2391ddd/ job.log
(1/4) examples/tests/sleeptest.py:SleepTest.test: STARTED

(2/4) examples/tests/failtest.py:FailTest.test: STARTED
(3/4) examples/tests/synctest.py:SyncTest.test: STARTED
(4/4) /tmp/exec_test.sh: STARTED

(4/4) /tmp/exec_test.sh: PASS (0.01 s)

(2/4) examples/tests/failtest.py:FailTest.test: FAIL: This test is supposed to fail,
—(0.05 s)

(1/4) examples/tests/sleeptest.py:SleepTest.test: PASS (1.02 s)

(3/4) examples/tests/synctest.py:SyncTest.test: PASS (1.39 s)

RESULTS : PASS 3 | ERROR 0 | FAIL 1 | SKIP O | WARN 0 | INTERRUPT 0O | CANCEL 0

JOB TIME : 3.25 s

Note: Although in most cases running avocado run $testl S$test3 ... is fine, it can lead to argument
vs. test name clashes. The safest way to execute tests is avocado run —--$argumentl --$argument2 —-

Stestl Stest2. Everything after —— will be considered positional arguments, therefore test names (in case of
avocado run)

Using a different runner

Currently Avocado has two test runners: nrunner (the new runner) and runner (legacy). You can find a list of
current runners installed with the avocado plugins command:

$ avocado plugins

Plugins that run test suites on a job (runners):

nrunner nrunner based implementation of job compliant runner
runner The conventional test runner

During the test execution, you can select the runner using the option ——test-runner, where the default is the
nrunner one:

$ avocado run —--test-runner='runner' /bin/true

Interrupting tests

Sending Signals

To interrupt a job execution a user can press ctr1+c which after a single press sends SIGTERM to the main test’s
process and waits for it to finish. If this does not help user can press ctrl+c again (after 2s grace period) which
destroys the test’s process ungracefully and safely finishes the job execution always providing the test results.

To pause the test execution a user can use ctr1l+z which sends SIGSTOP to all processes inherited from the test’s
PID. We do our best to stop all processes, but the operation is not atomic and some new processes might not be stopped.
Another ctrl+z sends SIGCONT to all processes inherited by the test’s PID resuming the execution. Note the test
execution time (concerning the test timeout) are still running while the test’s process is stopped.

9.2. Avocado User’s Guide 29

avocado Documentation, Release 101.0

Interrupting the job on first fail (failfast)

The Avocado run command has the option ——failfast to exit the job as soon as possible.

Due to our current runner architecture, tests are executed in parallel by default. The —-failfast option work
on the best effort to cancel tests that have not started yet. To replicate the same behavior as the legacy runner, use
—-—-max-parallel-tasks=1 to limit the number of tasks executed in parallel:

$ avocado run --failfast --max-parallel-tasks=1 /bin/true /bin/false /bin/true /bin/
—true

JOB ID : 76bfelebcfabefac3ab6881lee501cc5d4b69£913

JOB LOG : SHOME/avocado/job-results/job-2021-09-27T16.41-76bfele/job.log

(1/4) /bin/true: STARTED

(1/4) /bin/true: PASS (0.01 s)

(2/4) /bin/false: STARTED

(2/4) /bin/false: FAIL (0.01 s)
Interrupting job (failfast).
RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP 2 | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 1.57 s

The default behavior, that is, when ——failfast is not set, is to try to execute all tests in a job, regardless individual
of test failures.

Note: Avocado versions 80.0 and earlier allowed replayed jobs to override the failfast configuration by setting
-—failfast=offinaavocado replay .. command line. This is no longer possible.

The hint files
Avocado team has added support to the “hint files”. This feature is present since Avocado #78 and is a configuration
file that you can add to your project root folder to help Avocado on the “test resolution” phase.

The idea is that, you know more about your tests than anybody else. And you can specify where your tests are, and
what type (kind) they are. You just have to add a . avocado.hint in your root folder with the section [kinds]
and one section for each kind that you are using.

On the specific test type section, you can specify 3 options: uri, args and kwargs.

Note: Some test types will convert kwargs into variable environments. Please check the documentation of the test
type that you are using.

You can also use the keyword $Stestpath in any of the options inside the test type section. Avocado will replace
$Stestpath with your test path, after the expansion.

For instance, below you will find a hint file example where we have only one test type TAP:

[kinds]
tap = ./tests/unit/=*.sh

[tap]

uri = S$testpath
args = ——tap
kwargs = DEBUG=1

Let’s suppose that you have 2 tests that matches . /tests/unit/*.sh:

30 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

e . /tests/unit/foo.sh
e ./tests/unit/bar.sh

Avocado will run each one as a TAP test, as you desired.

Note: Please, keep in mind that hint files needs absolute paths when defining tests inside the [kinds] section.

Since Avocado’s next runner is capable of running tests not only in a subprocess but also in more isolated environments
such as Podman containers, sending custom environment variables to the task executor can be achieved by using the
kwargs parameter. Use a comma-separated list of variables here and Avocado will make sure your tests will receive
those variables (regardless of the spawner type).

Ignoring missing test references

When you provide a list of test references, Avocado will try to resolve all of them to tests. If one or more test references
can not be resolved to tests, the Job will not be created. Example:

$ avocado run examples/tests/passtest.py badtest.py
Unable to resolve reference(s) 'badtest.py' with plugins(s) 'file', 'robot', try,
—running 'avocado -V list badtest.py' to see the details.

But if you want to execute the Job anyway, with the tests that could be resolved, you can use
-—ignore-missing-references, a boolean command-line option. The same message will appear in the UI,
but the Job will be executed:

$ avocado run examples/tests/passtest.py badtest.py —--ignore-missing-references
JOB ID : e6dlfd4d21d6abe2e039f1acdl670a6882144c189
JOB LOG : SHOME/avocado/job-results/job-2021-09-27T16.50-e6d1f4d/job.log

(1/1) examples/tests/passtest.py:PassTest.test: STARTED

(1/1) examples/tests/passtest.py:PassTest.test: PASS (0.01 s)
RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 1.49 s

Runner outputs

A test runner must provide an assortment of ways to clearly communicate results to interested parties, be them humans
or machines.

Note: There are several optional result plugins, you can find them in Result plugins.

Results for human beings

Avocado has two different result formats that are intended for human beings:
e Its default UI, which shows the live test execution results on a command line, text based, UI.

e The HTML report, which is generated after the test job finishes running.

Note: The HTML report needs the htm1 plugin enabled that is an optional plugin.

9.2. Avocado User’s Guide 31

avocado Documentation, Release 101.0

A regular run of Avocado will present the test results in a live fashion, that is, the job and its test(s) results are constantly
updated:

$ avocado run examples/tests/sleeptest.py examples/tests/failtest.py examples/tests/
—synctest.py
JOB ID : 2e83086e5d3£82dd68bdc8885e7ccelcebec5f27
JOB LOG : SHOME/wrampazz/avocado/job-results/job-2021-09-27T17.00-2e83086/job.log
(3/3) examples/tests/synctest.py:SyncTest.test: STARTED
(1/3) examples/tests/sleeptest.py:SleepTest.test: STARTED
(2/3) examples/tests/failtest.py:FailTest.test: STARTED
(2/3) examples/tests/failtest.py:FailTest.test: FAIL: This test is supposed to fail,
— (0.02 s)
(1/3) examples/tests/sleeptest.py:SleepTest.test: PASS (1.01 s)
(3/3) examples/tests/synctest.py:SyncTest.test: PASS (1.24 s)

RESULTS : PASS 2 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB HTML : SHOME/avocado/job-results/job-2021-09-27T17.00-2e83086/results.html
JOB TIME : 2.80 s

The most important thing is to remember that programs should never need to parse human output to figure out what
happened to a test job run.

As you can see, Avocado will print a nice UI with the job summary on the console. If you would like to inspect a
detailed output of your tests, you can visit the folder: $HOME /avocado/job-results/latest/ or a specific
job folder.

Results for machine

Another type of results are those intended to be parsed by other applications. Several standards exist in the test
community, and Avocado can in theory support pretty much every result standard out there.

Out of the box, Avocado supports a couple of machine readable results. They are always generated and stored in the
results directory in results. $type files, but you can ask for a different location too.

Currently, you can find three different formats available on this folder: xUnit (XML), JSON and TAP.
1. xUnit:
The default machine readable output in Avocado is xunit.

xUnit is an XML format that contains test results in a structured form, and are used by other test automation projects,
such as jenkins. If you want to make Avocado to generate xunit output in the standard output of the runner, simply
use:

$ avocado run examples/tests/sleeptest.py examples/tests/failtest.py examples/tests/
—synctest.py —--xunit -
<?xml version="1.0" encoding="UTF-8"7?>
<testsuite name="job-2021-09-27T17.01-2dd7837" tests="3" errors="0" failures="1"
—skipped="0" time="2.340" timestamp="2021-09-27T17:01:36.455763">
<testcase classname="<unknown>" name="2-examples/tests/failtest.py:FailTest.

—test" time="0.026">

<failure type="<unknowné>" message="This test is supposed to fail"><!
— [CDATA [<unknown>]]></failure>

<system—-out><! [CDATA[[stdlog] 2021-09-27 17:01:34,722 test
L0312 INFO | INIT 1-FailTest.test

[stdlog] 2021-09-27 17:01:34,723 parameters L0142 DEBUG| PARAMS (key=timeout,

—path=x, default=None) => None

[stdlog] 2021-09-27 17:01:34,723 test L0340 DEBUG| Test metadata:

[stdlog] 2021-09-27 17:01:34,723 test L0342 DEBUG| filename: S$SHOME/src/
iltest

avocadolavocado-de amples/tests/fa st-p

(continues on next page)

32 Chapter 9. Build and Quality Status

http://help.catchsoftware.com/display/ET/JUnit+Format
http://jenkins-ci.org/

avocado Documentation, Release 101.0

(continued from previous page)

[stdlog] 2021-09-27 17:01:34,723 test 1.0348 DEBUG| teststmpdir: /var/
—tmp/avocado_vilxpequ
[stdlog] 2021-09-27 17:01:34,723 test L0538 INFO | START 1-FailTest.test
[stdlog] 2021-09-27 17:01:34,724 test L0207 DEBUG| DATA (filename=output.
—expected) => NOT FOUND (data sources: variant, test, file)
[stdlog] 2021-09-27 17:01:34,724 stacktrace L0039 ERROR|
[stdlog] 2021-09-27 17:01:34,724 stacktrace L0041 ERROR| Reproduced traceback,,
—from: SHOME/src/avocado/avocado.dev/avocado/core/test.py:794
[stdlog] 2021-09-27 17:01:34,725 stacktrace L0045 ERROR| Traceback (most recent,
—~call last):
[stdlog] 2021-09-27 17:01:34,725 stacktrace L0045 ERROR| File "SHOME/src/
—avocado/avocado.dev/examples/tests/failtest.py", line 16, in test
[stdlog] 2021-09-27 17:01:34,725 stacktrace L0045 ERROR]| self.fail ('This,,
—test is supposed to fail')
[stdlog] 2021-09-27 17:01:34,725 stacktrace L0045 ERROR| File "S$HOME/src/
—avocado/avocado.dev/avocado/core/test.py", line 980, in fail
[stdlog] 2021-09-27 17:01:34,725 stacktrace L0045 ERROR| raise exceptions.
—TestFail (message)
[stdlog] 2021-09-27 17:01:34,725 stacktrace 1.0045 ERROR| avocado.core.
—exceptions.TestFail: This test is supposed to fail
[stdlog] 2021-09-27 17:01:34,725 stacktrace L0046 ERROR|
[stdlog] 2021-09-27 17:01:34,725 test L0799 DEBUG| Local variables:
[stdlog] 2021-09-27 17:01:34,740 test L0802 DEBUG]| -> self <class
—'failtest.FailTest'>: 1-FailTest.test
[stdlog] 2021-09-27 17:01:34,741 test L0207 DEBUG| DATA (filename=output.
—expected) => NOT FOUND (data sources: variant, test, file)
[stdlog] 2021-09-27 17:01:34,741 test 10207 DEBUG| DATA (filename=stdout.
—expected) => NOT FOUND (data sources: variant, test, file)
[stdlog] 2021-09-27 17:01:34,741 test L0207 DEBUG| DATA (filename=stderr.
—expected) => NOT FOUND (data sources: variant, test, file)
[stdlog] 2021-09-27 17:01:34,741 test L0957 ERROR| FAIL 1-FailTest.test —>
— TestFail: This test is supposed to fail
[stdlog] 2021-09-27 17:01:34,741 test L0949 INFO |
]]1></system-out>

</testcase>

<testcase classname="<unknown>" name="l-examples/tests/sleeptest.
—py:SleepTest.test" time="1.010"/>

<testcase classname="<unknowné>" name="3-examples/tests/synctest.py:SyncTest.
—test" time="1.304"/>
</testsuite>

Note: The dash - in the option ——xunit, it means that the xunit result should go to the standard output.

Note: In case your tests produce very long outputs, you can limit the number of embedded characters by
-—xunit-max-test-log-chars. If the output in the log file is longer it only attaches up-to max-test-log-chars
characters one half starting from the beginning of the content, the other half from the end of the content.

2. JSON:

JSON is a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to the
Xunit output plugin:

$ avocado run examples/tests/sleeptest.py examples/tests/failtest.py examples/tests/

SRy Jeott (continues on next page)

9.2. Avocado User’s Guide 33

https://www.json.org/

avocado Documentation, Release 101.0

(continued from previous page)

"cancel": O,
"debuglog": "S$HOME/avocado/Jjob-results/job-2021-09-27T17.05-£d073c2/job.1log",
"errors": O,
"failures": 1,
"interrupt": O,
"Job_id": "fd073c26alelaacee59bc9e1914b7110e7ac3£8b",
"pass": 2,
"skip": O,
"tests": [

{

"end": 30759.486869323,

"fail_reason": "This test is supposed to fail",

"id": "2-examples/tests/failtest.py:FailTest.test",

"logdir": "S$SHOME/avocado/Jjob-results/job-2021-09-27T17.05-£d073c2/test~
—results/2-examples_tests_failtest.py_FailTest.test",

"logfile": "S$HOME/avocado/job-results/job-2021-09-27T17.05-£fd073c2/test—-

—results/2-examples_tests_failtest.py_FailTest.test/debug.log",
"start": 30759.456017671,
"status": "FAIL",
"tags": {},
"time": 0.03085165199809125¢6,
"whiteboard": ""

"end": 30760.472274292,

"fail_reason": "<unknown>",

"id": "l-examples/tests/sleeptest.py:SleepTest.test",

"logdir": "SHOME/avocado/job-results/job-2021-09-27T17.05-£fd073c2/test~
—results/l-examples_tests_sleeptest.py_SleepTest.test",

"logfile": "S$HOME/avocado/job-results/job-2021-09-27T17.05-£fd073c2/test—-

—results/l-examples_tests_sleeptest.py_SleepTest.test/debug.log",
"start": 30759.455787493,
"status": "PASS",
"tags": {1},
"time": 1.0164867989988124,
"whiteboard": ""

"end": 30760.690585313,

"fail reason": "<unknown>",

"id": "3-examples/tests/synctest.py:SyncTest.test",

"logdir": "SHOME/avocado/Jjob-results/job-2021-09-27T17.05-£d073c2/test—
—results/3-examples_tests_synctest.py_SyncTest.test",

"logfile": "SHOME/avocado/Jjob-results/job-2021-09-27T17.05-£d073c2/test~

—results/3-examples_tests_synctest.py_SyncTest.test/debug.log",
"start": 30759.459244923,
"status": "PASS",
"tags": {},
"time": 1.231340390000696,
"whiteboard": ""

1,

"time": 2.2786788409975998,
"total": 3,

"warn": 0

34 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Note: The dash - in the option ——json, it means that the xunit result should go to the standard output.

Bear in mind that there’s no documented standard for the Avocado JSON result format. This means that it will probably
grow organically to accommodate newer Avocado features. A reasonable effort will be made to not break backwards
compatibility with applications that parse the current form of its JSON result.

3. TAP:

Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing Avocado machine
readable outputs this one is streamlined (per test results):

$ avocado run examples/tests/sleeptest.py —-tap -
1..1
ok 1 examples/tests/sleeptest.py:SleepTest.test

*x4. Beaker:xx

When avocaodo finds itself running inside a beaker task the beaker_report plugin will send the test results and log files
to the beaker lab controller. Happens automatically, no configuration required. Check the project website for more
information on beaker.

Using the option —show

Probably, you frequently want to look straight at the job log, without switching screens or having to “tail” the job log.

In order to do that, you can use avocado —--show=test run

$ avocado —--show=test run examples/tests/sleeptest.py
Job ID: f9eal742134e5352dec82335af584d1£151d4b85
START l-sleeptest.py:SleepTest.test

PARAMS (key=timeout, path=x%, default=None) => None
PARAMS (key=sleep_length, path=x, default=1l) => 1
Sleeping for 1.00 seconds

PASS l-sleeptest.py:SleepTest.test

Test results available in $HOME/avocado/job-results/job-2015-06-02T10.45-f%al74

As you can see, the Ul output is suppressed and only the job log is shown, making this a useful feature for test
development and debugging.

It’s possible to silence all output to stdout (while keeping the error messages being printed to stderr). One can then use
the return code to learn about the result:

$ avocado —-show=none run examples/tests/failtest.py
$ echo $?
1

In practice, this would usually be used by scripts that will in turn run Avocado and check its results:

#!/bin/bash

(continues on next page)

9.2. Avocado User’s Guide 35

https://testanything.org/
https://beaker-project.org/

avocado Documentation, Release 101.0

(continued from previous page)

$ avocado --show=none run /path/to/my/test.py
if [$? == 1; then

echo "great success!"
elif

more details regarding exit codes in Exit Codes section.

Multiple results at once

You can have multiple results formats at once, as long as only one of them uses the standard output. For example, it is
fine to use the xunit result on stdout and the JSON result to output to a file:

$ avocado run examples/tests/sleeptest.py examples/tests/synctest.py --xunit - --Jjson,
—/tmp/result. json
<?xml version="1.0" encoding="UTF-8"7?>
<testsuite name="job-2021-09-27T17.10-b37e5fe" tests="2" errors="0" failures="0"
—skipped="0" time="2.220" timestamp="2021-09-27T17:10:28.757207">

<testcase classname="<unknown>" name="l-examples/tests/sleeptest.
—py:SleepTest.test" time="1.011"/>

<testcase classname="g<unknown>" name="2-examples/tests/synctest.py:SyncTest.
—~test" time="1.209"/>
</testsuite>

$ cat /tmp/result.json
{

"cancel": O,

"debuglog": "S$HOME/avocado/job-results/job-2021-09-27T17.10-b37e5fe/job.log",
"errors": O,

"failures": O,

"interrupt": 0,

"job_id": "b37e5fee226e3806c4d73fef180d7d2ceeb6464e",

"pass": 2,

"skip": O,

But you won’t be able to do the same without the ——json flag passed to the program:

avocado run examples/tests/sleeptest.py examples/tests/synctest.py —-—-xunit - --Jjson —
avocado run: error: argument --json: Options —--xunit -—-Jjson are trying to

use stdout simultaneously. Please set at least one of them to a file to

avoid conflicts

That’s basically the only rule, and a sane one, that you need to follow.

Note: Avocado support “paginator” option, which, on compatible terminals, basically pipes the colored output to
less to simplify browsing of the produced output. You an enable it with ——enable-paginator.

Sysinfo collection

Note: This feature is not fully supported on nrunner runner yet.

36 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very useful when later we want to know what caused the test’s failure. This system is config-
urable but we provide a sane set of defaults for you.

In the default Avocado configuration (/etc/avocado/avocado.conf) there is a section sysinfo.collect
where you can enable/disable the sysinfo collection as well as configure the basic environment. In sysinfo.
collectibles section you can define basic paths of where to look for what commands/tasks should be performed
before/during the sysinfo collection. Avocado supports three types of tasks:

1. commands - file with new-line separated list of commands to be executed before and after the job/test (sin-
gle execution commands). It is possible to set a timeout which is enforced per each executed command in
[sysinfo.collect] by setting “commands_timeout” to a positive number. You can also use the environ-
ment variable AVOCADO_ SYSINFODIR which points to the sysinfo directory in results.

fail_commands - similar to commands, but gets executed only when the test fails.
files - file with new-line separated list of files to be copied.

fail_files - similar to files, but copied only when the test fails.

A

profilers - file with new-line separated list of commands to be executed before the job/test and killed at the end
of the job/test (follow-like commands).

Additionally this plugin tries to follow the system log via journalctl if available.

By default these are collected per-job but you can also run them per-test by setting per_test = True in the
sysinfo.collect section.

The sysinfo is enabled by default and can also be disabled on the cmdline if needed by ——disable-sysinfo.

After the job execution you can find the collected information in $RESULTS/sysinfo of $RESULTS/
test-results/S$TEST/sysinfo. They are categorized into pre, post and profile folders and the file-
names are safely-escaped executed commands or file-names. You can also see the sysinfo in html results when you
have html results plugin enabled.

It is also possible to save only the files / commands which were changed during the course of the test, in the post
directory, using the setting optimize = True inthe sysinfo.collect section. This collects all sysinfo on
pre, but saves only changed ones on post. It is set to False by default.

Warning: If you are using Avocado from sources, you need to manually place the
commands/fail_commands/fail_files/files/profilers into the /etc/avocado/sysinfo
directories or adjust the paths in $AVOCADO_SRC/etc/avocado/avocado.conf.

9.2.4 Basic Concepts

Attention: TODO: This section needs attention! Please, help us contributing to this document.

It is important to understand some basic concepts before start using Avocado.

Identifiers and references

Job ID

The Job ID is a random SHA1 string that uniquely identifies a given job.

9.2. Avocado User’s Guide 37

avocado Documentation, Release 101.0

The full form of the SHA1 string is used is most references to a job:

$ avocado run examples/tests/sleeptest.py
JOB ID : 49ec339%9a6cca73397be21866453985£88713ac34

But a shorter version is also used at some places, such as in the job results location:

JOB LOG : SHOME/avocado/job-results/job-2015-06-10T10.44-49%9ec339/job.log

Test References

Warning: TODO: We are talking here about Test Resolver, but the reader was not introduced to this concept yet.

A Test Reference is a string that can be resolved into (interpreted as) one or more tests by the Avocado Test Resolver. A
given resolver plugin is free to interpret a test reference, it is completely abstract to the other components of Avocado.

When the test references are about Instrumented Tests, Avocado will find any Instrumented test that starts with the
reference, like a “wildcard”. For instance:

$ avocado run ./test.py:MyTest:test_foo

This command will resolve all tests (methods) that starts with fest_foo. For more information about this type of tests,
please visit the Instrumented section of this document.

Conventions

Even though each resolver implementation is free to interpret a reference string as it sees fit, it’s a good idea to set
common user expectations.

It’s common for a single file to contain multiple tests. In that case, information about the specific test to reference can
be added after the filesystem location and a colon, that is, for the reference:

passtest.py:PassTest.test

Unless a file with that exact name exists, most resolvers will split it into passtest .py as the filesystem path, and
PassTest.test as an additional specification for the individual test. It’s also possible that some resolvers will
support regular expressions and globs for the additional information component.

Test Name

A test name is an arbitrarily long string that unambiguously points to the source of a single test. In other words the
Avocado Test Resolver, as configured for a particular job, should return one and only one test as the interpretation of
this name.

This name can be as specific as necessary to make it unique. Therefore it can contain an arbitrary number of variables,
prefixes, suffixes, tags, etc. It all depends on user preferences, what is supported by Avocado via its Test Resolvers
and the context of the job.

The output of the Test Resolver when resolving Test References should always be a list of unambiguous Test Names
(for that particular job).

38 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Notice that although the Test Name has to be unique, one test can be run more than once inside a job.

By definition, a Test Name is a Test Reference, but the reciprocal is not necessarily true, as the latter can represent
more than one test.

Examples of Test Names:

'/bin/true'

'passtest.py:Passtest.test'

'file:///tmp/passtest.py:Passtest.test’'
'multiple_tests.py:MultipleTests.test_hello'
'type_specific.io—github-autotest—-gemu.systemtap_tracing.gemu.gemu_free'

Variant IDs

The varianter component creates different sets of variables (known as “variants”), to allow tests to be run individually
in each of them.

A Variant ID is an arbitrary and abstract string created by the varianter plugin to identify each variant. It should be
unique per variant inside a set. In other words, the varianter plugin generates a set of variants, identified by unique
IDs.

A simpler implementation of the varianter uses serial integers as Variant IDs. A more sophisticated implementation
could generate Variant IDs with more semantic, potentially representing their contents.

Test ID

A test ID is a string that uniquely identifies a test in the context of a job. When considering a single job, there are no
two tests with the same ID.

A test ID should encapsulate the Test Name and the Variant ID, to allow direct identification of a test. In other words,
by looking at the test ID it should be possible to identify:

e What’s the test name
* What’s the variant used to run this test (if any)

Test IDs don’t necessarily keep their uniqueness properties when considered outside of a particular job, but two
identical jobs run in the exact same environment should generate a identical sets of Test IDs.

Syntax:

<unique-id>-<test-name>[;<variant-id>]

Example of Test IDs:

'1-/bin/true’

'2-passtest.py:Passtest.test;quiet-'
'3-file:///tmp/passtest.py:Passtest.test’
'4-multiple_tests.py:MultipleTests.test_hello;maximum_debug-df2f'
'5-type_specific.io-github—-autotest—-gemu.systemtap_tracing.gemu.gemu_free'

Test types

Avocado at its simplest configuration can run three different types of tests:

¢ Executable tests (exec—test)

9.2. Avocado User’s Guide 39

avocado Documentation, Release 101.0

* python unittest
* instrumented
You can mix and match those in a single job.

Avocado plugins can also introduce additional test types.

Executable Tests

Any executable file can serve as a test. The criteria for PASS/FAIL is the return code of the executable. If it returns 0,
the test PASSes, if it returns anything else, it FAILs.

Python unittest

The discovery of classical Python unittest is also supported, although unlike Python unittest we still use static analysis
to get individual tests so dynamically created cases are not recognized. Apart from that there should be no surprises
when running unittests via Avocado.

Instrumented

These are tests written in Python or BASH with the Avocado helpers that use the Avocado test APL

To be more precise, the Python file must contain a class derived from avocado.test.Test. This means that an
executable written in Python is not always an instrumented test, but may work as an executable test.

The instrumented tests allows the writer finer control over the process including logging, test result status and other
more sophisticated test APIs.

Test statuses PASS, WARN and SKIP are considered successful. The ERROR, FAIL and INTERRUPTED signal
failures.

TAP

TAP tests are pretty much like executable tests in the sense that they are programs (either binaries or scripts) that will
executed. The difference is that the test result will be decided based on the produced output, that should be in Test
Anything Protocol format.

Test statuses

Avocado sticks to the following definitions of test statuses:
* PASS: The test passed, which means all conditions being tested have passed.

e FATIL: The test failed, which means at least one condition being tested has failed. Ideally, it should mean a
problem in the software being tested has been found.

* ERROR: An error happened during the test execution. This can happen, for example, if there’s a bug in the test
runner, in its libraries or if a resource breaks unexpectedly. Uncaught exceptions in the test code will also result
in this status.

* SKIP: The test runner decided a requested test should not be run. This can happen, for example, due to missing
requirements in the test environment or when there’s a job timeout.

* WARN: The test ran and something might have gone wrong but didn’t explicitly failed.

40 Chapter 9. Build and Quality Status

https://testanything.org
https://testanything.org

avocado Documentation, Release 101.0

e CANCEL: The test was canceled and didn’t run.

* INTERRUPTED: The test was explicitly interrupted. Usually this means that a user hit CTRL+C while the job
was still running or did not finish before the timeout specified.

Exit codes

Avocado exit code tries to represent different things that can happen during an execution. That means exit codes can
be a combination of codes that were ORed together as a single exit code. The final exit code can be de-bundled so
users can have a good idea on what happened to the job.

The single individual exit codes are:

* AVOCADO_ALL_OK (0)
AVOCADO_TESTS_FAIL (1)
AVOCADO_JOB_FAIL (2)
AVOCADO_FAIL (4)
AVOCADO_JOB_INTERRUPTED (8)

If a job finishes with exit code 9, for example, it means we had at least one test that failed and also we had at some
point a job interruption, probably due to the job timeout or a CTRL+C.

9.2.5 Basic Operations
Job Replay

The process of replaying an Avocado Job is simply about loading the source Job’s configuration and running a new
Job based on that configuration.

For users, this is available as the avocado replay command. Its usage is straightforward. Suppose you’ve just
run a simple job, also from the command line, such as:

$ avocado run /bin/true /bin/false

JOB ID : 42c60bea72e6d55756bfc784eb2b354£788541cf
JOB LOG : SHOME/avocado/job-results/job-2020-08-13T11.23-42c60be/job.log

(1/2) /bin/true: PASS (0.01 s)

(2/2) /bin/false: FAIL: Exited with status: 'l', stdout: '' stderr: '' (0.08 s)
RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB HTML : SHOME/avocado/job-results/job-2020-08-13T11.23-42c60be/results.html
JOB TIME : 0.41 s

To run a new job with the configuration used by the previously executed job, it’s possible to simply execute:

$ avocado replay latest

Resulting in:

JOB ID : £3139826f1b169a0b456e0e880ffb83ed26d9858
SRC JOB ID : latest
JOB LOG : SHOME/avocado/job-results/job-2020-08-13T11.24-f313982/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL: Exited with status: 'l', stdout: '' stderr: '' (0.07 s)
RESULTS : PASS 1 | ERROR O | FAIL 1 | SKIP O | WARN O | INTERRUPT O | CANCEL O

(continues on next page)

9.2. Avocado User’s Guide 41

avocado Documentation, Release 101.0

(continued from previous page)

JOB HTML : SHOME/avocado/job-results/job-2020-08-13T11.24-£313982/results.html
JOB TIME : 0.39 s

It’s also possible to use the other types of references to jobs, like the full directory path of the job results, or the Job
IDs. That is, you can use the same references used in other commands such as avocado jobs show.

Job Diff

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

——— 7025aaba%c2ab8b4bba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d%a761£d07672fF
@@ -1,15 +1,15 Q@

COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
—l-sleeptest.py:SleepTest.test: PASS
+l-passtest.py:PassTest.test: PASS

Avocado Diff can compare and create an unified diff of:
¢ Command line.
* Job time.
* Variants and parameters.
e Tests results.
 Configuration.

* Sysinfo pre and post.

Note: Avocado Diff will ignore files containing non UTF-8 characters, like binaries, as an example.

Only sections with different content will be included in the results. You can also enable/disable those sections with
——diff-filter. Please see avocado diff —--help for more information.

Jobs can be identified by the Job ID, by the results directory or by the key 1atest. Example:

-—— 4b3cb5bbbb2435c91c7b557eebc09997d4a0£544
+++ 57e5bbb3991718b216d787848171b446£6003262
ee -1,9 +1,9 @@

COMMAND LINE

(continues on next page)

42 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

(continued from previous page)

-/usr/bin/avocado run perfmon.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-11.91 s
+0.00 s

TEST RESULTS
—-l-test.py:Perfmon.test: FAIL
+1l-examples/tests/passtest.py:PassTest.test: PASS

Along with the unified diff, you can also generate the html (option ——htm1) diff file and, optionally, open it on your
preferred browser (option ——open-browser):

$ avocado diff 7025aaba 384b949c —--html /tmp/myjobdiff.html
/tmp/myjobdiff.html

If the option ——open-browser is used without the ——html, a temporary html file will be created.

For those wiling to use a custom diff tool instead of the Avocado Diff tool, there is an option ——create-reports
that will, create two temporary files with the relevant content. The file names are printed and user can copy/paste to
the custom diff tool command line:

$ avocado diff 7025aaba 384b949c —--create-reports
/var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_ 384b949_AcWg02.txt

$ diff -u /var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_384b949_
—AcWg02.txt

-—— /var/tmp/avocado_diff_7025aab_zQJjJh.txt 2016-08-10 21:48:43.547776715 +0200
+++ /var/tmp/avocado_diff_384b949_AcWgl2.txt 2016-08-10 21:48:43.547776715 +0200
@@ -1,250 +1,19 @@

COMMAND LINE

-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME

Listing tests

Avocado can list your tests without run it. This can be handy sometimes.

There are two ways of discovering the tests. One way is to simulate the execution by using the ——dry—-run argument:

$ avocado run /bin/true —--dry-run

JOB ID : 00

JOB LOG : /var/tmp/avocado-dry-run-k2i_uigx/job-2020-09-02T09.09-0000000/job.log
(1/1) /bin/true: CANCEL: Test cancelled due to —-—-dry-run (0.01 s)

RESULTS : PASS O | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT 0O | CANCEL 1

(continues on next page)

9.2. Avocado User’s Guide 43

avocado Documentation, Release 101.0

(continued from previous page)

JOB HTML : /var/tmp/avocado-dry-run-k2i_uigx/job-2020-09-02T09.09-0000000/results.
—html
JOB TIME : 0.29 s

which supports all run arguments, simulates the run and even lists the test params.

The other way is to use 1ist subcommand that lists the discovered tests If no arguments provided, Avocado can lists
tests discovered by each discovered plugin.

Let’s now list only the executable tests:

$ avocado list /bin/true /bin/false examples/tests/passtest.py | grep “exec-test
exec—-test /bin/true
exec-test /bin/false

Here, as mentioned before, exec-test means that those files are treated as executable tests. You can also give the
-—verbose or -V flag to display files that were found by Avocado, but are not considered Avocado tests:

$ avocado -V list examples/gdb-prerun—-scripts/
Type Test Tag(s)

Resolver Reference Info
avocado-instrumented examples/gdb-prerun-scripts/README File "examples/gdb-—
—prerun-scripts/README" does not end with ".py"

exec—test examples/gdb-prerun-scripts/README File "examples/gdb—
—prerun-scripts/README" does not exist or is not executable

golang examples/gdb-prerun-scripts/README

python-unittest examples/gdb-prerun—-scripts/README File "examples/gdb—
—prerun-scripts/README" does not end with ".py"

robot examples/gdb-prerun-scripts/README File "examples/gdb—
—prerun-scripts/README" does not end with ".robot"

tap examples/gdb-prerun-scripts/README File "examples/gdb—

—prerun-scripts/README" does not exist or is not executable
avocado-instrumented examples/gdb-prerun-scripts/pass—-sigusrl File "examples/gdb-

—prerun-scripts/pass-sigusrl" does not end with ".py"

exec—-test examples/gdb-prerun-scripts/pass—-sigusrl File "examples/gdb-
—prerun-scripts/pass-sigusrl" does not exist or is not executable

golang examples/gdb-prerun-scripts/pass—-sigusrl

python-unittest examples/gdb-prerun-scripts/pass—-sigusrl File "examples/gdb-
—prerun—-scripts/pass—-sigusrl" does not end with ".py"

robot examples/gdb-prerun-scripts/pass—-sigusrl File "examples/gdb-
—prerun-scripts/pass—-sigusrl" does not end with ".robot"

tap examples/gdb-prerun-scripts/pass-sigusrl File "examples/gdb-

—prerun-scripts/pass-sigusrl" does not exist or is not executable

TEST TYPES SUMMARY

Notice that the verbose flag also adds summary information.
See also:

To read more about test discovery, visit the section “Understanding the test discovery (Avocado Loaders)”.

44 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

9.2.6 Results Specification

On a machine that executed Avocado, job results are available under [Jjob-results]/
job-[timestamp]-[short job ID], where logdir is the configured Avocado logs directory (see the
data dir plugin), and the directory name includes a timestamp, such as job-2021-09-28T14.21-e0775d9. A
typical results directory structure can be seen below

$SHOME/avocado/job-results/job-2021-09-28T14.21-e0775d9/
— avocado.core.DEBUG

— id

— Jjobdata
args.json
cmdline
config
pwd

test_references
variants-1. json
— Jjob.log

—— results.html

— results.json

— results.tap

— results.xml

— sysinfo

— post

— brctl show

— cmdline

— cpuinfo

— current_clocksource
— df -mP

— dmesg

— dmidecode

— fdisk -1

— gcc —--version
—— hostname

— ifconfig -a
— interrupts

— ip link

— Jjournalctl.gz
—— 1d —--version
—— lscpu

— lspci -vvnn
— meminfo

— modules

—— mounts

—— numactl —--hardware show
— partitions

— pci

— scaling_governor
—— sched_features
— slabinfo

— uname -a

— uptime

L— version

— brctl show

—— cmdline

— cpuinfo

—— current_clocksource

(continues on next page)

9.2. Avocado User’s Guide 45

avocado Documentation, Release 101.0

(continued from previous page)

— df -mP

— dmesg

— dmidecode

— fdisk -1

— gcc —--version
— hostname

— ifconfig -a
— interrupts

— ip link

— 1d --version
— lscpu

— lspci -vvnn
— meminfo

— modules

—— mounts

—— numactl --hardware show
— partitions

— pci

— scaling_governor
— sched_features
— slabinfo

— uname -a

— uptime

L— version

-— profile

— test-results

— l-examples_tests_sleeptest.py_SleepTest.test
debug.log
whiteboard

—— 2-examples_tests_sleeptest.py_SleepTest.test
debug.log
whiteboard

— 3-examples_tests_sleeptest.py_SleepTest.test

debug.log

whiteboard

From what you can see, the results directory has:
1) A human readable id in the top level, with the job SHAT.
2) A human readable job. log in the top level, with human readable logs of the task
3) Subdirectory jobdata, that contains machine readable data about the job.

4) A machine readable results.xml and results. json in the top level, with a summary of the job infor-
mation in xUnit/json format.

5) Atoplevel sysinfo dir, with sub directories pre, post and profile, that store sysinfo files pre/post/during
job, respectively.

6) Subdirectory test-results, that contains a number of subdirectories (filesystem-friendly test ids). Those
test ids represent instances of test execution results.

Test execution instances specification

The instances should have:

1) A top level human readable job . 1og, with job debug information

46 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

2) A sysinfo subdirectory, with sub directories pre, post and profile that store sysinfo files pre test, post
test and profiling info while the test was running, respectively.

3) A data subdirectory, where the test can output a number of files if necessary.

9.2.7 Filtering tests by tags

Warning: The example perf.py is not distributed with avocado anymore. This is an old example that needs to be
updated.

Avocado allows tests to be given tags, which can be used to create test categories. With tags set, users can select a
subset of the tests found by the test resolver.

Usually, listing and executing tests with the Avocado test runner would reveal all three tests:

$ avocado list perf.py

avocado-instrumented perf.py:Disk.test_device
avocado-instrumented perf.py:Network.test_latency
avocado-instrumented perf.py:Network.test_throughput
avocado-instrumented perf.py:Idle.test_idle

If you want to list or run only the network based tests, you can do so by requesting only tests that are tagged with net:

$ avocado list perf.py —--filter-by-tags=net
avocado-instrumented perf.py:Network.test_latency
avocado-instrumented perf.py:Network.test_throughput

Now, suppose you’re not in an environment where you’re comfortable running a test that will write to your raw disk
devices (such as your development workstation). You know that some tests are tagged with safe while others are
tagged with unsafe. To only select the “safe” tests you can run:

$ avocado list perf.py —--filter-by-tags=safe
avocado-instrumented perf.py:Network.test_latency
avocado-instrumented perf.py:Network.test_throughput

But you could also say that you do not want the “unsafe” tests (note the minus sign before the tag):

$ avocado list perf.py —--filter-by-tags=-unsafe
avocado—instrumented perf.py:Network.test_latency
avocado-instrumented perf.py:Network.test_throughput

Tip: The - sign may cause issues with some shells. One know error condition is to use spaces between
-—filter-by-tags and the negated tag, that is, ——filter-by-tags -unsafe will most likely not work.
To be on the safe side, use ——filter-by-tags=-tag.

If you require tests to be tagged with multiple tags, just add them separate by commas. Example:

$ avocado list perf.py ——-filter-by-tags=disk, slow, superuser,unsafe
avocado-instrumented perf.py:Disk.test_device

If no test contains all tags given on a single ——filter-by—-tags parameter, no test will be included:

9.2. Avocado User’s Guide 47

avocado Documentation, Release 101.0

$ avocado list perf.py —-—-filter-by-tags=disk, slow, superuser,safe | wc -1
0

Multiple tags (AND vs OR)

While multiple tags in a single option will require tests with all the given tags (effectively a logical AND operation),
it’s also possible to use multiple ——filter-by-tags (effectively a logical OR operation).

For instance To include all tests that have the disk tag and all tests that have the net tag, you can run:

$ avocado list perf.py —--filter-by-tags=disk --filter-by-tags=net
avocado-instrumented perf.py:Disk.test_device
avocado-instrumented perf.py:Network.test_latency
avocado-instrumented perf.py:Network.test_throughput

Including tests without tags
The normal behavior when using —-filter—-by-tags is to require the given tags on all tests. In some situations,
though, it may be desirable to include tests that have no tags set.

For instance, you may want to include tests of certain types that do not have support for tags (such as executable tests)
or tests that have not (yet) received tags. Consider this command:

$ avocado list perf.py /bin/true --filter-by-tags=disk
avocado-instrumented perf.py:Disk.test_device

Since it requires the disk tag, only one test was returned. By using the ——filter-by-tags-include-empty
option, you can force the inclusion of tests without tags:

$ avocado list perf.py /bin/true --filter-by-tags=disk —--filter-by-tags-include-empty
exec-test /bin/true

avocado-instrumented perf.py:Idle.test_idle

avocado-instrumented perf.py:Disk.test_device

Using further categorization with keys and values

All the examples given so far are limited to “flat” tags. Sometimes, it’s helpful to categorize tests with extra context.
For instance, if you have tests that are sensitive to the platform endianness, you may way to categorize them by
endianness, while at the same time, specifying the exact type of endianness that is required.

For instance, your tags can now have a key and value pair, like: endianess:1little orendianess:big.

To list tests without any type of filtering would give you:

$ avocado list byteorder.py

avocado—-instrumented byteorder.py:ByteOrder.test_le
avocado-instrumented byteorder.py:ByteOrder.test_be
avocado-instrumented byteorder.py:Generic.test

To list tests that are somehow related to endianness, you can use:

$ avocado list byteorder.py --filter-by-tags endianness
avocado-instrumented byteorder.py:ByteOrder.test_le
avocado-instrumented byteorder.py:ByteOrder.test_be

48 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

And to be even more specific, you can use:

$ avocado list byteorder.py --filter-by-tags endianness:big
avocado-instrumented byteorder.py:ByteOrder.test_be

A “negated” form is also available to filter out tests that do not have a given value. To filter out tests that have an
endianness set, but are not big endian you can use:

$ avocado list byteorder.py —--filter-by-tags endianness:-big
avocado—-instrumented byteorder.py:ByteOrder.test_le

Now, suppose you intend to run tests on a little endian platform, but you’d still want to include tests that are generic
enough to run on either little or big endian (but not tests that are specific to other types of endianness), you could use:

$ avocado list byteorder.py --filter-by-tags endianness:big --filter-by-tags-include-—
—empty-key

avocado-instrumented byteorder.py:ByteOrder.test_be

avocado-instrumented byteorder.py:Generic.test

See also:

If you would like to understand how write plugins and how describe tags inside a plugin, please visit the section:
Writing Tests on Avocado Test Writer’s Guide.

9.2.8 Configuring

Warning: Please, keep in mind that we are doing a significant refactoring on settings to have consistency when
using Avocado. Some options are changing soon.

Avocado utilities have a certain default behavior based on educated, reasonable (we hope) guesses about how users
like to use their systems. Of course, different people will have different needs and/or dislike our defaults, and that’s
why a configuration system is in place to help with those cases

The Avocado config file format is based on the (informal) INI file specification, that is implemented by Python’s
configparser. The format is simple and straightforward, composed by sections, that contain a number of keys and
values. Take for example a basic Avocado config file:

[datadir.paths]

base_dir = /var/lib/avocado

test_dir = /usr/share/doc/avocado/tests
data_dir = /var/lib/avocado/data
logs_dir = ~/avocado/job-results

The datadir.paths section contains a number of keys, all of them related to directories used by the test runner.
The base_dir is the base directory to other important Avocado directories, such as log, data and test directories.
You can also choose to set those other important directories by means of the variables test_dir, data_dir and
logs_dir. You can do this by simply editing the config files available.

Config file parsing order

Avocado starts by parsing what it calls system wide config file, that is shipped to all Avocado users on a system wide
directory, /etc/avocado/avocado.conf (when installed by your Linux distribution’s package manager).

9.2. Avocado User’s Guide 49

http://en.wikipedia.org/wiki/INI_file
https://docs.python.org/3/library/configparser.html#module-configparser

avocado Documentation, Release 101.0

There is another directory that will be scanned by extra config files, /et c/avocado/conf . d. This directory may
contain plugin config files, and extra additional config files that the system administrator/avocado developers might
judge necessary to put there.

Then it’ll verify if there’s a local user config file, that is located usually in ~/.config/avocado/avocado.
conf. The order of the parsing matters, so the system wide file is parsed, then the user config file is parsed last, so
that the user can override values at will.

The order of files described in this section is only valid if Avocado was installed in the system. For people using
Avocado from git repos (usually Avocado developers), that did not install it in the system, keep in mind that Avocado
will read the config files present in the git repos, and will ignore the system wide config files. Running avocado
config will let you know which files are actually being used.

Configuring via command-line

Besides the configuration files, the most used features can also be configured by command-line arguments. For in-
stance, regardless what you have on your configuration files, you can disable sysinfo logging by running:

$ avocado run —--disable-sysinfo /bin/true

So, command-line options always will have the highest precedence during the configuration parsing. Use this if you
would like to change some behavior on just one or a few specific executions.

Parsing order recap

So the file parsing order is:
* /etc/avocado/avocado.conf
e /etc/avocado/conf.d/*.conf
* avocado.plugins.settings plugins (but they can insert to any location)

— For more information about this, visit the “Contributor’s Guide” section named “Writing an Avocado
plugin”

e ~/.config/avocado/avocado.conf

You can see the actual set of files/location by using avocado config which uses * to mark existing and used files:

$ avocado config

Config files read (in order, 'x' means the file exists and had been read):
* /etc/avocado/avocado.conf

/etc/avocado/conf.d/resultsdb.conf

/etc/avocado/conf.d/result_upload.conf

/etc/avocado/conf.d/jobscripts.conf

/etc/avocado/conf.d/gdb.conf

/etc/avocado_vt/conf.d/vt.conf

/etc/avocado_vt/conf.d/vt_Jjoblock.conf

SHOME/ .config/avocado/avocado.conf

% ok X o

*

Section.Key Value
datadir.paths.base_dir /var/lib/avocado
datadir.paths.test_dir /usr/share/doc/avocado/tests

Where the lower config files override values of the upper files and the SHOME/ . config/avocado/avocado.
conf file missing.

50 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Note: Please note that if Avocado is running from git repos, those files will be ignored in favor of in tree configuration
files. This is something that would normally only affect people developing avocado, and if you are in doubt, avocado
config will tell you exactly which files are being used in any given situation.

Note: When Avocado runs inside virtualenv than path for global config files is also changed. For example,
avocado.conf comes from the virual-env path venv/etc/avocado/avocado.conf.

Order of precedence for values used in tests
Since you can use the config system to alter behavior and values used in tests (think paths to test programs, for
example), we established the following order of precedence for variables (from least precedence to most):

¢ default value (from library or test code)

* global config file

* local (user) config file

* command line switch

¢ test parameters

So the least important value comes from the library or test code default, going all the way up to the test parameters
system.

Supported data types when configuring Avocado
As already said before, Avocado allows users to use both: configuration files and command-line options to configure
its behavior. It is important to have a very well defined system type for the configuration file and argument options.

Although config files options and command-line arguments are always considered st rings, you should give a proper
format representation so those values can be parsed into a proper type internally on Avocado.

Currently Avocado supports the following data types for the configuration options: string, integer, float,
bool and 1ist. Besides those primitive data types Avocado also supports custom data types that can be used by a
particular plugin.

Below, you will find information on how to set options based on those basic data types using both: configuration files
and command-line arguments.

Strings

Strings are the basic ones and the syntax is the same in both configuration files and command-line arguments: Just the
string that can be inside "" or ' '.

Example using the configuration file:

[foo]
bar = 'hello world'

String and all following types could be used with or without quotes but using quotes for strings is important on the
command line to safely handle empty spaces and distinguish it from a list type. Therefore, the following example will
also be well handled:

9.2. Avocado User’s Guide 51

avocado Documentation, Release 101.0

[foo]
bar = hello world

Example using the command-line:

$ avocado run —--foo bar /bin/true

Integers

Integer numbers are as simple as strings.

Example using the configuration file:

[run]
job_timeout = 60

Example using the command-line:

$ avocado run --job-timeout 50 /bin/true

Floats

Float numbers has the same representation as integers, but you should use . (dot) to separate the decimals. i.e: 80.3.

Booleans

When talking about configuration files, accepted values for a boolean option are ‘1°, ‘yes’, ‘true’, and ‘on’, which
cause this method to return True, and ‘0’, ‘no’, ‘false’, and ‘off’, which cause it to return False. But, when talking
about command-line, booleans options don’t need any argument, the option itself will enable or disable the settings,
depending on the context.

Example using the configuration file:

[core]
verbose = true

Example using the command-line:

$ avocado run —--verbose /bin/true

Note: Currently we still have some “old style boolean options where you should pass “on” or “off” on the command-
line. i.e: ——json—-job-result=off. Those options are going to be replaced soon.

Lists

Lists are peculiar when configuring. On configuration files you can use the default “python” syntax for lists: ["foo",
"bar"], but when using the command-line arguments lists are strings separated by spaces:

Example using the configuration file:

52 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

[assets. fetch]
references = ["foo.py", "bar.py"]

Example using the command-line:

$ avocado assets fetch foo.py bar.py

Complete Configuration Reference

For a complete configuration reference, please visit Avocado’s Configuration Reference.

Or you can see in your terminal, typing:

$ avocado config reference

9.2.9 Managing Dependencies

Note: Test dependencies are supported only on the nrunner runner.

A test’s dependency can be fulfilled by the Dependencies Resolver feature.

Test’s dependencies are specified in the test definition and are fulfilled based on the supported dependency type.

Test workflow with dependencies

When a dependency is defined for a test, it is marked as a dependency for that test. The test will wait for all the
dependencies to complete successfully before it is started.

When any of the dependencies defined on a test fails, the test is skipped.

When the dependency is fulfilled, its metadata will be saved into the avocado cache, so avocado will be able to reuse
it in another tests.

Also, the dependency metadata will stay in cache after the Avocado run, so the second run of the tests will use
dependencies from cache, which will make tests more efficient. If you want to know the state of cache, you can use
cache interface with avocado cache list.

Warning: avocado cache interface works only with metadata about dependencies. Any manipulation with avo-
cado cache interface doesn’t affects the real data stored in the environment.

Warning: If any environment is modified without Avocado knowing about it (packages being uninstalled, podman
images removed, etc), the dependency metadata in cache won’t be updated, because of this, the resolution behavior
is undefined and will probably crash. If such a change is made to the environment, it’s recommended to clear the
dependencies cache with $avocado cache clear.

9.2. Avocado User’s Guide 53

avocado Documentation, Release 101.0

Defining a test dependency

A test dependency is described in the JSON format. Following is an example of a dependency of type package:

{"type": "package", "name": "hello"}

To define a dependency for the test, use the test’s docstring with the format of keywords :avocado:
dependency=. The following example shows the same package dependency showed above inside a test docstring:

from avocado import Test

class PassTest (Test) :

mmn

ravocado: dependency={"type": "package", "name": "hello"}

mmn

def test (self):

moon

A success test
mmrn

It is possible to define multiple dependencies for a test. Following is an example using more than one dependency
definition:

from avocado import Test

class PassTest (Test) :
mmwmn
ravocado: dependency={"type": "package", "name": "hello"}
ravocado: dependency={"type": "package", "name": "bash"}

mmn

def test (self):

moon

A success test

mon

Defining a dependency in the class docstring will fulfill the dependency for every test within a test class. Defining a
dependency in the test docstring will fulfill the dependency for that single test only.

Supported types of dependencies

The following types of dependencies are supported:

Package

Support managing of packages using the Avocado Software Manager utility. The parameters available to use the
package type of dependencies are:

* type: package
* name: the package name (required)
* action: one of install, check, or remove (optional, defaults to install)

Following is an example of a test using the Package dependency:

54 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

from avocado import Test

class PassTest (Test) :

mmn

Example test that passes.

ravocado: dependency={"type": "package", "name": "hello"}

mmn

def test (self):

mon

A test simply doesn't have to fail in order to pass

mnn

Asset

Support fetching assets using the Avocado Assets utility. The parameters available to use the asset type of dependencies
are:

* type: asset

* name: the file name or uri (required)

* asset_has: hash of the file (optional)

* algorithm: hash algorithm (optional)

* locations: location(s) where the file can be fetched from (optional)

* expire: time in seconds for the asset to expire (optional)

Podman Image

Support pulling podman images ahead of test execution time. This should only be used explicitly if a test in-
teracts with podman directly, say by executing containers on its own. If you are using the podman spawner
(-—spawner=podman) this will have no effect on the spawner.

* type: podman-image

* yri: the image reference, in any format supported by podman pull itself.

Ansible Module

If you install the Ansible plugin (avocado-framework-plugin-ansible from PIP or
python3-avocado-plugins-ansible from RPM packages), you will will be able to use the
ansible-module dependency.

* type: ansible-module
* yri: the name of the ansible module.
All other arguments will be treated as arguments to the ansible modules.

Following is an example of tests using ansible’s £ile and user modules:

9.2. Avocado User’s Guide 55

avocado Documentation, Release 101.0

import os
import pwd

from avocado import Test

class FileByAnsible (Test) :

mon

—ansible_tmp", "state": "touch"}

mmn

def test (self):
files = os.listdir("/tmp")
self.log.info(files)
if not "ansible_tmp" in files:

class UserByAnsible (Test) :

mmn

. n}

mmn

def test (self):
users = pwd.getpwall ()
self.log.info (users)
for user in users:
if user.pw_name == "test-user":
return
self.fail ("Did not find an ansible created user")

ravocado: dependency={"type": "ansible-module", "uri":

ravocado: dependency={"type": "ansible-module", "uri'":

"file",

self.fail("Did not find an ansible created file")

"USle",

"path":

"name" :

"/tmp/

"test-user

9.2.10 Managing Assets

Note: Please note that we are constantly improving on how we handle assets inside Avocado. Probably some changes

will be delivered during the next releases.

Assets are test artifacts that Avocado can download automatically either during the test execution, or before the test

even starts (by parsing the test code or on-demand, manually registering them at the command-line).

Sometimes, depending on the use case, those assets can be a bottleneck for disk space. If the tests constantly use large

assets, it is important to know how Avocado stores and handles those artifacts.

Listing assets

To list cached assets in the system, use the following command:

$ avocado assets list

This command supports ——by-size-filter and ——by-days options. When using the former, use a comparison

filter and a size in bytes. For instance:

56 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

$ avocado assets list —--by-size-filter=">=2048"

The command above will list only assets bigger than 2Kb. Avocado supports the following operators: =, >=, <=, <
and >.

Now, to look for old assets (based on the access time), for example, 10 days older, use the ——by—-days option:

$ avocado assets list —--by-days=10

Registering assets

To manually register a local asset in the cache, use the register command:

$ avocado assets register x*NAMEx *URLx*

Where NAME is the unique name to associate with this asset and URL is the path to the local asset to be manually
registered.

The register command also supports the ——hash option, which allows the addition of the file’s hash.

Fetching assets from instrumented tests

The fetch command allows the download of a limited definition of assets inside an Avocado Instrumented test. It
uses a parser on instrumented test source to find fetch_asset calls composed of simple strings as parameters, or
at least one level of variable in the same context with a string assignment, and fetch those assets without running the
test. The only exception to strings as arguments is the 1ocat ions parameter, which allows the user of a list.

Following are some examples of supported definitions of assets by the fet ch command:

tarball_locations = [
'https://mirrors.peers.community/mirrors/gnu/hello/hello-2.9.tar.gz"',
'https://mirrors.kernel.org/gnu/hello/hello-2.9.tar.gz"',
'http://gnu.c3sl.ufpr.br/ftp/hello-2.9.tar.gz"',
"ftp://ftp.funet.fi/pub/gnu/prep/hello/hello-2.9.tar.gz"'
]

self.hello = self.fetch_asset(
name='hello-2.9.tar.gz"',
asset_hash='cb0470b0e8£4£7768338£5c5cfel688c90fbbc74",
locations=tarball_locations)

kernel_url = ('https://archives.fedoraproject.org/pub/archive/fedora'
'/linux/releases/29/Everything/x86_64/o0s/images/pxeboot "’
'/vmlinuz"')

kernel_hash = '23bebd2680757891cf7adedb033532163a792495"

kernel_path = self.fetch_asset (kernel_url, asset_hash=kernel_hash)

To fetch the assets defined inside an instrumented test, use:

$ avocado assets fetch xavocado-instrumentedx

Where avocado-instrumented is the path to the Avocado instrumented test file.

Removing assets

It is possible to remove files from the cache directories manually. The purge utility helps with that:

9.2. Avocado User’s Guide 57

avocado Documentation, Release 101.0

$ avocado assets purge —help

Assets can be removed applying the same filters as described when listing them. It is possible to remove assets by a
size filter (-—-by-size-filter) or assets older than N days (-—-by-days).

Removing by overall cache limit

Besides the existing features, Avocado is able to set an overall limit, so that it matches the storage limitations locally
or on CI systems.

For instance it may be the case that a GitLab cache limit is 4 GiB, in that case Avocado can sort assets by last
access, and remove all that exceeds 4 GiB (that is, keep the last accessed 4 GiB worth of cached files). Use the
——by-overall-1limit option specifying the size limit:

$ avocado assets purge —--by-overall-limit=4g

This ensures that the files which are not used for some time in the cache are automatically removed.
Please, note that at the moment, you can only use ‘b’, ‘k’, ‘m’, ‘g’, and ‘t’as suffixes.
Changing the default cache dirs

Assets are stored inside the datadir.paths.cache_dirs option. It is possible to change this in the configura-
tion file. The current value is shown with the following command:

$ avocado config | grep datadir.paths.cache_dirs

9.2.11 Avocado Data Directories

When running tests, we are frequently looking to:
* Locate tests
* Write logs to a given location
 Grab files that will be useful for tests, such as ISO files or VM disk images
Avocado has a module dedicated to finding those paths, to avoid cumbersome path manipulation magic.

If you want to list all relevant directories for your test, you can use avocado config --datadir command to
list those directories. Executing it will give you an output similar to the one seen below:

$ avocado config —--datadir
Config files read (in order):

* /etc/avocado/avocado.conf
/etc/avocado/conf.d/resultsdb.conf
/etc/avocado/conf.d/result_upload.conf
/etc/avocado/conf.d/jobscripts.conf
/etc/avocado/conf.d/gdb.conf
SHOME/ .config/avocado/avocado.conf

* % ok X

Avocado replaces config dirs that can't be accessed
with sensible defaults. Please edit your local config
file to customize values.

Avocado Data Directories:

(continues on next page)

58 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

(continued from previous page)

base $HOME/avocado

tests $SHOME/Code/avocado/examples/tests
data S$HOME/avocado/data

logs $HOME/avocado/job-results

cache $HOME/avocado/data/cache

Note that, while Avocado will do its best to use the config values you provide in the config file, if it can’t write values
to the locations provided, it will fall back to (we hope) reasonable defaults, and we notify the user about that in the
output of the command.

The relevant API documentation and meaning of each of those data directories is in avocado.core.data_dir,
so it’s highly recommended you take a look.

You may set your preferred data dirs by setting them in the Avocado config files. The only exception for important
data dirs here is the Avocado tmp dir, used to place temporary files used by tests. That directory will be in normal
circumstances /var/tmp/avocado_XXXXX, (wWhere XXXXX is in actuality a random string) securely created on /
var/tmp/, unless the user has the $TMPD IR environment variable set, since that is customary among unix programs.

The next section of the documentation explains how you can see and set config values that modify the behavior for the
Avocado utilities and plugins.

9.2.12 Avocado logging system

This section describes the logging system used in Avocado.

Tweaking the Ul

Avocado uses Python’s logging system to produce Ul and to store test’s output. The system is quite flexible and allows
you to tweak the output to your needs either by built-in stream sets, or directly by using the stream name.

To tweak them you can use:

$ avocado —--show STREAM[:LEVEL] [, STREAM[:LEVEL] [, ...]

Built-in streams with description (followed by list of associated Python streams) are listed below:
app The text based Ul (avocado.app)
test Output of the executed tests (avocado.test, “”)
debug Messages useful to debug the Avocado Framework (avocado.app.debug)

early Early logging before the logging system is set. It includes the test output and lots of output produced
by used libraries. (‘*”’, avocado.test)

Additionally you can specify “all” or “none” to enable/disable all of pre-defined streams and you can also supply
custom Python logging streams and they will be passed to the standard output.

Warning: Messages with importance greater or equal WARN in logging stream “avocado.app” are always enabled
and they go to the standard error output.

Storing custom logs

When you run a test, you can also store custom logging streams into the results directory by running:

9.2. Avocado User’s Guide 59

avocado Documentation, Release 101.0

$ avocado run --store-logging-stream STREAM[:LEVEL] [, STREAM[:LEVEL] [, ...]

This will produce $STREAM. SLEVEL files per each (unique) entry in the test results directory.

Note: You have to specify separated logging streams. You can’t use the built-in streams in this function.

9.2.13 Understanding the plugin system

Avocado has a plugin system that can be used to extended it in a clean way.

Note: A large number of out-of-the-box Avocado features are implemented as using the same plugin architecture
available to third-party extensions.

This guide considers “core features”, even though they’re still ‘plugable’, those available with an installation of Av-
ocado by itself (pip install avocado-framework). If a feature is part of an optional or third-party plugin
package, this guide will reference it.”

Listing plugins

The avocado command line tool has a builtin plugins command that lets you list available plugins. The usage is
pretty simple:

$ avocado plugins

Plugins that add new commands (avocado.plugins.cli.cmd):

exec-path Returns path to Avocado bash libraries and exits.

run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information

Plugins that add new options to commands (avocado.plugins.cli):
journal Journal options for the 'run' subcommand

Since plugins are (usually small) bundles of Python code, they may fail to load if the Python code is broken for any
reason. Example:

$ avocado plugins

Failed to load plugin from module "avocado.plugins.exec_path": ImportError ('No module,,
—named foo',)

Plugins that add new commands (avocado.plugins.cli.cmd) :

run Run one or more tests (native test, test alias, binary or script)

sysinfo Collect system information

Fully qualified named for a plugin

The Avocado plugin system uses namespaces to recognize and categorize plugins. The namespace separator here is
the dot and every plugin that starts with avocado.plugins. will be recognized by the framework.

An example of a plugin’s full qualified name:

avocado.plugins.result. json

60 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

This plugin will generate the job result in JSON format.

Note: Inside Avocado we will omit the prefix avocado.plugins to make the things clean.

Note: When listing plugins with avocado plugins pay attention to the namespace inside the parenthesis on each
category description. You will realize that there are, for instance, two plugins with the name ‘JSON’. But when you
concatenate the fully qualified name it will become clear that they are actually two different plugins: result. json
and cli. json.

Disabling a plugin

If you, as Avocado user, would like to disable a plugin, you can disable on config files.

The mechanism available to do so is to add entries to the disable key under the plugins section of the Avocado
configuration file. Example:

[plugins]
disable = ['cli.hello', 'Jjob.prepost.jobscripts']

The exact effect on Avocado when a plugin is disabled depends on the plugin type. For instance, by disabling plugins
of type c1i.cmd, the command implemented by the plugin should no longer be available on the Avocado command
line application. Now, by disabling a job.prepost plugin, those won’t be executed before/after the execution of
the jobs.

Plugin execution order

In many situations, such as result generation, not one, but all of the enabled plugin types will be executed. The
execution order is set up by plugins developers to make execution more effective. To list the plugins in execution
order, you can use avocado plugins -—ordered.

Note: For more information about how the execution order is set, please visit visit the Plugin section on Contributor’s
Guide.

Changing the plugin execution order

On some circumstances it may be necessary to change the order in which plugins are executed. To do so, add a order
entry a configuration file section named after the plugin type. For job.prepost plugin types, the section name has
to be named plugins. job.prepost, and it would look like this:

[plugins. job.prepost]
order = ['myplugin', 'jobscripts']

That configuration sets the job.prepost.myplugin plugin to execute before the standard Avocado job.
prepost. jobscripts does.

Note: If you are interested on how plugins works and how to create your own plugin, visit the Plugin section on
Contributor’s Guide.

9.2. Avocado User’s Guide 61

avocado Documentation, Release 101.0

Pre and post plugins

Avocado provides interfaces (hooks) with which custom plugins can register to be called at various times. For instance,
it’s possible to trigger custom actions before and after the execution of a job, or before and after the execution of the
tests from a job.

Let’s discuss each interface briefly.

Before and after jobs

Avocado supports plug-ins which are (guaranteed to be) executed before the first test and after all tests finished.

The pre method of each installed plugin of type job . prepost will be called by the run command, that is, anytime
an avocado run <valid_test_reference> command is executed.

Note: Conditions such as the SystemExit or KeyboardInterrupt exceptions being raised can interrupt the
execution of those plugins.

Then, immediately after that, the job’s run method is called, which attempts to run all job phases, from test suite
creation to test execution.

Unless a SystemExit or KeyboardInterrupt is raised, or yet another major external event (like a system
condition that Avocado can not control) it will attempt to run the post methods of all the installed plugins of type
job.prepost. This even includes job executions where the pre plugin executions were interrupted.

Before and after tests

If you followed the previous section, you noticed that the job’s run method was said to run all the test phases. Here’s
a sequence of the job phases:

1) Creation of the test suite
2) Pre tests hook
3) Tests execution
4) Post tests hook

Plugin writers can have their own code called at Avocado during a job that will be called at phase
number 2 (pre_tests) by writing a method according to the avocado.core.plugin_interfaces.
JobPreTests () interface. Accordingly, plugin writers can have their own called at phase num-
ber 4 (post_tests) by writing a method according to the avocado.core.plugin_interfaces.
JobPostTests () interface.

Note that there’s no guarantee that all of the first 3 job phases will be executed, so a failure in phase 1
(create_test_suite), may prevent the phase 2 (pre_tests) and/or 3 (run_tests) from from being ex-
ecuted.

Now, no matter what happens in the atfempted execution of job phases 1 through 3, job phase 4 (post_tests) will
be attempted to be executed. To make it extra clear, as long as the Avocado test runner is still in execution (that is, has
not been terminated by a system condition that it can not control), it will execute plugin’s post_tests methods.

As a concrete example, a plugin’ post_tests method would not be executed after a SIGKILL is sent to the
Avocado test runner on phases 1 through 3, because the Avocado test runner would be promptly interrupted. But, a
SIGTERM and KeyboardInterrupt sent to the Avocado test runner under phases 1 though 3 would still cause the

62 Chapter 9. Build and Quality Status

https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt

avocado Documentation, Release 101.0

test runner to run post_tests (phase 4). Now, if during phase 4 a KeyboardInterrupt or SystemExit is
received, the remaining plugins’ post_tests methods will NOT be executed.

Jobscripts plugin

Avocado ships with a plugin (installed by default) that allows running scripts before and after the actual execution of
Jobs. A user can be sure that, when a given “pre” script is run, no test in that job has been run, and when the “post”
scripts are run, all the tests in a given job have already finished running.

Configuration

By default, the script directory location is:

’/etc/avocado/scripts/job

Inside that directory, that is a directory for pre-job scripts:

’/etc/avocado/scripts/job/pre.d

And for post-job scripts:

’/etc/avocado/scripts/job/post.d

All the configuration about the Pre/Post Job Scripts are placed under the avocado.plugins. jobscripts config
section. To change the location for the pre-job scripts, your configuration should look something like this:

[plugins. jobscripts]
pre = /my/custom/directory/for/pre/job/scripts/

Accordingly, to change the location for the post-job scripts, your configuration should look something like this:

[plugins. jobscripts]
post = /my/custom/directory/for/post/scripts/

A couple of other configuration options are available under the same section:

* warn_non_existing_dir: gives warnings if the configured (or default) directory set for either pre or post
scripts do not exist

* warn_non_zero_status: gives warnings if a given script (either pre or post) exits with non-zero status

Script Execution Environment

All scripts are run in separate process with some environment variables set. These can be used in your scripts in any
way you wish:

e AVOCADO_JOB_UNIQUE_ID: the unique job-id
* AVOCADO_JOB_STATUS: the current status of the job.
* AVOCADO_JOB_LOGDIR: the filesystem location that holds the logs and various other files for a given job run.

Note: Even though these variables should all be set, it’s a good practice for scripts to check if they’re set before using
their values. This may prevent unintended actions such as writing to the current working directory instead of to the
AVOCADO_JOB_LOGDIR if this is not set.

Finally, any failures in the Pre/Post scripts will not alter the status of the corresponding jobs.

9.2. Avocado User’s Guide 63

avocado Documentation, Release 101.0

Tests’ logs plugin

It’s natural that Avocado will be used in environments where access to the integral job results won’t be easily accessi-
ble.

For instance, on Continuous Integration (CI) services, one usually gets access to the output produced on the console,
while access to other files produced (generally called artifacts) may or may not be accessible.

For this reason, it may be helpful to simply output the logs for tests that have “interesting” outcomes, which usually
means that fail and need to be investigated.

To show the content for test that are canceled, skipped and fail, you can set on your configuration file:

[job.output.testlogs]
statuses = ["CANCEL", "SKIP", "FAIL"]

At the end of the job, a header will be printed for each test that ended with any of the statuses given, followed by the
raw content of its respective log file.

9.2.14 Advanced usage

Custom Runnable Identifier

In some cases, you might have a wrapper as an entry point for the tests, so Avocado will use only the wrapper as test
id. For instance, imagine a Makefile with some targets (‘foo’, ‘bar’) and each target is one test. Having a single test
suite with a test calling foo, it will make Avocado print something like this:

“< JOB ID : b6e5bdf2c891382bbde7f24e906a168af351154a JOB LOG : ~/avocado/job-results/job-2021-09-
24T17.39-b6eSbdf/job.log

(1/1) make: STARTED (1/1) make: PASS (2.72 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0 JOB HTML :
~/avocado/job-results/job-2021-09-24T17.39-b6eSbdf/results.html JOB TIME : 5.49 s ¢¢¢

This is happening because Avocado is using the ‘uri’ as identifier with in the current Runnables.

You can change that by setting a custom format with the option runner.identifier_format in you avocado.conf file. For
instance:

[runner] identifier_format = "{uri}-{args[0]}"
With the above adjustment, running the same suite it will produce something like this:

€ JOB ID : 577b70b079e9a6£325{f3e73fd9b93f80ee7f221 JOB LOG : /home/local/avocado/job-results/job-2021-11-
23T13.12-577b70b/job.log

(1/1) “/usr/bin/make-foo”: STARTED (1/1) “/usr/bin/make-foo”: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0 JOB HTML :
~/avocado/job-results/job-2021-11-23T13.12-577b70b/results.html JOB TIME : 0.97 s ¢*¢

For the identifier_format you can use any f-string that it will use {uri}, {args} or {kwargs}. By default it will use {urij.

When using args, since it is a list, you can use in two different ways: “{args}” for the entire list, or “{args[n]}” for a
specific element inside this list. The same is valid when using “{kwargs}”. With kwargs, since it is a dictionary, you
have to specify a key as index and then the values are used.

For instance if you have a kwargs value named ‘DEBUG’, a valid usage could be: “{kwargs[DEBUG]}” and this will
print the current value to this variable (i.e: True or False).

64 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Note: Please, keep in mind this is an experimental feature, and for now you have to use it in combination with
d()cumentation.

Note: Also, be aware this feature it is meant to set custom Runnable identifiers strings only.

Test Runner Selection

To effectively run a job with tests, Avocado makes use of a well described and pluggable interface. This means that
users can choose (and developers can write) their own runners.

Runner choices can be seen by running avocado plugins:

Plugins that run test suites on a Jjob (suite.runner):
nrunner nrunner based implementation of job compliant runner

And to select a different test runner (if another one exists):

avocado run --suite-runner=other_runner_plugin

Running tests with an external runner
It’s pretty standard to have organically grown test suites in most software projects, and these usually include a custom-
built, specific test runner who knows how to find and run their tests.

Still, running those tests inside Avocado may be a good idea for various reasons, including having results in different
human and machine-readable formats and collecting system information alongside those tests (the Avocado’s Sysinfo
functionality), and more.

Avocado makes that possible using its “external runner” feature. The most basic way of using it is:

$ avocado-external-runner external_runner foo bar baz

In this example, Avocado will report individual test results for tests foo, bar, and baz. The actual results will be based
on the return code of individual executions of /path/to/external_runner foo, /path/to/external_runner bar and finally
/path/to/external_runner baz.

As another way to explain how this feature works, think of the “external runner” as an interpreter. The individual tests
as anything that this interpreter recognizes and can execute. A UNIX shell, say /bin/sh could be considered an external
runner, and files with shellcode could be viewed as tests:

$ echo "exit 1" > /tmp/fail
$ echo "exit 0" > /tmp/pass

$ avocado-external-runner /bin/sh /tmp/pass /tmp/fail
JOB ID : 874cab7e2639f1e2244246c69%9a5e0d3elafefeel
JOB LOG : ~/avocado/job-results/job-2022-01-19T15.33-874cab7/job.log
(external-runner-2/2) /bin/sh-/tmp/fail: STARTED
(external-runner-1/2) /bin/sh-/tmp/pass: STARTED
(external-runner-2/2) /bin/sh-/tmp/fail: FAIL (0.01 s)
(external-runner-1/2) /bin/sh-/tmp/pass: PASS (0.01 s)
RESULTS : PASS 1 | ERROR 0O | FAIL 1 | SKIP O | WARN O | INTERRUPT O | CANCEL O

(continues on next page)

9.2. Avocado User’s Guide 65

avocado Documentation, Release 101.0

(continued from previous page)

JOB HTML : ~/avocado/job-results/job-2022-01-19T15.33-874cab7/results.html
JOB TIME : 1.10 s

Note: This example is pretty obvious and could be achieved by giving /tmp/pass and /tmp/fail shell “shebangs”
(#!/bin/sh), making them executable (chmod +x /tmp/pass /tmp/fail), and running them as “SIMPLE” tests.

But now consider the following example:

$ avocado-external-runner curl redhat.com "google.com -v"

JOB ID : fa68dd49a4c00e5a3c2e0fed45c6b3b0edlb6495e

JOB LOG : ~/avocado/job-results/job-2022-01-19T15.37-fa68dd4/job.log
(external-runner-2/2) /bin/curl-google.com: STARTED
(external-runner-1/2) /bin/curl-redhat.com: STARTED
(external-runner-2/2) /bin/curl-google.com: PASS (0.28 s)
(external-runner-1/2) /bin/curl-redhat.com: PASS (5.39 s)

RESULTS : PASS 2 | ERROR 0 | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB HTML : ~/avocado/job-results/job-2022-01-19T15.37-fa68dd4/results.html
JOB TIME : 6.38 s

This effectively makes /bin/curl an “external test runner”, responsible for trying to fetch those URLs, and reporting
PASS or FAIL for each of them.

9.2.15 What’s next?

Now that you are familiar with the basic concepts and Avocado usage, you can write your tests.

As said before, you can write test on your favorite language. But if you would like to use the Avocado libraries and
facilities, you can use Python or Bash.

If you would like to move forward on Avocado, we prepared the “Avocado Test Writer’s Guide” for you. Have fun!

9.3 Avocado Test Writer’s Guide

9.3.1 Writing an Executable Test

This very simple example of an executable test in shell script:

$ echo '#!/bin/bash' > /tmp/executable_test.sh
$ echo 'exit 0' >> /tmp/executable_test.sh
$ chmod +x /tmp/executable_test.sh

Notice that the file is given executable permissions, which is a requirement for Avocado to treat it as a executable test.
Also notice that the script exits with status code 0, which signals a successful result to Avocado.

9.3.2 Writing Avocado Tests with Python

We are going to write an Avocado test in Python and we are going to inherit from avocado. Test. This makes this
test a so-called instrumented test.

66 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Basic example

Let’s re-create an old time favorite, sleeptest!. Itis so simple, it does nothing besides sleeping for a while:

import time
from avocado import Test
class SleepTest (Test):
def test (self):
sleep_length = self.params.get ('sleep_length', default=1)

self.log.debug("Sleeping for seconds", sleep_length)
time.sleep(sleep_length)

This is about the simplest test you can write for Avocado, while still leveraging its API power.

As can be seen in the example above, an Avocado test is a method that starts with test in a class that inherits from
avocado. Test.

Note: Avocado also supports coroutines as tests. Simply declare your test method using the async def syntax,
and Avocado will run it inside an asyncio loop.

Multiple tests and naming conventions

You can have multiple tests in a single class.

To do so, just give the methods names that start with test, say test_foo, test_bar and so on. We recommend
you follow this naming style, as defined in the PEP8 Function Names section.

For the class name, you can pick any name you like, but we also recommend that it follows the CamelCase convention,
also known as CapWords, defined in the PEP 8 document under Class Names.

Convenience Attributes

Note that the test class provides you with a number of convenience attributes:

* A ready to use log mechanism for your test, that can be accessed by means of self. log. It lets you log debug,
info, error and warning messages.

* A parameter passing system (and fetching system) that can be accessed by means of self.params. This is
hooked to the Varianter, about which you can find that more information at 7est parameters.

* And many more (see avocado.core.test. Test)

To minimize the accidental clashes we define the public ones as properties so if you see something like
AttributeError: can't set attribute double you are not overriding these.

Test statuses

Avocado supports the most common exit statuses:

e PASS - test passed, there were no untreated exceptions

9

! sleeptest is a functional test for Avocado. It’s “old” because we also have had such a test for Autotest for a long time.

9.3. Avocado Test Writer’s Guide 67

https://www.python.org/dev/peps/pep-0008/#function-names
https://www.python.org/dev/peps/pep-0008/
http://autotest.github.io

avocado Documentation, Release 101.0

WARN - a variant of PASS that keeps track of noteworthy events that ultimately do not affect the test outcome.
An example could be soft lockup present in the dmesg output. It’s not related to the test results and unless
there are failures in the test it means the feature probably works as expected, but there were certain condition
which might be nice to review. (some result plugins does not support this and report PASS instead)

SKIP - the test’s pre-requisites were not satisfied and the test’s body was not executed (nor its setUp () and
tearDown).

CANCEL - the test was canceled somewhere during the setUp (), the test method or the tearDown (). The
setUp () and tearDown methods are executed.

FATL - test did not result in the expected outcome. A failure points at a (possible) bug in the tested subject, and
not in the test itself. When the test (and its) execution breaks, an ERROR and not a FAIL is reported.”

ERROR - this points (probably) at a bug in the test itself, and not in the subject being tested.It is usually caused
by uncaught exception and such failures needs to be thoroughly explored and should lead to test modification to
avoid this failure or to use self.fail along with description how the subject under testing failed to perform
it’s task.

INTERRUPTED - this result can’t be set by the test writer, it is only possible when the timeout is reached or
when the user hits CTRL+C while executing this test.

other - there are some other internal test statuses, but you should not ever face them.

As you can see the FATL is a neat status, if tests are developed correctly. When writing tests always think about what
its setUp should be, what the test body and is expected to go wrong in the test. To support you Avocado supports
several methods:

Test methods

The simplest way to set the status is to use self.fail, self.error or self.cancel directly from test.

To remember a warning, one simply writes to self.log.warning logger. This won’t interrupt the test execution,
but it will remember the condition and, if there are no failures, will report the test as WARN.

Turning errors into failures

Errors on Python code are commonly signaled in the form of exceptions being thrown. When Avocado runs a test, any
unhandled exception will be seen as a test ERROR, and not as a FATL.

Still, it’s common to rely on libraries, which usually raise custom (or builtin) exceptions. Those exceptions would
normally result in ERROR but if you are certain this is an odd behavior of the object under testing, you should catch
the exception and explain the failure in self.fail method:

try:

process.run("stress_my_feature")

except process.CmdError as details:

self.fail ("The stress command failed: " % details)

If your test compounds of many executions and you can’t get this exception in other case then expected failure, you
can simplify the code by using fail_on decorator:

@avocado.fail_on(process.CmdError)
def test (self):

process.run("first cmd")
process.run ("second cmd")
process.run ("third cmd")

68

Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Once again, keeping your tests up-to-date and distinguishing between FATIL and ERROR will save you a lot of time
while reviewing the test results.

Turning errors into cancels

It is also possible to assume unhandled exception to be as a test CANCEL instead of a test ERROR simply by using
cancel_on decorator:

def test (self):
@avocado.cancel_on (TypeError)
def foo():
raise TypeError
foo ()

Saving test generated (custom) data

Each test instance provides a so called whiteboard. It can be accessed through self.whiteboard. This white-
board is simply a string that will be automatically saved to test results after the test finishes (it’s not synced during the
execution so when the machine or Python crashes badly it might not be present and one should use direct io to the
outputdir for critical data). If you choose to save binary data to the whiteboard, it’s your responsibility to encode
it first (base64 is the obvious choice).

Building on the previously demonstrated sleeptest, suppose that you want to save the sleep length to be used by
some other script or data analysis tool:

def test (self):
sleep_length = self.params.get ('sleep_length', default=1)

self.log.debug("Sleeping for seconds", sleep_length)
time.sleep (sleep_length)
self.whiteboard = " " % sleep_length

The whiteboard can and should be exposed by files generated by the available test result plugins. The results.
json file already includes the whiteboard for each test. Additionally, we’ll save a raw copy of the whiteboard contents
on a file SRESULTS/test-results/$TEST_ID/whiteboard, for your convenience (maybe you want to use
the result of a benchmark directly with your custom made scripts to analyze that particular benchmark result).

If you need to attach several output files, you can also use self.outputdir, which points to the SRESULTS/
test-results/S$TEST_ID/data location and is reserved for arbitrary test result data.

Accessing test data files

Some tests can depend on data files, external to the test file itself. Avocado provides a test API that makes it really
easy to access such files: get_data ().

For Avocado tests (that is, avocado—-instrumented tests) get_data () allows test data files to be accessed
from up to three sources:

« file level data directory: a directory named after the test file, but ending with .data. For a test file /home/
user/test.py, the file level data directory is /home/user/test.py.data/.

* test level data directory: a directory named after the test file and the specific test name. These are useful
when different tests part of the same file need different data files (with the same name or not). Considering
the previous example of /home /user/test.py, and supposing it contains two tests, MyTest .test_foo
and MyTest .test_bar, the test level data directories will be, /home /user/test .py.data/MyTest.
test_foo/ and home/user/test.py.data/MyTest.test_bar/ respectively.

9.3. Avocado Test Writer’s Guide 69

avocado Documentation, Release 101.0

* variant level data directory: if variants are being used during the test execution, a directory named after the
variant will also be considered when looking for test data files. For test file /home /user/test .py, and test
MyTest .test_foo, with variant debug-f £ £ £, the data directory path will be /home /user/test.py.
data/MyTest.test_foo/debug-ffff/.

Note: Unlike avocado-instrumented tests, exec-tests only define £ile and variant data_dirs, therefore the most-
specific data-dir might look like /bin/echo.data/debug-ffff/.

Avocado looks for data files in the order defined at DATA SOURCES, which are from most specific one, to most
generic one. That means that, if a variant is being used, the variant directory is used first. Then the test level
directory is attempted, and finally the file level directory. Additionally you can use get_data (filename,
must_exist=False) to get expected location of a possibly non-existing file, which is useful when you intend
to create it.

Tip: When running tests you can use the -——log-test-data-directories command line option log the test
data directories that will be used for that specific test and execution conditions (such as with or without variants). Look
for “Test data directories” in the test logs.

Note: The previously existing APl avocado.core.test.Test.datadir, used to allow access to the data
directory based on the test file location only. This API has been removed. If, for whatever reason you still
need to access the data directory based on the test file location only, you can use get_data (filename="",
source="file', must_exist=False) instead.

Accessing test parameters
Each test has a set of parameters that can be accessed through self.params.get ($name, $path=None,
$default=None) where:

* name - name of the parameter (key)

* path - where to look for this parameter (when not specified uses mux-path)

e default - what to return when param not found

The path is a bit tricky. Avocado uses tree to represent parameters. In simple scenarios you don’t need to worry and
you’ll find all your values in default path, but eventually you might want to check-out Test parameters to understand
the details.

Let’s say your test receives following params (you’ll learn how to execute them in the following section):

$ avocado variants —-m examples/tests/sleeptenmin.py.data/sleeptenmin.yaml —--variants 2

Variant 1: /run/sleeptenmin/builtin, /run/variants/one_cycle

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_cycle:sleep_cycles => 1

/run/variants/one_cycle:sleep_length => 600

In test you can access those params by:

self.params.get ("sleep_method") # returns "builtin"
self.params.get ("sleep_cycles”, 'x', 10) # returns 1
self.params.get ("sleep_length", "/x/variants/*" # returns 600

70 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Note: The path is important in complex scenarios where clashes might occur, because when there are multiple values
with the same key matching the query Avocado raises an exception. As mentioned you can avoid those by using
specific paths or by defining custom mux-path which allows specifying resolving hierarchy. More details can be found
in Test parameters.

Running multiple variants of tests
In the previous section we described how parameters are handled. Now, let’s have a look at how to produce them and
execute your tests with different parameters.

The variants subsystem is what allows the creation of multiple variations of parameters, and the execution of tests with
those parameter variations. This subsystem is pluggable, so you might use custom plugins to produce variants. To
keep things simple, let’s use Avocado’s primary implementation, called “yaml_to_mux”.

The “yaml_to_mux” plugin accepts YAML files. Those will create a tree-like structure, store the variables as parame-
ters and use custom tags to mark locations as “multiplex” domains.

Let’s use examples/tests/sleeptenmin.py.data/sleeptenmin.yaml file as an example:

sleeptenmin: !mux
builtin:
sleep_method: builtin
shell:
sleep_method: shell
variants: !mux
one_cycle:
sleep_cycles: 1
sleep_length: 600
six_cycles:
sleep_cycles: 6
sleep_length: 100
one_hundred_cycles:
sleep_cycles: 100
sleep_length: 6
six_hundred_cycles:
sleep_cycles: 600
sleep_length: 1

Which produces following structure and parameters:

$ avocado variants -m examples/tests/sleeptenmin.py.data/sleeptenmin.yaml —--summary 2
—-—-variants 2
Multiplex tree representation:
run
sleeptenmin
builtin
— sleep_method: builtin
shell
— sleep_method: shell
variants
one_cycle
— sleep_length: 600
— sleep_cycles: 1
six_cycles
— sleep_length: 100

(continues on next page)

9.3. Avocado Test Writer’s Guide 71

avocado Documentation, Release 101.0

(continued from previous page)

— sleep_cycles: 6
one_hundred_cycles

— sleep_length: 6

— sleep_cycles: 100
six_hundred_cycles

— sleep_length: 1

— sleep_cycles: 600

Multiplex variants (8):

Variant builtin-one_cycle-f659: /run/sleeptenmin/builtin, /run/variants/one_cycle
/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_cycle:sleep_cycles => 1

/run/variants/one_cycle:sleep_length => 600

Variant builtin-six_cycles-723b: /run/sleeptenmin/builtin, /run/variants/six_cycles
/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/six_cycles:sleep_cycles => 6
/run/variants/six_cycles:sleep_length => 100

Variant builtin-one_hundred_cycles-633a: /run/sleeptenmin/builtin, /run/variants/
—one_hundred_cycles
/run/sleeptenmin/builtin:sleep_method => builtin

/run/variants/one_hundred_cycles:sleep_cycles => 100
/run/variants/one_hundred_cycles:sleep_length => 6

Variant builtin-six_hundred_cycles-a570: /run/sleeptenmin/builtin, /run/variants/
—six_hundred_cycles
/run/sleeptenmin/builtin:sleep_method => builtin

/run/variants/six_hundred_cycles:sleep_cycles => 600
/run/variants/six_hundred_cycles:sleep_length => 1

Variant shell-one_cycle-55f5: /run/sleeptenmin/shell, /run/variants/one_cycle
/run/sleeptenmin/shell:sleep_method => shell
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

Variant shell-six_cycles—9e23: /run/sleeptenmin/shell, /run/variants/six_cycles
/run/sleeptenmin/shell:sleep_method => shell
/run/variants/six_cycles:sleep_cycles => 6
/run/variants/six_cycles:sleep_length => 100

Variant shell-one_hundred_cycles-586f: /run/sleeptenmin/shell, /run/variants/one_
—hundred_cycles
/run/sleeptenmin/shell:sleep_method => shell

/run/variants/one_hundred_cycles:sleep_cycles => 100
/run/variants/one_hundred_cycles:sleep_length => 6

Variant shell-six_hundred_cycles—-1e84: /run/sleeptenmin/shell, /run/variants/six_
—hundred_cycles
/run/sleeptenmin/shell:sleep_method => shell

/run/variants/six_hundred_cycles:sleep_cycles => 600
/run/variants/six_hundred_cycles:sleep_length => 1

You can see that it creates all possible variants of each multiplex domain, which are defined by ! mux tag in the
YAML file and displayed as single lines in tree view (compare to double lines which are individual nodes with values).
In total it’ll produce 8 variants of each test:

72 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

$ avocado run --mux-yaml examples/tests/sleeptenmin.py.data/sleeptenmin.yaml —-—
—examples/tests/passtest.py
JOB ID : cc7ef22654c683b73174af6£97bc385da5a0f02f
JOB LOG : SHOME/avocado/job-results/job-2017-01-22T11.26-cc7ef22/job.log

(1/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-builtin-variants—-one_
—cycle-0aae: STARTED

(1/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-builtin-variants-one_
—cycle-0aae: PASS (0.01 s)

(2/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-builtin-variants-six_
—cycles—ca95: STARTED

(2/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-builtin-variants—-six_
—cycles—-ca95: PASS (0.01 s)

(3/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-builtin-variants-one_
—hundred_cycles-e897: STARTED

(3/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-builtin-variants-one_
—hundred_cycles-e897: PASS (0.01 s)

(4/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-builtin-variants—-six_
—hundred_cycles-b0b0: STARTED

(4/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-builtin-variants-six_
—hundred_cycles-b0b0: PASS (0.01 s)

(5/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-shell-variants—one_
—cycle-£35d: STARTED

(5/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-shell-variants—one_
—cycle—-£f35d: PASS (0.01 s)

(6/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-shell-variants—six_
—cycles-56b6: STARTED

(6/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-shell-variants—six_
—cycles—-56b6: PASS (0.01 s)

(7/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-shell-variants—one_
—hundred_cycles—ec04: STARTED

(7/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-shell-variants—one_
—hundred_cycles—-ec04: PASS (0.01 s)

(8/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-shell-variants—six_
—hundred_cycles-8fff: STARTED

(8/8) examples/tests/passtest.py:PassTest.test;run-sleeptenmin-shell-variants—six_
—hundred_cycles—-8fff: PASS (0.01 s)
RESULTS : PASS 8 | ERROR 0 | FAIL O | SKIP O | WARN O | INTERRUPT O
JOB TIME : 0.16 s

[

There are other options to influence the params so please check out avocado run -h and for details use 7est
parameters.

unittest.TestCase heritage

Since an Avocado test inherits from unittest . TestCase, you can use all the assertion methods that its parent.

The code example below uses assertEqual, assertTrue and assertIsInstace

from avocado import Test

class RandomExamples (Test) :
def test (self):
self.log.debug("Verifying some random math...")
four = 2 % 2
four_ = 2 + 2
self.assertEqual (four, four_, "something is very wrong here!™)

(continues on next page)

9.3. Avocado Test Writer’s Guide 73

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertTrue
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsInstance

avocado Documentation, Release 101.0

(continued from previous page)

self.log.debug("Verifying if a variable is set to True...")
variable = True
self.assertTrue (variable)

self.log.debug("Verifying if this test is an instance of test.Test")
self.assertIsInstance(self, test.Test)

Running tests under other unittest runners

nose is another Python testing framework that is also compatible with unittest.

Because of that, you can run Avocado tests with the nosetest s application:

$ nosetests examples/tests/sleeptest.py

Ran 1 test in 1.004s

OK

Conversely, you can also use the standard unittest .main () entry point to run an Avocado test. Check out the
following code, to be saved as dummy . py:

from avocado import Test
from unittest import main

class Dummy (Test) :
def test (self):
self.assertTrue (True)
if _ name_ == '_ _main__ ':
main ()

It can be run by:

$ python dummy.py

Ran 1 test in 0.000s

OK

But we’d still recommend using avocado .main instead which is our main entry point.

Setup and cleanup methods

To perform setup actions before/after your test, you may use setUp and tearDown methods. The tearDown
method is always executed even on setUp failure so don’t forget to initialize your variables early in the setUp.
Example of usage is in the next section Running third party test suites.

74 Chapter 9. Build and Quality Status

https://nose.readthedocs.org/
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.main

avocado Documentation, Release 101.0

Running third party test suites

It is very common in test automation workloads to use test suites developed by third parties. By wrapping the execution
code inside an Avocado test module, you gain access to the facilities and API provided by the framework. Let’s say
you want to pick up a test suite written in C that it is in a tarball, uncompress it, compile the suite code, and then

executing the test. Here’s an example that does that:

#!/usr/bin/env python3
import os

from avocado import Test
from avocado.utils import archive, build, process

class SyncTest (Test) :

mon

Execute the synctest test suite.

:param sync_tarball: path to the tarball relative to a data directory
:param default_symbols: whether to build with debug symbols (bool)
:param sync_length: how many data should by used in sync test

:param sync_loop: how many writes should be executed in sync test

mmn

def setUp(self):

mnn

Build the synctest suite.
self.cwd = os.getcwd ()
sync_tarball = self.params.get ('sync_tarball', 'x', 'synctest.tar.bz2')
tarball_path = self.get_data(sync_tarball)
if tarball_path is None:
self.cancel ('Test is missing data file %s' % tarball_path)
archive.extract (tarball_path, self.workdir)
srcdir = os.path.join(self.workdir, 'synctest')
os.chdir (srcdir)
if self.params.get ('debug_symbols', default=True) :
build.make (srcdir,
env={'CFLAGS': '—-g -00'},
extra_args='synctest')
else:
build.make (srcdir)

def test (self):

mon

Execute synctest with the appropriate params.

path = os.path.join(os.getcwd(), 'synctest')

cmd = ('%s %s %

(path, self.params.get ('sync_length', default=100),
self.params.get ('sync_loop', default=10)))

process.system(cmd)

os.chdir (self.cwd)

RN B
S o

Here we have an example of the setUp method in action: Here we get the location of the test suite code (tarball)
through avocado.Test.get_data (), then uncompress the tarball through avocado.utils.archive.

9.3. Avocado Test Writer’s Guide

75

avocado Documentation, Release 101.0

extract (), an API that will decompress the suite tarball, followed by avocado.utils.build.make (), that
will build the suite.

In this example, the test method just gets into the base directory of the compiled suite and executes the ./
synctest command, with appropriate parameters, using avocado.utils.process.system().

Fetching asset files

To run third party test suites as mentioned above, or for any other purpose, we offer an asset fetcher as a method
of Avocado Test class. The asset fetch method looks for a list of directories in the cache_dirs key, inside the
[datadir.paths] section from the configuration files. Read-only directories are also supported. When the asset
file is not present in any of the provided directories, Avocado will try to download the file from the provided locations,
copying it to the first writable cache directory. Example:

cache_dirs = ['/usr/local/src/', '~/avocado/data/cache']

In the example above, /usr/local/src/ is a read-only directory. In that case, when Avocado needs to fetch the
asset from the locations, the asset will be copied to the ~/avocado/data/cache directory.

If the tester does not provide a cache_dirs for the test execution, Avocado creates a cache directory inside the
Avocado data_dir location to put the fetched files in.

* Use case 1: no cache_dirs key in config files, only the asset name provided in the full URL format:

def setUp(self):
stress = 'https://fossies.org/linux/privat/stress-1.0.4.tar.gz'
tarball = self.fetch_asset (stress)
archive.extract (tarball, self.workdir)

In this case, fetch_asset () will download the file from the URL provided, copying it to the $data_dir/
cache directory. The fetch_asset () method returns the target location of the fetched asset. In this exam-
ple, the tarball variable holds /home/user/avocado/data/cache/stress-1.0.4.tar.gz.

» Use case 2: Read-only cache directory provided. cache_dirs = ['/mnt/files']:

def setUp(self):
stress = 'https://fossies.org/linux/privat/stress-1.0.4.tar.gz"'
tarball = self.fetch_asset (stress)
archive.extract (tarball, self.workdir)

In this case, Avocado tries to find stress—-1.0.4.tar.gz filein /mnt/files directory. If it’s not found,
since /mnt/files cache is read-only, Avocado tries to download the asset file to the $data_dir/cache
directory.

» Use case 3: Writable cache directory provided, along with a list of locations. Use of the default cache directory,
cache_dirs = ['~/avocado/data/cache']:

def setUp(self):

st_name = 'stress-1.0.4.tar.gz'
st_hash = 'el533bc704928batce26a362452e6db8fd58b1£f0b"
st_loc = ['https://fossies.org/linux/privat/stress—-1.0.4.tar.gz"',

'ftp://foo.bar/stress-1.0.4.tar.gz"]

(continues on next page)

76 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

(continued from previous page)

tarball = self.fetch_asset (st_name, asset_hash=st_hash,
locations=st_1loc)
archive.extract (tarball, self.workdir)

In this case, Avocado tries to download stress—-1.0.4.tar.gz from the provided locations list (if it’s not
already in the default cache, ~/avocado/data/cache). As the hash was also provided, Avocado verifies
the hash. To do so, Avocado first looks for a hash file named stress-1.0.4.tar.gz.CHECKSUM in the
same directory. If the hash file is not available, Avocado computes the hash and creates the hash file for later
use.

The resulting tarball variable content will be ~/avocado/cache/stress-1.0.4.tar.gz. Anex-
ception is raised if Avocado fails to download or to verify the file.

* Use case 4: Low bandwidth available for download of a large file which takes a lot of time to download and
causes a CI, like Travis, for example, to timeout the test execution. Do not cancel the test if the file is not
available:

def setUp(self):

st_name = 'stress-1.0.4.tar.gz'

st_hash = 'el533bc704928ba6e26a362452e6db8fd58b1f0b"’

st_loc = ['https://fossies.org/linux/privat/stress-1.0.4.tar.gz"',
'ftp://foo.bar/stress-1.0.4.tar.gz"']

tarball = self.fetch_asset (st_name, asset_hash=st_hash,

locations=st_loc, find_only=True)
archive.extract (tarball, self.workdir)

Setting the £ind_only parameter to True will make Avocado look for the asset in the cache, but will not
attempt to download it if the asset is not available. The asset download can be done prior to the test execution
using the command-line avocado assets fetch avocado-instrumented.

In this example, if the asset is not available in the cache, the test will continue to run and when the test tries to
use the asset, it will fail. A solution for that is presented in the next use case.

* Use case 5: Low bandwidth available for download or a large file which takes a lot of time to download and
causes a CI, like Travis, for example, to timeout the test execution. Cancel the test if the file is not available:

def setUp(self):

st_name = 'stress-1.0.4.tar.gz'

st_hash = 'el533bc704928ba6e26a362452e6db8fd58b1£f0b"

st_loc = ['https://fossies.org/linux/privat/stress-1.0.4.tar.gz',
'ftp://foo.bar/stress-1.0.4.tar.gz"]

tarball = self.fetch_asset (st_name, asset_hash=st_hash,

locations=st_loc, find_only=True,
cancel_on_missing=True)
archive.extract (tarball, self.workdir)

With cancel_on_missing set to True and find_only set to True, if the file is not available in the
cache, the test is canceled.

Detailing the fetch_asset () parameters:

e name: The destination name used to the fetched file. It can also contains a full URI. The URI will be used as
the location (after searching into the cache directories).

9.3. Avocado Test Writer’s Guide 77

avocado Documentation, Release 101.0

* asset_hash: (optional) The expected hash for the file. If missing, Avocado skips the hash check. If provided,
before computing the hash, Avocado looks for a hash file to verify the asset. If the hash file is not available,
Avocado computes the hash and creates the hash file in the same cache directory for later use.

* algorithm: (optional) Provided hash algorithm format. Defaults to shal.

* locations: (optional) List of locations used to try to fetch the file. The supported schemes are http://,
https://, ftp:// and file://. The tester should inform the full url to the file, including the file name.
The first fetch success skips the next locations. Notice that for file:// Avocado creates a symbolic link in
the cache directory, pointing to the original location of the file.

* expire: (optional) period while a cached file is considered valid. After that period, the file will be downloaded
again. The value can be an integer or a string containing the time and the unit. Example: ‘10d’ (ten days). Valid
units are s (second), m (minute), h (hour) and d (day).

e find_only: (optional) tries to find the asset in the cache. If the asset file is not available in the cache,
Avocado will not attempt to download it.

* cancel_on_missing (optional) if set to True, cancel the current running test if there is a problem while
downloading the asset or if find_only=True and the asset is not available in the cache.

The expected return of the method is the asset file path or an exception.

Test log, stdout and stderr in native Avocado modules
If needed, you can write directly to the expected stdout and stderr files from the native test scope. It is important to
make the distinction between the following entities:

* The test logs

* The test expected stdout

* The test expected stderr

The first one is used for debugging and informational purposes. Additionally writing to self.log.warning causes test to
be marked as dirty and when everything else goes well the test ends with WARN. This means that the test passed but
there were non-related unexpected situations described in warning log.

You may log something into the test logs using the methods in avocado. Test . 1og class attributes. Consider the
example:

class output_test (Test):

def test (self):
self.log.info('This goes to the log and it is only informational')
self.log.warn('Oh, something unexpected, non-critical happened, '
'but we can continue.')
self.log.error('Describe the error here and don't forget to raise '
'an exception yourself. Writing to self.log.error '
'won't do that for you.')

self.log.debug('Everybody look, I had a good lunch today...")

If you need to write directly to the test stdout and stderr streams, Avocado makes two preconfigured loggers available
for that purpose, named avocado.test.stdout and avocado.test.stderr. You can use Python’s standard
logging API to write to them. Example:

import logging

class output_test (Test):

(continues on next page)

78 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

(continued from previous page)

def test (self):
stdout = logging.getLogger ('avocado.test.stdout')
stdout.info ('Informational line that will go to stdout')

stderr = logging.getlLogger ('avocado.test.stderr')
stderr.info('Informational line that will go to stderr')

Avocado will automatically save anything a test generates on STDOUT into a stdout file, to be found at the test
results directory. The same applies to anything a test generates on STDERR, that is, it will be saved into a stderr
file at the same location.

Additionally, when using the runner’s output recording features, namely the ——output-check-record argu-
ment with values stdout, stderr or all, everything given to those loggers will be saved to the files stdout.
expected and stderr.expected at the test’s data directory (which is different from the job/test results direc-

tory).

Setting a Test Timeout

Sometimes your test suite/test might get stuck forever, and this might impact your test grid. You can account for that
possibility and set up a t imeout parameter for your test. The test timeout can be set through the test parameters, as
shown below.

sleep_length: 5
timeout: 3

$ avocado run examples/tests/sleeptest.py —-mux-yaml /tmp/sleeptest—example.yaml
JOB ID : c78464bde9072a0b5601157989a99f0ba32a288e
JOB LOG : SHOME/avocado/job-results/job-2016-11-02T11.13-c78464b/job.log
(1/1) examples/tests/sleeptest.py:SleepTest.test;run-0fcl: STARTED
(1/1) examples/tests/sleeptest.py:SleepTest.test;run-0fcl: INTERRUPTED: timeout,,
—(3.01 s)

RESULTS : PASS O | ERROR 0 | FAIL O | SKIP O | WARN O | INTERRUPT 1
JOB TIME : 3.14 s
JOB HTML : SHOME/avocado/job-results/job-2016-11-02T11.13-c78464b/html/results.html

$ cat $HOME/avocado/job-results/job-2016-11-02T11.13-c78464b/job.log

2021-10-01 15:44:53,622 job L0319 INFO | Multiplex tree
—representation:
2021-10-01 15:44:53,622 job L0319 INFO | \-- run
2021-10-01 15:44:53,622 job L0319 INFO |
2021-10-01 15:44:53,622 job L0319 INFO | Multiplex variants (1):
2021-10-01 15:44:53,622 job L0319 INFO | Variant run-0fcl: /run
2021-10-01 15:44:53,622 job L0312 INFO | Temporary dir: /tmp/avocado_tmp_
—hpdcswyn/avocado_job_pmn___ 61
2021-10-01 15:44:53,622 job L0313 INFO |
2021-10-01 15:44:53,622 Jjob L0306 INFO | Job ID:
—927£dc4143e9e093a485319820825faacc0£f36a3
2021-10-01 15:44:53,622 job L0309 INFO |
2021-10-01 15:44:54,165 selector_events L0059 DEBUG| Using selector: EpollSelector
2021-10-01 15:44:54,622 testlogs L0094 INFO | examples/tests/sleeptest.
—py:SleepTest.test;run-0fcl: STARTED
2021-10-01 15:44:57,653 testlogs L0101 INFO | examples/tests/sleeptest.

—py:SleepTest.test; run-0fcl: INTERRUPTED

(continues on next page)

9.3. Avocado Test Writer’s Guide 79

avocado Documentation, Release 101.0

(continued from previous page)

2021-10-01 15:44:57,654 testlogs L0103 INFO | More information in /home/
—jarichte/avocado/job-results/job-2021-10-01T15.44-927fdcd4/test-results/l-examples_
—tests_sleeptest.py_SleepTest.test_run-0fcl

2021-10-01 15:44:57,762 job L0643 INFO | Test results available in /home/
—Jjarichte/avocado/job-results/job-2021-10-01T15.44-927fdc4

The YAML file defines a test parameter t imeout which overrides the default test timeout. When the timeout
is reached, the spawner will terminate the test runner task, making it raise a avocado.core.exceptions.
TestInterruptedError. The termination process is specific to spawner implementation, for more information
see avocado.core.plugin_interfaces.Spawner.terminate_task.

Skipping Tests

To skip tests is in Avocado, you must use one of the Avocado skip decorators:
* avocado.skip (): Skips a test.
* avocado.skipIf (): Skips a testif the condition is True.
e avocado.skipUnless (): Skips a test if the condition is False

Those decorators can be used with classes and both setUp () method and/or and in the test x () methods. The test
below:

import avocado

class MyTest (avocado.Test) :

@avocado.skipIf (1l == 1, 'Skipping on True condition.')
def testl (self):
pass

@avocado.skip ("Don't want this test now.")
def test2(self):
pass

@avocado.skipUnless (1l == 1, 'Skipping on False condition."')
def test3(self):
pass

Will produce the following result:

$ avocado run test_skip_decorators.py

JOB ID : 59c815f6ad42269daeaflebb93e52269fb8a78119
JOB LOG : SHOME/avocado/job-results/job-2017-02-03T17.41-59¢c815f/job.log
(1/3) /tmp/test_skip_decorators.py:MyTest.testl: STARTED

)

) /tmp/test_skip_decorators.py:MyTest.testl: SKIP: Skipping on True condition.
2/3) /tmp/test_skip_decorators.py:MyTest.test2: STARTED

)

)

)

2/3) /tmp/test_skip_decorators.py:MyTest.test2: SKIP: Don't want this test now.
3/3) /tmp/test_skip_decorators.py:MyTest.test3: STARTED
(3/3) /tmp/test_skip_decorators.py:MyTest.test3: PASS (0.01 s)

RESULTS : PASS 1 | ERROR O | FAIL O | SKIP 2 | WARN O | INTERRUPT O

JOB TIME : 0.13 s

JOB HTML : SHOME/avocado/Jjob-results/job-2017-02-03T17.41-59¢c815f/html/results.html

Notice the test 3 was not skipped because the provided condition was not False.

80 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Using the skip decorators, nothing is actually executed. We will skip the setUp () method, the test method and the
tearDown () method.

Note: It’s an erroneous condition, reported with test status ERROR, to use any of the skip decorators on the
tearDown () method.

Advanced Conditionals

More advanced use cases may require to evaluate the condition for skipping tests later, and may also need to introspect
into the class that contains the test method in question.

It’s possible to achieve both by supplying a callable to the condition parameters instead. The following example does
just that:

from avocado import Test, skipIf, skipUnless

class BaseTest (Test) :
"""Base class for tests

ravocado: disable
mmn

SUPPORTED_ENVS = []

@skipUnless (
lambda x: "BARE_METAL" in x.SUPPORTED_ENVS, "Bare metal environment is_,
—required"”
)
def test_bare_metal (self):
pass

@skipIf (lambda x: getattr(x, "MEMORY", 0) < 4096, "Not enough memory for test")
def test_large_memory (self):
pass

@skipUnless (
lambda x: "VIRTUAL_MACHINE" in x.SUPPORTED_ENVS,
"Virtual Machine environment is required",

)

def test_nested_virtualization(self):
pass

@skipUnless (

lambda x: "CONTAINER" in x.SUPPORTED_ENVS, "Container environment is required"
)
def test_container(self):

pass

class BareMetal (BaseTest) :

SUPPORTED_ENVS = ["BARE METAL"]
MEMORY = 2048

(continues on next page)

9.3. Avocado Test Writer’s Guide 81

avocado Documentation, Release 101.0

(continued from previous page)

def test_specific(self):
pass
class NonBareMetal (BaseTest) :
SUPPORTED_ENVS = ["VIRTUAL_MACHINE", "CONTAINER"]

def test_specific(self):
pass

Even though the conditions for skipping tests are defined in the BaseTest class, the conditions will be evaluated
when the tests are actually checked for execution, in the BareMetal and NonBareMetal classes. The result of
running that test is:

JOB ID : 77d636c93ed3b5e6fef9c7b6c8d9fe0c84af1518
JOB LOG : SHOME/avocado/job-results/job-2021-03-17T20.10-77d636¢c/job.log

(01/10) examples/tests/skip_conditional.py:BareMetal.test_specific: STARTED

(01/10) examples/tests/skip_conditional.py:BareMetal.test_specific: PASS (0.01 s)

(02/10) examples/tests/skip_conditional.py:BareMetal.test_bare_metal: STARTED

(02/10) examples/tests/skip_conditional.py:BareMetal.test_bare_metal: PASS (0.01 s)

(03/10) examples/tests/skip_conditional.py:BareMetal.test_large_memory: STARTED

(03/10) examples/tests/skip_conditional.py:BareMetal.test_large_memory: SKIP: Not
—enough memory for test

(04/10) examples/tests/skip_conditional.py:BareMetal.test_nested_virtualization:
—STARTED

(04/10) examples/tests/skip_conditional.py:BareMetal.test_nested_virtualization:
—SKIP: Virtual Machine environment is required

(05/10) examples/tests/skip_conditional.py:BareMetal.test_container: STARTED

(05/10) examples/tests/skip_conditional.py:BareMetal.test_container: SKIP: Container,
—environment is required

(06/10) examples/tests/skip_conditional.py:NonBareMetal.test_specific: STARTED

(06/10) examples/tests/skip_conditional.py:NonBareMetal.test_specific: PASS (0.01 s)

(07/10) examples/tests/skip_conditional.py:NonBareMetal.test_bare_metal: STARTED

(07/10) examples/tests/skip_conditional.py:NonBareMetal.test_bare_metal: SKIP: Bare
—metal environment is required

(08/10) examples/tests/skip_conditional.py:NonBareMetal.test_large_memory: STARTED

(08/10) examples/tests/skip_conditional.py:NonBareMetal.test_large_memory: SKIP: Not,
—enough memory for test

(09/10) examples/tests/skip_conditional.py:NonBareMetal.test_nested_virtualization:
—~STARTED

(09/10) examples/tests/skip_conditional.py:NonBareMetal.test_nested_virtualization:
—PASS (0.01 s)

(10/10) examples/tests/skip_conditional.py:NonBareMetal.test_container: STARTED

(10/10) examples/tests/skip_conditional.py:NonBareMetal.test_container: PASS (0.01 s)

RESULTS : PASS 5 | ERROR 0 | FAIL O | SKIP 5 | WARN O | INTERRUPT O | CANCEL O
JOB HTML : SHOME/avocado/job-results/job-2021-03-17T20.10-77d636c/results.html
JOB TIME : 0.82 s

Canceling Tests

You can cancel a test calling self.cancel() at any phase of the test (setUp(), test method or tearDown()). Test will finish
with CANCEL status and will not make the Job to exit with a non-0 status. Example:

82 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

from avocado import Test
from avocado.utils.process import run
from avocado.utils.software_manager.manager import SoftwareManager

class CancelTest (Test) :

mon

Example tests that cancel the current test from inside the test.
mmmn

def setUp(self):
sm = SoftwareManager ()
self.pkgs = sm.list_all (software_components=False)

def test_iperf (self):
if "iperf-2.0.8-6.fc25.x86_64" not in self.pkgs:
self.cancel ("iperf is not installed or wrong version")
self.assertIn("pthreads", run("iperf -v", ignore_status=True) .stderr_text)

def test_gcc(self):
if "gcc-6.3.1-1.£fc25.x86_64" not in self.pkgs:
self.cancel ("gcc is not installed or wrong version")
self.assertIn(
"enable-gnu-indirect-function",
run ("gcc -v", ignore_status=True) .stderr_text,

In a system missing the iperf package but with gcc installed in the correct version, the result will be:

$ avocado run examples/tests/cancel_test.py
JOB ID : 39¢1f120830b9769p42£5£70b6b7bad0blblf09f
JOB LOG : SHOME/avocado/job-results/job-2017-03-10T16.22-39c1fl12/job.log
(1/2) /tmp/cancel_test.py:CancelTest.test_iperf: STARTED
(1/2) /tmp/cancel_test.py:CancelTest.test_iperf: CANCEL: iperf is not installed
—0r wrong version (2.76 s)
(2/2) /tmp/cancel_test.py:CancelTest.test_gcc: STARTED
(2/2) /tmp/cancel_test.py:CancelTest.test_gcc: PASS (1.59 s)

RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL 1
JOB TIME : 2.38 s
JOB HTML : SHOME/avocado/job-results/job-2017-03-10T16.22-39¢c1f12/html/results.html

Notice that using the sel1f.cancel () will cancel the rest of the test from that point on, but the tearDown () will
still be executed.

Depending on the result format you’re referring to, the CANCEL status is mapped to a corresponding valid status in
that format. See the table below:

Format | Corresponding Status

json cancel
Xunit skipped
tap ok

html CANCEL (warning)

9.3. Avocado Test Writer’s Guide 83

avocado Documentation, Release 101.0

Docstring Directives

Some Avocado features, usually only available to instrumented tests, depend on setting directives on the test’s class
docstring. A docstring directive is composed of a marker (a literal :avocado: string), followed by the custom
content itself, such as :avocado: directive.

This is similar to docstring directives such as :param my_param: description and shouldn’t be a surprise
to most Python developers.

The reason Avocado uses those docstring directives (instead of real Python code) is that the inspection done while
looking for tests does not involve any execution of code.

For a detailed explanation about what makes a docstring format valid or not, please refer to our section on Docstring
Directives Rules.

Now let’s follow with some docstring directives examples.
Declaring test as not being avocado-instrumented
In order to say this class is not an Avocado instrumented test, one can use :avocado: disable directive. The

result is that this class itself is not discovered as an instrumented test, but children classes might inherit it’s test *
methods (useful for base-classes):

from avocado import Test

class BaseClass (Test) :

mon

ravocado: disable

mmwn

def test_shared(self):
pass

class SpecificTests (BaseClass) :
def test_specific(self):
pass

Results in:

$ avocado list test.py
avocado-instrumented test.py:SpecificTests.test_specific
avocado—instrumented test.py:SpecificTests.test_shared

The test.py:BaseBase.test is not discovered due the tag while the test.py:SpecificTests.
test_shared is inherited from the base-class.

Declaring test as being avocado-instrumented

The :avocado: enable tag might be useful when you want to override that this is an avocado-instrumented test,
even though it is not inherited from avocado. Test class and/or when you want to only limit the test » methods
discovery to the current class:

from avocado import Test

class NotInheritedFromTest:
mmwn

ravocado: enable

(continues on next page)

84 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

(continued from previous page)

mon

def test (self):
pass

class BaseClass (Test) :

mmn

ravocado: disable

mmn

def test_shared(self):
pass

class SpecificTests (BaseClass):

mmon

ravocado: enable
mmwn

def test_specific(self):
pass

Results in:

$ avocado list test.py
avocado-instrumented test.py:NotInheritedFromTest.test
avocado-instrumented test.py:SpecificTests.test_specific

The test.py:NotInheritedFromTest.test will not really work as it lacks several required methods, but
still is discovered as an avocado-instrumented test due to enable tag and the SpecificTests only looks at it’s
test» methods, ignoring the inheritance, therefore the test .py:SpecificTests.test_shared will not be
discovered.

(Deprecated) enabling recursive discovery

The :avocado: recursive tag was used to enable recursive discovery, but nowadays this is the default. By
using this tag one explicitly sets the class as avocado-instrumented, therefore inheritance from avocado.Test is not
required.

Categorizing tests
Avocado allows tests to be given tags, which can be used to create test categories. With tags set, users can select a
subset of the tests found by the test resolver.

To make this feature easier to grasp, let’s work with an example: a single Python source code file, named perf.py,
that contains both disk and network performance tests:

from avocado import Test

class Disk (Test) :

mmn

Disk performance tests

ravocado: tags=disk,slow, superuser,unsafe
mmn

def test_device(self):

(continues on next page)

9.3. Avocado Test Writer’s Guide 85

avocado Documentation, Release 101.0

(continued from previous page)

device = self.params.get ('device', default='/dev/vdb'")
self.whiteboard = measure_write_to_disk (device)

class Network (Test) :

mmn

Network performance tests

ravocado: tags=net,fast,safe

mmn

def test_latency(self):
self.whiteboard = measure_latency ()

def test_throughput (self) :
self.whiteboard = measure_throughput ()

class Idle(Test):

mmon

Idle tests

mmn

def test_idle(self):
self.whiteboard = "test achieved nothing"

Warning: All docstring directives in Avocado require a strict format, that is, :avocado: followed by one
or more spaces, and then followed by a single value with no white spaces in between. This means that an
attempt to write a docstring directive like : avocado: tags=foo, bar will be interpreted as : avocado:
tags=foo,.

Test tags can be applied to test classes and to test methods. Tags are evaluated per method, meaning that the class tags
will be inherited by all methods, being merged with method local tags. Example:

from avocado import Test

class MyClass (Test) :

mmon

ravocado: tags=furious
mrmmn

def testl (self):

mnn

ravocado: tags=fast

mon

pass

def test2(self):

mmn

ravocado: tags=slow

mmnn

pass

86 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

If you use the tag furious, all tests will be included:

$ avocado list furious_tests.py —--filter-by-tags=furious
avocado-instrumented test_tags.py:MyClass.testl
avocado-instrumented test_tags.py:MyClass.test2

But using fast and furious will include only test1:

$ avocado list furious_tests.py —--filter-by-tags=fast, furious
avocado-instrumented test_tags.py:MyClass.testl

Python unittest Compatibility Limitations And Caveats

When executing tests, Avocado uses different techniques than most other Python unittest runners. This brings some
compatibility limitations that Avocado users should be aware.

Execution Model

One of the main differences is a consequence of the Avocado design decision that tests should be self contained and
isolated from other tests. Additionally, the Avocado test runner runs each test in a separate process.

If you have a unittest class with many test methods and run them using most test runners, you’ll find that all test
methods run under the same process. To check that behavior you could add to your set Up method:

def setUp(self):
print ("PID: ", os.getpid())

If you run the same test under Avocado, you’ll find that each test is run on a separate process.

Class Level setUp and tearDown

Because of Avocado’s test execution model (each test is run on a separate process), it doesn’t make sense to support
unittest’s unittest.TestCase.setUpClass () and unittest.TestCase.tearDownClass (). Test
classes are freshly instantiated for each test, so it’s pointless to run code in those methods, since they’re supposed
to keep class state between tests.

The setUp method is the only place in Avocado where you are allowed to call the skip method, given that, if a test
started to be executed, by definition it can’t be skipped anymore. Avocado will do its best to enforce this boundary,
so that if you use skip outside setUp, the test upon execution will be marked with the ERROR status, and the error
message will instruct you to fix your test’s code.

If you require a common setup to a number of tests, the current recommended approach is to to write regular setUp
and tearDown code that checks if a given state was already set. One example for such a test that requires a binary
installed by a package:

from avocado import Test
from avocado.utils.software_manager import distro_packages

from avocado.utils import path as utils_path
from avocado.utils import process

class BinSleep (Test):

(continues on next page)

9.3. Avocado Test Writer’s Guide 87

https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUpClass
https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDownClass
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown

avocado Documentation, Release 101.0

(continued from previous page)

mmon

Sleeps using the /bin/sleep binary
mmwn
def setUp(self):
self.sleep = None
try:
self.sleep = utils_path.find_command('sleep')
except utils_path.CmdNotFoundError:
distro_packages.install_distro_packages ({'fedora': ['coreutils']})
self.sleep = utils_path.find_command('sleep')

def test (self):
process.run (" 1" % self.sleep)

If your test setup is some kind of action that will last across processes, like the installation of a software package given
in the previous example, you’re pretty much covered here.

If you need to keep other type of data a class across test executions, you’ll have to resort to saving and restoring the
data from an outside source (say a “pickle” file). Finding and using a reliable and safe location for saving such data is
currently not in the Avocado supported use cases.

Environment Variables for Tests

Avocado exports some information, including test parameters, as environment variables to the running test.

The availability of the variable depends on the test type. A greater set of variables are available to avocado-
instrumented tests, while a reduced number of variables are available to EXEC tests. Although the availability of
the variable, they are usually more interesting to EXEC tests. The reason is that EXEC tests can not make direct use
of Avocado API. avocado-instrumented tests will usually have more powerful ways to access the same information.

Here is a list of the variables that Avocado currently exports to avocado-instrumented tests:

88 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

examples/tests

Environment Vari- | Meaning Example

able

AVO- Version of Avocado test runner 92.0

CADO_VERSION

AVO- Base directory of Avocado tests $HOME/src/avocado/avocado.dev/
CADO_TEST_BASEDIR

AVO- Work directory for the test /var/tmp/.avocado-

CADO_TEST_WORI

KDIR

taskcx8of8di/test-
results/tmp_dirfgqrnbu_/1-
Env.test

AVO-
CADO_TESTS_COMN

Temporary directory created by the feststmpdir plugin.
NN TTRABDIRS persistent throughout the tests in the
same Job

/var/tmp/avocado_cp07qzd9

AVO-
CADO_TEST_LOGI

Log directory for the test
DIR

/var/tmp/.avocado-
task_5t_srpn/test-results/1-
Env.test

AVO-
CADO_TEST_LOGH

Log file for the test
ILE

/var/tmp/.avocado-
taskcx8of8di/test-results/1-
Env.test/debug.log

AVO-

Output directory for the test

/var/tmp/.avocado-

CADO_TEST_OUTRUTDIR taskcx8of8di/test-results/1-
Env.test/data

AVO- The system information directory $HOME/avocado/job-

CADO_TEST_SYSINFODIR results/job-2021-10-26T17.23-
98f17a2/sysinfo/pre

Hekek All variables from —mux-yaml TIMEOUT=60;

IO_WORKERS=10;
VM_BYTES=512M; ...

Here is a list of the vari

ables that Avocado currently exports to exec-test tests:

Environment Vari- | Meaning Example

able

AVO- Version of Avocado test runner 92.0

CADO_VERSION

AVO- Work directory for the test /var/tmp/.avocado-task-
CADO_TEST_WORKDIR _4qquwyg/workdir

AVO- Temporary directory created by the teststmpdir plugin. | /var/tmp/avocado_XhEdo/

CADO_TESTS_COMN

NN TRBBIRS persistent throughout the tests in the
same Job

AVO- Output directory for the test /var/tmp/.avocado-task-

CADO_TEST_OUTRUTDIR _4qquwyq

AVO- The system information directory $HOME/avocado/job-

CADO_TEST_SYSINFODIR results/job-2021-10-26T17.03-
d09ca41/sysinfo/pre

Aotk All variables from —mux-yaml TIMEOUT=60;

IO_WORKERS=10;
VM_BYTES=512M; ...

Note: The same variables listed for the avocado-instrumented tests above are available to all the test types when using

9.3. Avocado Test Writer’'s Guide

89

avocado Documentation, Release 101.0

the legacy runner.

SIMPLE Tests BASH extensions

SIMPLE tests written in shell can use a few Avocado utilities. In your shell code, check if the libraries are available
with something like:

AVOCADO_SHELL_EXTENSIONS_DIR=$ (avocado exec-path 2>/dev/null)

And if available, injects that directory containing those utilities into the PATH used by the shell, making those utilities
readily accessible:

if [$? == 0]; then
PATH=$AVOCADO_SHELL_EXTENSIONS_DIR:S$PATH
fi

For a full list of utilities, take a look into at the directory return by avocado exec-path (if any). Also, the example
test examples/tests/simplewarning. sh can serve as further inspiration.

Tip: These extensions may be available as a separate package. For RPM packages, look for the bash sub-package.

Docstring Directives Rules
Avocado avocado-instrumented tests, those written in Python and using the avocado. Test API, can make use of
special directives specified as docstrings.

To be considered valid, the docstring must match this pattern: avocado.core.safeloader.docstring.
DOCSTRING_DIRECTIVE_RE_RAW.

An Avocado docstring directive has two parts:
1) The marker, which is the literal string : avocado:.
2) The content, a string that follows the marker, separated by at least one white space or tab.
The following is a list of rules that makes a docstring directive be a valid one:
e It should start with : avocado :, which is the docstring directive “marker”
* At least one whitespace or tab must follow the marker and precede the docstring directive “content”

* The “content”, which follows the marker and the space, must begin with an alphanumeric character, that is,
characters within “a-z”, “A-Z" or “0-9.

o After at least one alphanumeric character, the content may contain the following special symbols too: _, ,, =
and :.

* An end of string (or end of line) must immediately follow the content.

Signal Handlers

Avocado normal operation is related to run code written by users/test-writers. It means the test code can carry its own
handlers for different signals or even ignore then. Still, as the code is being executed by Avocado, we have to make
sure we will finish all the subprocesses we create before ending our execution.

Signals sent to the Avocado main process will be handled as follows:

90 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

e SIGSTP/Ctrl+Z: On SIGSTP, Avocado will pause the execution of the subprocesses, while the main process
will still be running, respecting the timeout timer and waiting for the subprocesses to finish. A new SIGSTP
will make the subprocesses to resume the execution.

e SIGINT/Ctrl+C: This signal will be forwarded to the test process and Avocado will wait until it’s finished. If
the test process does not finish after receiving a SIGINT, user can send a second SIGINT (after the 2 seconds
ignore period). The second SIGINT will make Avocado to send a SIGKILL to the whole subprocess tree and
then complete the main process execution.

» SIGTERM: This signal will make Avocado to terminate immediately. A SIGKILL will be sent to the whole
subprocess tree and the main process will exit without completing the execution. Notice that it’s a best-effort
attempt, meaning that in case of fork-bomb, newly created processes might still be left behind.

Wrap Up

We recommend you take a look at the example tests present in the examples/tests directory, that contains a
few samples to take some inspiration from. That directory, besides containing examples, is also used by the Av-
ocado self test suite to do functional testing of Avocado itself. Although one can inspire in https://github.com/
avocado-framework-tests where people are allowed to share their basic system tests.

It is also recommended that you take a look at the 7est APIs. for more possibilities.

9.3.3 Advanced logging capabilities
Avocado provides advanced logging capabilities at test run time. These can be combined with the standard Python
library APIs on tests.

One common example is the need to follow specific progress on longer or more complex tests. Let’s look at a very
simple test example, but one multiple clear stages on a single test:

import logging
import time

from avocado import Test

class Plant (Test) :
"""l,ogs parts of the test progress in an specific logging stream."""

def test_plant_organic(self):
progress_log = logging.getLogger ("avocado.test.progress")
rows = int (self.params.get ("rows", default=3))

Preparing soil
for row in range (rows):
progress_log.info ("%s: preparing soil on row ", self.name, row)

Letting soil rest
progress_log.info("%s: letting soil rest before throwing seeds", self.name)
time.sleep (1)

Throwing seeds
for row in range (rows) :

progress_log.info("%s: throwing seeds on row ", self.name, row)

Let them grow

(continues on next page)

9.3. Avocado Test Writer’s Guide 91

https://github.com/avocado-framework-tests
https://github.com/avocado-framework-tests

avocado Documentation, Release 101.0

(continued from previous page)

progress_log.info ("
time.sleep(2)

waiting for Avocados to grow", self.name)

Harvest them
for row in range (rows):
progress_log.info (

"

harvesting organic avocados on row ", self.name, row

Note: TODO: Improve how we show the logs on the console.

Currently Avocado will store any log information that is part of the ‘avocado.*’ namespaces. You just need to choose
a namespace when setting up your logger.

Note: Sometimes you might want to store logs, which is not part of avocado.* name space. For that, you can use
—store-logging-stream option.

The result is that, besides all the other log files commonly generated, as part of the debug.log file at the job results dir,
you can get your logging information. During the test run, one could watch the progress with:

$ tail -f ~/avocado/job-results/latest/test-results/1—_tmp_plant.py_Plant.test_plant_
—organic/debug.log

[stdlog] 2021-10-06 09:18:57,989 avocado.test.progress L0018 INFO | 1-Plant.test_
—plant_organic: preparing soil on row 1

[stdlog] 2021-10-06 09:18:57,989 avocado.test.progress L0018 INFO | 1-Plant.test_
—plant_organic: preparing soil on row 2

[stdlog] 2021-10-06 09:18:57,989 avocado.test.progress L0022 INFO | 1-Plant.test_
—plant_organic: letting soil rest before throwing seeds

[stdlog] 2021-10-06 09:18:58,990 avocado.test.progress L0028 INFO | 1-Plant.test_
—plant_organic: throwing seeds on row 0

[stdlog] 2021-10-06 09:18:58,991 avocado.test.progress L0028 INFO | 1-Plant.test_
—plant_organic: throwing seeds on row 1

[stdlog] 2021-10-06 09:18:58,991 avocado.test.progress L0028 INFO | 1-Plant.test_
—plant_organic: throwing seeds on row 2

[stdlog] 2021-10-06 09:18:58,992 avocado.test.progress L0032 INFO | 1-Plant.test_
—plant_organic: waiting for Avocados to grow

[stdlog] 2021-10-06 09:19:00, 995 avocado.test.progress L0038 INFO | 1l-Plant.test_
—plant_organic: harvesting organic avocados on row 0

[stdlog] 2021-10-06 09:19:00,995 avocado.test.progress L0038 INFO | 1-Plant.test_
—plant_organic: harvesting organic avocados on row 1

[stdlog] 2021-10-06 09:19:00,996 avocado.test.progress L0038 INFO | 1-Plant.test_

—plant_organic:

harvesting organic avocados on row 2

The very same namespace for the logger (avocado.test .progress), could be used across multiple test methods
and across multiple test modules. In the example given, the test name is used to give extra context.

Showing custom log streams

Using —show

Alternatively, you can ask Avocado to show your logging stream, either exclusively or in addition to other builtin

streams:

92

Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

$ avocado —--show app,avocado.test.progress run -—- examples/tests/logging_streams.py

The outcome should be similar to:

JOB ID : af786£86db530bff26cd6a92c36e99bedcdcad5b
JOB LOG : /home/user/avocado/job-results/job-2016-03-18T10.29-af786£8/job.log
(1/1) examples/tests/logging_streams.py:Plant.test_plant_organic: STARTED
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—l1-Plant.test_plant_organic: preparing soil on row 0
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—1-Plant.test_plant_organic: preparing soil on row 1
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—~1-Plant.test_plant_organic: preparing soil on row 2
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—~1-Plant.test_plant_organic: letting soil rest before throwing seeds
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—~1-Plant.test_plant_organic: throwing seeds on row 0O
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—1-Plant.test_plant_organic: throwing seeds on row 1
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—1-Plant.test_plant_organic: throwing seeds on row 2
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—1-Plant.test_plant_organic: waiting for Avocados to grow
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—1-Plant.test_plant_organic: harvesting organic avocados on row 0
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—1-Plant.test_plant_organic: harvesting organic avocados on row 1
l-examples/tests/logging_streams.py:Plant.test_plant_organic: avocado.test.progress:
—~1-Plant.test_plant_organic: harvesting organic avocados on row 2

(1/1) examples/tests/logging_streams.py:Plant.test_plant_organic: PASS (3.02 s)

RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O

JOB TIME : 7.11 s

JOB HTML : /home/user/avocado/job-results/job-2016-03-18T10.29-af786£f8/html/results.
—html

Using —store-logging-stream

The custom avocado.test.progress stream is combined with the application output, which may or may not
suit your needs or preferences. If you want the avocado.test.progress stream to be sent to a separate file,
both for clarity and for persistence, you can run Avocado like this:

$ avocado run --store-logging-stream=avocado.test.progress —- examples/tests/logging_
—~streams.py

The result is that, besides all the other log files commonly generated, there will be another log file named avocado.
test.progress at the test results dir. During the test run, one could watch the progress with:

$ tail -f ~/avocado/job-results/latest/test-results/l-examples_tests_logging_streams.
—py_Plant.test_plant_organic/avocado.test.progress

2021-11-02 11:42:19,148 logging_streams L0016 INFO | 1-Plant.test_plant_organic:
—preparing soil on row 1

2021-11-02 11:42:19,148 logging_streams L0016 INFO | 1-Plant.test_plant_organic:
—preparing soil on row 2

2021-11-02 11:42:19,148 logging_streams L0020 INFO | 1-Plant.test_plant_organic:
—~letting soil rest before throwing seeds

(continues on next page)

9.3. Avocado Test Writer’s Guide 93

avocado Documentation, Release 101.0

(continued from previous page)

2021-11-02 11:42:20,149 logging_streams L0026 INFO | 1-Plant.test_plant_organic:
—throwing seeds on row 0

2021-11-02 11:42:20,149 logging_streams L0026 INFO | 1-Plant.test_plant_organic:
—throwing seeds on row 1

2021-11-02 11:42:20,149 logging_streams L0026 INFO | 1-Plant.test_plant_organic:
—~throwing seeds on row 2

2021-11-02 11:42:20,149 logging_streams L0030 INFO | 1l-Plant.test_plant_organic:
—wailting for Avocados to grow

2021-11-02 11:42:22,151 logging_streams L0036 INFO | l-Plant.test_plant_organic:
—~harvesting organic avocados on row 0

2021-11-02 11:42:22,152 logging_streams L0036 INFO | 1-Plant.test_plant_organic:
—~harvesting organic avocados on row 1

2021-11-02 11:42:22,152 logging_streams L0036 INFO | 1-Plant.test_plant_organic:
—harvesting organic avocados on row 2

[

The very same avocado.test .progress logger, could be used across multiple test methods and across multiple
test modules. In the example given, the test name is used to give extra context.

9.3.4 Test parameters

Note: This section describes in detail what test parameters are and how the whole variants mechanism works in Avo-
cado. If you're interested in the basics, see Accessing test parameters or practical view by examples in Yam!_to_mux
plugin.

Avocado allows passing parameters to tests, which effectively results in several different variants of each test. These
parameters are available in (test’s) self.params and are of avocado.core.varianter.AvocadoParams
type. You can also access these parameters via the configuration dict at run.test_parameters namespace.

The data for self.params are supplied by avocado.core.varianter.Varianter which asks all regis-
tered plugins for variants or uses default when no variants are defined.

Overall picture of how the params handling works is:

Fo———— +
| | // Test uses AvocadoParams, with content either from
\ Test | // a variant or from the test parameters given by
| | // "--test-parameter"
+————= AN — +
\
\
Fom +
| Runner | // iterates through tests and variants to run all
F————= N + // desired combinations specified by "--execution-order".
\ // 1f no variants are produced by varianter plugins,
\ // use the test parameters given by "--test-parameter"
\
Fomm + provide variants 4+ +
| | < | |
| Varianter API | | Varianter plugins API |
\ \ \ \
o + Rt +

| // All plugins are invoked

(continues on next page)

94 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

(continued from previous page)

| // in turns

o +——— +

| \

| \

v v
o - o +
| yvaml_to_mux plugin | | Other variant plugin(s) |
+——— N + e +

| // vaml is parsed to MuxTree,
| // multiplexed and yields variants

Let’s introduce the basic keywords.

TreeNode

avocado.core.tree.TreeNode

Is a node object allowing to create tree-like structures with parent->multiple_children relations and storing params. It
can also report it’s environment, which is set of params gathered from root to this node. This is used in tests where
instead of passing the full tree only the leaf nodes are passed and their environment represents all the values of the
tree.

AvocadoParams

avocado.core.varianter.AvocadoParams

Is a “database” of params present in every (instrumented) Avocado test. It’s produced during avocado. core.
test.Test’s__init__ from avariant. It accepts a list of TreeNode objects; test name avocado.core.test.
TestID (for logging purposes) and a list of default paths (Parameter Paths).

In test it allows querying for data by using:

self.params.get ($name, S$path=None, $default=None)

Where:
* name - name of the parameter (key)
* path - where to look for this parameter (when not specified uses mux-path)
¢ default - what to return when param not found

Each variant defines a hierarchy, which is preserved so AvocadoParams follows it to return the most appropriate value
or raise Exception on error.

Parameter Paths

As test params are organized in trees, it’s possible to have the same variant in several locations. When they are
produced from the same TreeNode, it’s not a problem, but when they are a different values there is no way to distinguish

9.3. Avocado Test Writer’s Guide 95

avocado Documentation, Release 101.0

which should be reported. One way is to use specific paths, when asking for params, but sometimes, usually when
combining upstream and downstream variants, we want to get our values first and fall-back to the upstream ones when
they are not found.

For example let’s say we have upstream values in /upstream/sleeptest and our values in /downstream/
sleeptest. If we asked for a value using path "« ", it’d raise an exception being unable to distinguish whether we
want the value from /downstream or /upstream. We can set the parameter paths to ["/downstream/*",
"/upstream/*"] to make all relative calls (path starting with «) to first look in nodes in /downstream and if
not found look into /upstream.

More practical overview of parameter paths is in Yaml_to_mux plugin in Resolution order section.

Variant

Variant is a set of params produced by Varianter_s and passed to the test by the test runner as ‘‘params‘ argu-
ment. The simplest variant is None, which still produces an empty AvocadoParams. Also, the Variant can also be a
tuple (list, paths) orjustthe 1ist of avocado.core. tree. TreeNode with the params.

Dumping/Loading Variants

Depending on the number of parameters, generating the Variants can be very compute intensive. As the Variants are
generated as part of the Job execution, that compute intensive task will be executed by the systems under test, causing
a possibly unwanted cpu load on those systems.

To avoid such situation, you can acquire the resulting JSON serialized variants file, generated out of the variants
computation, and load that file on the system where the Job will be executed.

There are two ways to acquire the JSON serialized variants file:

* Using the ——json-variants—dump option of the avocado variants command:

$ avocado variants —-mux-yaml examples/yaml_to_mux/hw/hw.yaml —--json-variants-—
—dump variants.json

$ file variants. json
variants.json: ASCII text, with very long lines, with no line terminators

* Getting the auto-generated JSON serialized variants file after a Avocado Job execution (named with a numeric
index for each of the job’s suites):

$ avocado run examples/tests/passtest.py —-mux-yaml examples/yaml_to_mux/hw/hw.
—yaml

$ file S$SHOME/avocado/Jjob-results/latest/jobdata/variants-1.json
SHOME/avocado/job-results/latest/jobdata/variants.json: ASCII text, with very,
—~long lines, with no line terminators

Once you have the variants. json file, you can load it on the system where the Job will take place:

$ avocado run examples/tests/passtest.py ——json-variants—-load variants. json
JOB ID : £2022736b5b89d7£f4cf62353d3fb4d7e3a06£075
JOB LOG : SHOME/avocado/job-results/job-2018-02-09T14.39-f202273/job.log

(1/6) examples/tests/passtest.py:PassTest.test;run-cpu-intel-disk-scsi-d340:
—STARTED

(continues on next page)

96 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

(continued from previous page)

(1/6) examples/tests/passtest.py:PassTest.test;run-cpu-intel-disk-scsi-d340: PASS,
—(0.01 s)

(2/6) examples/tests/passtest.py:PassTest.test;run-cpu-intel-disk-virtio-40ba:
—STARTED

(2/6) examples/tests/passtest.py:PassTest.test;run-cpu-intel-disk-virtio-40ba:_,
—PASS (0.01 s)

(3/6) examples/tests/passtest.py:PassTest.test;run-cpu-amd-disk-scsi-b3e2: STARTED

(3/6) examples/tests/passtest.py:PassTest.test; run-cpu-amd-disk—-scsi-b3e2: PASS (0.
—01 s)

(4/6) examples/tests/passtest.py:PassTest.test;run-cpu-amd-disk-virtio-9d9f: |
—STARTED

(4/6) examples/tests/passtest.py:PassTest.test; run-cpu-amd-disk-virtio-9d9f: PASS
—(0.01 s)

(5/6) examples/tests/passtest.py:PassTest.test;run-cpu-arm-disk—-scsi-0Oceb: STARTED

(5/6) examples/tests/passtest.py:PassTest.test; run-cpu-arm-disk-scsi-0Oceb: PASS (0.
01 s)

(6/6) examples/tests/passtest.py:PassTest.test;run-cpu-arm-disk-virtio-0254:
—STARTED

(6/6) examples/tests/passtest.py:PassTest.test;run-cpu-arm-disk-virtio-0254: PASS
— (0.0l s)

RESULTS : PASS 6 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.51 s

JOB HTML : SHOME/avocado/Jjob-results/job-2018-02-09T14.39-f202273/results.html
Varianter

avocado.core.varianter.Varianter

Is an internal object which is used to interact with the variants mechanism in Avocado. It’s lifecycle is compound
of two stages. First it allows the core/plugins to inject default values, then it is parsed and only allows querying for
values, number of variants and such.

Example workflow of avocado run passtest.py -m example.yaml is:

avocado run examples/tests/passtest.py -m example.yaml
\
+ parser.finish -> Varianter.__init__ // dispatcher initializes all plugins
\
job.run_tests —> Varianter.is_parsed

+

\

+ Jjob.run_tests —-> Varianter.parse

\ // processes default params

\ // initializes the plugins

| // updates the default values

\

+ job._log_variants -> Varianter.to_str // prints the human readable
—representation to log

\

+ runner.run_suite —-> Varianter.get_number_of_tests

+ runner._iter_variants —-> Varianter.itertests // Yields variants

In order to allow force-updating the Varianter it supports ignore_new_data, which can be used to ignore new
data. This is used by Replay to replace the current run Varianter with the one loaded from the replayed job. The
workflow with ignore_new_data could look like this:

9.3. Avocado Test Writer’s Guide 97

avocado Documentation, Release 101.0

avocado run —-replay latest —m example.yaml
\
+ replay.run —-> Varianter.is_parsed
\
replay.run // Varianter object is replaced with the replay job's one
// Varianter.ignore_new_data is set

job.run_tests —> Varianter.is_parsed

n
\

\

n

\

+ job._log_variants —-> Varianter.to_str

\

+ runner.run_suite -> Varianter.get_number_of_tests
\
n

runner._iter_variants -> Varianter.itertests

The Varianter itself can only produce an empty variant, but it invokes all Varianter plugins and if any of them reports
variants it yields them instead of the default variant.

Test parameters
This is an Avocado core feature, that is, it’s not dependent on any varianter plugin. In fact, it’s only active when no
Varianter plugin is used and produces a valid variant.

Avocado will use those simple parameters, and will pass them to all tests in a job execution. This is done on the
command line via ——test—-parameter, or simply, —p. It can be given multiple times for multiple parameters.

Because Avocado parameters do not have a mechanism to define their types, test code should always consider that a
parameter value is a string, and convert it to the appropriate type.

Note: Some varianter plugins would implicitly set parameters with different data types, but given that the same test
can be used with different, or none, varianter plugins, it’s safer if the test does an explicit check or type conversion.

Because the avocado.core.varianter.AvocadoParams mandates the concept of a parameter path (a legacy
of the tree based Multiplexer) and these test parameters are flat, those test parameters are placed in the / path. This is
to ensure maximum compatibility with tests that do not choose an specific parameter location.

Varianter plugins

avocado.core.plugin_interfaces.Varianter

A plugin interface that can be used to build custom plugins which are used by Varianter to get test variants. For in-
spiration see avocado_varianter_yaml_to_mux.YamlToMux which is an optional varianter plugin. Details
about this plugin can be found here Yam!_to_mux plugin.

9.3.5 Utility Libraries

Avocado gives to you more than 40 Python utility libraries (so far), that can be found under the avocado.utils.
You can use these libraries to avoid having to write necessary routines for your tests. These are very general in nature
and can help you speed up your test development.

The utility libraries may receive incompatible changes across minor versions, but these will be done in a staged fashion.
If a given change to an utility library can cause test breakage, it will first be documented and/or deprecated, and only
on the next subsequent minor version it will actually be changed.

98 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

What this means is that upon updating to later minor versions of Avocado, you should look at the Avocado Release
Notes for changes that may impact your tests.

See also:
If you would like a detailed API reference of this libraries, please visit the “Reference API” section on the left menu.

The following pages are the documentation for some of the Avocado utilities:

Warning: TODO: Looks like the utils libraries documentation will be mainly on docstrings, right? If so, maybe
makes sense to have only documented on API reference? And any general instruction would be on module doc-
string. What you guys think?

avocado.utils.gdb

The avocado.utils.gdb APIs that allows a test to interact with GDB, including setting a executable to be run,
setting breakpoints or any other types of commands. This requires a test written with that approach and API in mind.

Tip: Even though this section describes the use of the Avocado GDB features, it’s also possible to debug some appli-
cation offline by using tools such as rr. Avocado ships with an example wrapper script (to be used with ——wrapper)
for that purpose.

APls
Avocado’s GDB module, provides three main classes that lets a test writer interact with a gdb process, a gdbserver

process and also use the GDB remote protocol for interaction with a remote target.

Please refer to avocado. utils.gdb for more information.

Example

Take a look at examples/tests/modify_variable.py test:

def test (self):

mmn

Execute 'print_variable'.

mmn

path = os.path.join(self.workdir, 'print_variable')
app = gdb.GDB()

app.set_file(path)

app.set_break (6)

app.run()
self.log.info ("\n".join (app.read_until_break()))
app.cmd ("set variable a = 0Oxff")

app.cmd("c")

out = "\n".join(app.read_until_break())
self.log.info (out)

app.exit ()

self.assertIn("MY VARIABLE 'A' IS: ff'", out)

This allows us to automate the interaction with the GDB in means of setting breakpoints, executing commands and
querying for output.

9.3. Avocado Test Writer’s Guide 99

http://rr-project.org

avocado Documentation, Release 101.0

When you check the output (——show=test) you can see that despite declaring the variable as 0, ff is injected and
printed instead.

avocado.utils.vmimage

This utility provides an API to download/cache VM images (QCOW) from the official distributions repositories.

Basic Usage

Import vmimage module:

>>> from avocado.utils import vmimage

Get an image, which consists in an object with the path of the downloaded/cached base image and the path of the
external snapshot created out of that base image:

>>> image = vmimage.Image.from_parameters ()

>>> image

<Image name=Fedora version=35 arch=x86_64>

>>> image.name

'Fedora'

>>> image.path
'/tmp/by_location/951337e4bd3£f30b584623d46f1745147cb32aca5/Fedora-Cloud-Base-35-1.2.
—x86_64-54d81da8.gcow2"

>>> image.version

35

>>> image.base_image
'/tmp/by_location/951337e4bd3f30b584623d46f1745147cb32aca5/Fedora-Cloud-Base—-35-1.2.
—x86_64.gcow2"'

If you provide more details about the image, the object is expected to reflect those details:

>>> image = vmimage.Image.from_parameters (arch='aarché64)

>>> image

<Image name=Fedora version=35 arch=aarch64>

>>> image.name

'Fedora'

>>> image.path
'/tmp/by_location/3f1d3b1b568ad908eb003d1012ba79e1£3bb0d57/Fedora-Cloud-Base-35-1.2.
—aarch64-dab7007f.gcow2’

>>> image = vmimage.Image.from_parameters (version=34,name="'fedora')

>>> image

<Image name=Fedora version=34 arch=x86_64>

>>> image.path
'/tmp/by_location/def0ea887952961473cfbfda268e77d66f9%cdl4/Fedora-Cloud-Base—-34-1.2.
—x86_64-0ed30cd9.qgcow2"

Notice that, unlike the base_image attribute, the path attribute will be always different in each instance, as it
actually points to an external snapshot created out of the base image:

>>> i1 = vmimage.Image.from_parameters ()
>>> 12 = vmimage.Image.from_ parameters()
>>> il.path == i2.path

False

100 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Custom Image Provider

If you need your own Image Provider, you can extend the vmimage . IMAGE_PROVIDERS list, including your
provider class. For instance, using the vmimage utility in an Avocado test, we could add our own provider with:

from avocado import Test

from avocado.utils import vmimage

class MyProvider (vmimage.ImageProviderBase) :
name = 'MyDistro'

def _ init_ (self, version='[0-9]+', build='[0-9]+.[0-9]+",
arch=os.uname () [4]) :
mirnm
:params version: The regular expression that represents
your distro version numbering.
:params build: The regular expression that represents
your build version numbering.
:params arch: The default architecture to look images for.

mon

super (MyProvider, self).__init__ (version, build, arch)

The URL which contains a list of the distro versions
self.url_versions = 'https://dl.fedoraproject.org/pub/fedora/linux/releases/"'

The URL which contains a list of distro images
self.url_images = self.url_versions + '{version}/CloudImages/{arch}/images/"

The images naming pattern
self.image_pattern = 'Fedora-Cloud-Base-{version}-{build}.{arch}.qcow2$"

class MyTest (Test) :
def setUp(self):

vmimage . IMAGE_PROVIDERS.add (MyProvider)
image = vmimage.get ('MyDistro')

def test (self):

Supported images

The vmimage library has no hardcoded limitations of versions or architectures that can be supported. You can use it
as you wish. This is the list of images that we tested and they work with vmimage:

Provider | Version | Architecture
centos 8 aarch64
centos 8 ppcb4le
centos 8 x86_64
centos 7 x86_64
cirros 0.5.2 arm

Continued on next page

9.3. Avocado Test Writer’s Guide 101

avocado Documentation, Release 101.0

Table 1 — continued from previous page
Provider | Version | Architecture

cirros 0.5.2 aarch64
cirros 0.5.2 1386
cirros 0.5.2 ppc64
cirros 0.5.2 ppcb4dle
cirros 0.5.2 powerpc
cirros 0.5.2 x86_64
cirros 0.4.0 arm
cirros 0.4.0 aarch64
cirros 0.4.0 1386
cirros 0.4.0 ppc6b4
cirros 0.4.0 ppcb4le
cirros 0.4.0 powerpc
cirros 0.4.0 x86_64
debian buster arm64

debian buster amd64
debian bullseye | arm64
debian bullseye | amd64

fedora 34 aarch64
fedora 34 ppcbdle
fedora 34 s390x

fedora 34 x86_64
fedora 35 aarch64
fedora 35 ppcbdle
fedora 35 s390x

fedora 35 x86_64
fedora 36 aarch64
fedora 36 ppcbdle
fedora 36 s390x

fedora 36 x86_64

ubuntu 18.04 aarch64
ubuntu 18.04 ppcb4el
ubuntu 18.04 $390x

ubuntu 18.04 x86_64
ubuntu 20.10 aarch64
ubuntu 20.10 ppcb4el
ubuntu 20.10 $390x

ubuntu 20.10 x86_64
ubuntu 21.04 aarch64
ubuntu 21.04 ppcbéel
ubuntu 21.04 $390x

ubuntu 21.04 x86_64
ubuntu 21.10 aarch64
ubuntu 21.10 ppcb4el
ubuntu 21.10 $390x

ubuntu 21.10 x86_64

opensuse | 15.2 x86_64
opensuse | 15.3 x86_64
freebsd 13.0 aarch64
freebsd 13.0 1386

Continued on next page

102 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Table 1 — continued from previous page

Provider | Version | Architecture
freebsd 13.0 x86_64
freebsd 12.2 aarch64
freebsd 12.2 1386

freebsd 12.2 x86_64

9.3.6 Subclassing Avocado
Subclassing Avocado Test class to extend its features is quite straight forward and it might constitute a very useful
resource to have some shared/recurrent code hosted in your project repository.

In this section we propose an project organization that will allow you to create and install your so called sub-
framework.

Let’s use, as an example, a project called Apricot Framework. Here’s the proposed filesystem structure:

~/git/apricot (master)$ tree

— apricot
|: __init___.py
test.py
—— README.rst
— setup.py
— tests

L test_example.py
-—— VERSION

* setup.py: Inthe setup. py itis important to specify the avocado-framework package as a dependency:

from setuptools import setup, find_packages

setup (name="apricot',
description="'Apricot - Avocado SubFramework',
version=open ("VERSION", "r").read().strip(),
author="Apricot Developers',
author_email='"apricot-devel@example.com',
packages=['apricot'],
include_package_data=True,
install_requires=['avocado-framework']

)

* VERSION: Version your project as you wish:

1.0

* apricot/__init__ .py: Make your new test class available in your module root:

all

["ApricotTest']

from apricot.test import ApricotTest

e apricot/test.py: Here you will be basically extending the Avocado Test class with your own methods
and routines:

9.3. Avocado Test Writer’s Guide 103

avocado Documentation, Release 101.0

from avocado import Test

class ApricotTest (Test) :
def setUp(self):
self.log.info("setUp () executed from Apricot")

def some_useful method(self):
return True

* tests/test_example.py: And this is how your test will look like:

from apricot import ApricotTest

class MyTest (ApricotTest) :
def test (self):
self.assertTrue (self.some_useful_method())

To (non-intrusively) install your module, use:

~/git/apricot (master)$ python setup.py develop --user

running develop

running egg_info

writing requirements to apricot.egg-info/requires.txt

writing apricot.egg-info/PKG-INFO

writing top-level names to apricot.egg-info/top_level.txt

writing dependency_links to apricot.egg-info/dependency_links.txt
reading manifest file 'apricot.egg-info/SOURCES.txt'

writing manifest file 'apricot.egg-info/SOURCES.txt'

running build_ext

Creating /home/user/.local/lib/python2.7/site-packages/apricot.egg—-link (link to .)
apricot 1.0 is already the active version in easy-install.pth

Installed /home/user/git/apricot

Processing dependencies for apricot==1.0

Searching for avocado-framework==55.0

Best match: avocado-framework 55.0

avocado-framework 55.0 is already the active version in easy-install.pth

Using /home/user/git/avocado

Using /usr/lib/python2.7/site-packages
Searching for six==1.10.0

Best match: six 1.10.0

Adding six 1.10.0 to easy-install.pth file

Using /usr/lib/python2.7/site-packages
Searching for pbr==3.1.1

Best match: pbr 3.1.1

Adding pbr 3.1.1 to easy-install.pth file
Installing pbr script to /home/user/.local/bin

Using /usr/lib/python2.7/site-packages
Finished processing dependencies for apricot==1.0

And to run your test:

~/git/apricot$ avocado run tests/test_example.py
JOB ID : 02c663eb77e0aebce67462a398da6972791793bf

(continues on next page)

104 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

(continued from previous page)

JOB LOG : SHOME/avocado/job-results/job-2017-11-16T12.44-02c663e/job.log
(1/1) tests/test_example.py:MyTest.test: STARTED
(1/1) tests/test_example.py:MyTest.test: PASS (0.03 s)

RESULTS : PASS 1 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O | CANCEL O
JOB TIME : 0.95 s
JOB HTML : SHOME/avocado/job-results/job-2017-11-16T12.44-02c663e/results.html

9.3.7 Integrating Avocado

Coverage.py
Testing software is important, but knowing the effectiveness of the tests, like which parts are being exercised by the
tests, may help develop new tests.

Coverage.py is a tool designed for measuring code coverage of Python programs. It runs monitoring the program’s
source, taking notes of which parts of the code have been executed.

It is possible to use Coverage.py while running Avocado Instrumented tests. As Avocado spawn sub-processes to run
the tests, the concurrency parameter should be set to multiprocessing.

To make the Coverage.py parameters visible to other processes spawned by Avocado, create the . coveragerc file
in the project’s root folder. Following is an example:

[run]
concurrency = multiprocessing
source = foo/bar

parallel = true

According to the documentation of Coverage.py, when measuring coverage in a multi-process program, setting the
parallel parameter will keep the data separate during the measurement.

With the . coveragerc file set, one possible workflow to use Coverage.py to measure Avocado tests is:

coverage run -m avocado run tests/foo
coverage combine
coverage report

The first command uses Coverage.py to measure the code coverage of the Avocado tests. Then, coverage combine
combines all measurement files to a single .coverage data file. The coverage report shows the report of the
coverage measurement.

For other options related to Coverage.py, visit the software documentation.

Note: Currently coverage support is limited working only with ProcessSpawner (the default spawner).

9.4 Avocado Contributor’s Guide

Useful pointers on how to participate of the Avocado community and contribute.

9.4. Avocado Contributor’s Guide 105

https://coverage.readthedocs.io/
https://coverage.readthedocs.io/

avocado Documentation, Release 101.0

9.4.1 Brief introduction
First of all, we would like to thank you for taking the time to contribute! We collected here useful pointers on how to
participate in the Avocado community and how to contribute.

And keep in mind that our procedures and guides are far from perfection, and need constant improvements. Feel free
to propose changes to this, or any other, guide in a pull request.

Happy Hacking!

9.4.2 How can | contribute?

Note: Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed
under the GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree with: a) our code of conduct; b) that these contributions are your own (or approved by your
employer), and ¢) you grant a full, complete, irrevocable copyright license to all users and developers of the Avocado
project, present and future, pursuant to the license of the project.

Report a bug

If Avocado crashes on you, or if one of the Avocado “selftests” fail, congratulations, you may have just found a bug.
And If you have precise steps to reproduce, awesome! You’re on your way to reporting a useful bug report.

Don’t be afraid to report bugs, even if you’re not sure if they’re valid. The most that can happen is that we find out
together that this is a feature instead!

Avocado is using GitHub’s issue tracking system for collecting and discussing issues. If you have a possible candidate,
do not hesitate, share with us by creating a new bug report.

Suggest enhancements

The same is valid when suggesting a new feature or enhancements: Don’t think twice, just submit the feature request
using the same link. Our community will evaluate if the feature request is valid and when it might become a part of
the Avocado Framework.

Contribute with code

Avocado uses GitHub and its pull request development model. You can find a primer on how to use GitHub pull
requests here.

Every Pull Request you send will be automatically tested by the CI system and review will take place in the Pull
Request as well.

For people who don’t like the GitHub development model, there is an option to send the patches to the Mailing List,
following a more traditional workflow in Open Source development communities. The patches are reviewed in the
Mailing List, should you opt for that. Then a maintainer will collect the patches, integrate them on a branch, and
submit it as a GitHub Pull Request. This process ensures that every contributed patch goes through the CI jobs before
being considered suitable for inclusion.

Remember that we do have a small “Feature Freeze” period right before the release day (usually no longer than one
week). It means that during this time, no new feature can be merged into the master branch.

106 Chapter 9. Build and Quality Status

https://www.gnu.org/licenses/gpl-2.0.html
https://github.com/avocado-framework/avocado/issues/new?assignees=&labels=bug%2C+triage&template=bug_report.md&title=
https://github.com/avocado-framework/avocado/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=
https://help.github.com/articles/using-pull-requests
https://github.com/avocado-framework/avocado/actions

avocado Documentation, Release 101.0

Git workflow

¢ Fork the repository in GitHub.

¢ Clone from your fork:

’$ git clone git@github.com:<username>/avocado.git

* Enter the directory:

’$ cd avocado

* Create a remote, pointing to the upstream:

’$ git remote add upstream git@github.com:avocado-framework/avocado.git

* Configure your name and e-mail in git:

$ git config --global user.name "Your Name"
$ git config —--global user.email email@foo.bar

* Golden tip: never work on local branch master. Instead, create a new local branch and checkout to it:

$ git checkout -b my_new_local_branch

* Code and then commit your changes:

$ git add new-file.py
$ git commit -s

or "git commit -as" to commit all changes

See also:
Please, read our Commit Style Guide on Style Guides section manual.

* Make sure your code is working (install your version of avocado, test your change, run make check to make
sure you didn’t introduce any regressions).

* Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

* Push your commit(s) to your fork:

$ git push origin my_new_local_branch

¢ Create the Pull Request on GitHub. Add the relevant information to the Pull Request description.
* Check if your Pull Request passes the CI system. Your Pull Request will probably be ignored until it’s all green.

Now you’re waiting for feedback on GitHub Pull Request page. Once you get some, join the discussion, answer the
questions, make clear if you’re going to change the code based on some review and, if not, why. Feel free to disagree
with the reviewer, they probably have different use cases and opinions, which is expected. Try describing yours and
suggest other solutions, if necessary.

New versions of your code should not be force-updated (unless explicitly requested by the code reviewer). Instead,
you should:

9.4. Avocado Contributor’s Guide 107

https://github.com/avocado-framework/avocado/fork
https://github.com/avocado-framework/avocado/compare

avocado Documentation, Release 101.0

* Create a new branch out of your previous branch:

$ git checkout my_new_local_branch
$ git checkout -b my_new_local _branch_v2

¢ Code, and amend the commit(s) and/or create new commits. If you have more than one commit in the PR, you
will probably need to rebase interactively to amend the right commits. git cola or git citool can be
handy here.

* Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

* Push your changes:

$ git push origin my_new_local_branch_v2

¢ Create a new Pull Request for this new branch. In the Pull Request description, point the previous Pull Request
and the changes the current Pull Request introduced when compared to the previous Pull Request(s).

* Close the previous Pull Request on GitHub.

After your PR gets merged, you can sync the master branch on your local repository propagate the sync to the master
branch in your fork repository on GitHub:

$ git checkout master
$ git pull upstream master
$ git push

From time to time, you can remove old branches to avoid pollution:

To list branches along with time reference:

$ git for-each-ref --sort='-authordate:iso8601' --format=' $% (authordate:iso08601)%09
% (refname)' refs/heads

To remove branches from your fork repository:

$ git push origin :my_old_branch

Code Review

Every single Pull Request in Avocado has to be reviewed by at least one other developer. All members of the core
team have permission to merge a Pull Request, but some conditions have to be fulfilled before merging the code:

 Pull Request has to pass the CI tests.
* One ‘Approved’ code review should be given.
* No explicit disapproval should be present.

Pull Requests failing in CI will not be merged, and reviews won’t be given to them until all the problems are sorted out.
In case of a weird failure, or false-negative (eg. due to too many commits in a single PR), please reach the developers
by @name/email/irc or other means.

While reviewing the code, one should:
* Verify that the code is sound and clean.

* Run the highest level of selftests per each new commit in the merge. The contrib/scripts/
avocado-check-pr. sh contrib script should simplify this step.

108 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

* Verify that code works to its purpose.

e Make sure the commits organization is proper (i.e. code is well organized in atomic commits, there’s no ex-
tra/unwanted commits, ...).

* Provide an in-line feedback with explicit questions and/or requests of improvements.

* Provide a general feedback in the review message, being explicit about what’s expected for the next Pull Request
version, if that’s the case.

When the Pull Request is approved, the reviewer will merge the code or wait for someone with merge permission to
merge it.

Using avocado—-check-pr. sh

The contrib/scripts/avocado-check-pr.sh script is here to simplify the per-commit-check.
You can simply prepare the merge and initiate AVOCADO_CHECK_LEVEL=99 contrib/scripts/
avocado—-check-pr.sh to run all checks per each commit between your branch and the same branch on the
origin/master (you can specify different remote origin).

Use . /contrib/scripts/avocado-check-pr.sh -h tolearn more about the options. We can recommend
the following command:

$ AVOCADO_CHECK_LEVEL=99
$./contrib/scripts/avocado-check-pr.sh —-i -v

Note: Before first use you might need to create ~/.config/github_checker.ini and fill GitHub user/token
entries (while on it you can also specify some defaults)

Share your tests

We encourage you or your company to create public Avocado tests repositories so the community can also benefit of
your tests. We will be pleased to advertise your repository here in our documentation.

List of known community and third party maintained repositories:

e https://github.com/avocado-framework-tests/avocado-misc-tests: Community maintained Avocado miscella-
neous tests repository. There you will find, among others, performance tests like 1mbench, stress, cpu
tests like ebizzy and generic tests like 1tp. Some of them were ported from Autotest Client Tests repository.

Documentation

Warning: TODO: Create how to contribute with documentation.

9.4.3 Development environment

Attention: TODO: This section needs attention! Please, help us contributing to this document.

9.4. Avocado Contributor’s Guide 109

https://github.com/avocado-framework-tests/avocado-misc-tests

avocado Documentation, Release 101.0

Warning: TODO: Needs improvement here. i.e: virtualenvs, GPG, etc.

Installing dependencies

You need to install few dependencies before start coding:

’$ sudo dnf install gcc python-devel enchant

Then install all the python dependencies:

’$ make requirements-dev

Or if you already have pip installed, you can run directly:

’$ pip install -r requirements-dev.txt

Installing in develop mode

Since version 0.31.0, our plugin system requires Setuptools entry points to be registered. If you’re hacking on Avocado
and want to use the same, possibly modified, source for running your tests and experiments, you may do so with one
additional step:

$ python3 setup.py develop [--user]

On POSIX systems this will create an “egg link” to your original source tree under SHOME/.local/lib/
pythonX.Y/site-packages. Then, on your original source tree, an “egg info” directory will be created, con-
taining, among other things, the Setuptools entry points mentioned before. This works like a symlink, so you only
need to run this once (unless you add a new entry-point, then you need to re-run it to make it available).

Avocado supports various plugins, which are distributed as separate projects, for example “avocado-vt”. These also
need to be deployed and “linked” in order to work properly with the Avocado from sources (installed version works
out of the box).

You can install external plugins as you wish, and/or according to the specific plugin’s maintainer recommendations.

Plugins that are developed by the Avocado team, will try to follow the same Setuptools standard for distribut-
ing the packages. Because of that, as a facility, you can use make requirements-plugins from the main
Avocado project to install requirements of the plugins and make develop-external to install plugins in
develop mode to. You just need to set where your plugins are installed, by using the environment variable
SAVOCADO_ EXTERNAL_PLUGINS_PATH. The workflow could be:

cd $AVOCADO_PROJECTS_DIR

git clone S$SAVOCADO_GIT

git clone $AVOCADO_PROJECT2

Add more projects

cd avocado # go into the main Avocado project dir

make requirements-plugins

export AVOCADO_EXTERNAL_PLUGINS_PATH=$AVOCADO_PROJECTS_DIR
make develop-external

$
$
$
$
$
$
$
$

You should see the process and status of each directory.

9.4.4 Style guides

110 Chapter 9. Build and Quality Status

avocado Documentation, Release 101.0

Commit style guide

Write a good commit message, pointing motivation, issues that you’re addressing. Usually you should try to explain 3
points in the commit message: motivation, approach and effects:

header <- Limited to 72 characters. No period.
<- Blank line
message <- Any number of lines, limited to 72 characters per line.
<- Blank line
Reference: <- External references, one per line (issue, trello, ...)
Signed-off-by: <- Signature and acknowledgment of licensing terms when

contributing to the project (created by git commit -s)

Signing commits
Optionally you can sign the commits using GPG signatures. Doing it is simple and it helps from unauthorized code

being merged without notice.

All you need is a valid GPG signature, git configuration, and slightly modified workflow to use the signature. Eventu-
ally, set it up in GitHub; hence, benefiting from the “nice” UI.

Get a GPG signature:

Google for howto, but generally it works like this
$ gpg —--gen-key # defaults are usually fine (using expiration is recommended)
$ gpg ——-send-keys S$SYOUR_KEY # to propagate the key to outer world

Enable it in git:

$ git config --global user.signingkey S$YOUR_KEY

(optional) Link the key with your GH account:

Login to github

Go to settings->SSH and GPG keys

Add New GPG key

run $(gpg —-a —--export S$YOUR_EMAIL) in shell to see your key
paste the key there

g w N

Use it:

You can sign commits by using '-S'
git commit -S

You can sign merges by using '-S'
git merge -S

e

Warning: You can not use the merge button on GitHub to do signed merges as GitHub does not have your private
key.

9.4. Avocado Contributor’s Guide 111

avocado Documentation, Release 101.0

Code style guide

Warning: TODO: Add the Code Style Guide.

9.4.5 Writing an Avocado plugin

What better way to understand how an Avocado plugin works than creating one? Let’s use another old time favorite
for that, the “Print hello world” theme.

Code example

Let’s say you want to write a plugin that adds a new subcommand to the test runner, hello. This is how you